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We examine the formation process of the vacuum polarization cloud around a localized charge 

with space-time resolution permitting us to view the traditional charge renormalization procedure 

from a dynamical perspective.  The asymptotic steady state charge cloud found in the long-time 

limit (after the subtraction of a suitable term) matches the distribution predicted by standard 

perturbative propagator techniques based on Feynman diagrams.  This match demonstrates that an 

alternative (strong-field approximation based) approach can predict the nonlinear properties of the 

vacuum state.  It turns out that some aspects of the polarization dynamics suggest that the vacuum 

can be viewed as classical dielectric medium, while other aspects are purely quantum mechanical 

in nature and cannot be predicted from the Maxwell theory for classical fields. 
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  The polarization of the quantum vacuum by a strong electromagnetic field can be related to 

the displacement of virtual electron-positron pairs.  These particles are essential elements for the 

leading radiative corrections to the propagators of quantum electrodynamics (QED).  The 

theoretical analysis, however, is non-trivial from a conceptual point of view as it involves the 

procedures of regularization, the introduction of cut-off parameters, or charge renormalization to 

remove unphysical divergent terms by adjusting the bare coupling parameters of the theory.  

Diagrammatic perturbative techniques have proven to be very powerful tools to describe 

time-independent properties of various QED systems.  

 These sophisticated methods can provide highly accurate energies or transition rates.  The 

lowest-order correction to the classical Coulomb potential has become the basis for numerous 

calculations in nuclear physics and quantum optics and has been verified experimentally with 

astounding accuracy.  As a result of recent developments in laser technology, we can use ultra 

short electromagnetic radiation pulses as a new tool to probe also time-dependent properties of 

the vacuum.  This technology might also provide us in the future with sufficiently intense pulses 

to observe the predicted creation process of electron-position pairs directly from the vacuum [1].  

 There are numerous conceptually intriguing questions about time-dependent QED processes 

that have become pertinent due to these technological advances.  For example, the formation 

process of a charge and of its surrounding field of virtual photons is conceptually rather 

intriguing.  How does a created electron (or its Coulomb field) induce a polarization cloud from 

the vacuum?  What are the time scales for this process, and how do they compare with the time it 

takes to create the particle?  Can a steady state be reached?  If so, how is this process related to 

the traditional perturbative charge renormalization procedure?  Are there limitations to the simple 

classical view of the vacuum as a polarizable dielectric medium?  A better understanding of these 

challenges would be quite beneficial in view of the new technological possibilities to probe the 

temporal aspects of the vacuum with ultrafast and intense electromagnetic fields. 

 In this note we examine the time-dependent dynamics of the vacuum polarization process 

and the related charge renormalization procedure.  This will provide us with some first insight 

about how to address some of the challenges raised above.  More specifically, we will show that 

the usual semi-classical approach based on the strong-field approximation to the Dirac theory can 

give us a reliable characterization of the vacuum polarization, in excellent agreement with the 

Feynman based perturbative method.  

 From a technical point of view, quantum field theoretical simulations of fundamental QED 
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processes with full space-time resolution are unfortunately conceptually and also computationally 

demanding due to enormous requirements on CPU time and memory.  To make practical progress 

one can employ the strong-field approximation for the photonic environment [2,3], where the 

photons associated with the electromagnetic fields are modeled by time-dependent functions 

rather than second quantized and dynamically coupled operators.  As with any ad hoc 

approximation, the validity of such an approach needs to be tested to avoid possible 

misinterpretations.  In this approximate framework the Dirac Hamiltonian is given by hD = c α  

[p-eA(r, t)/c]  + mc2 β + eV(r,t), where α  and β are the usual 4×4 Dirac matrices.  Here we have 

employed the strong-field approximation, where in contrast to the second-quantized formulation 

the operator character of the photon field has been neglected and instead the field is represented 

by classical potentials A(r,t) and V(r,t) with a given dependence on the position and time.  In 

such an approach, the spatial distribution of the induced charges is obtained from the expectation 

value of the charge operator in the initial vacuum state |vac〉 

 

  ρ(r,t)  ≡  〈vac| e [Ψ†(r,t)Ψ(r,t) – Ψ(r,t)Ψ†(r,t)]/2 |vac〉  (1) 

 

Here the electron-positron field operator Ψ(r,t) is obtained [2,4] in terms of the corresponding 

fermionic creation and annihilation operators and of all (single-particle) wave functions φ that 

fulfill the Dirac equation iћ ∂φ/∂t = hD φ.  This expansion of Ψ(r,t) in terms of all single-particle 

orbitals leads to the final expression for the charge density [3]  

 

  ρ(r,t)  ≡  e [ΣE+ |φE+(r,t)|2 – ΣE- |φE-(r,t)|
2]/2   (2) 

 

where the first (second) summation extends over all states with an initially positive (negative) 

energy.  In order to get a computationally feasible model, the simulations below are performed in 

one spatial direction such that the vector potential can be neglected by choosing an appropriate 

gauge.   

 Space-time resolved simulations based on quantum field theory are presently not yet 

possible in two or three spatial dimension.  However, due to efficiency of multi-processor 

computational platforms simulations are possible in one spatial dimension.  It is therefore 
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important to point out that 1D electrodynamics can have a different behavior at small distances 

than its 3d counterpart. 

 In Figure 1, we display the numerically obtained solution ρ(x,t) according to Eq. (1) for a 

charge with the amount -e localized at x=0.  This charge does not necessarily represent a physical 

electron, but more a bare electron, to use the usual language and to reflect the fact that the 

interaction with the vacuum has not yet occurred.  In fact, the presence of this charge is 

represented in the simulation by an external potential of the form V(x)= 2πke e |x|, where we 

abbreviate Coulomb’s constant as ke ≡ 1/(4πε0), which is related to the vacuum’s permittivity ε0.  

This is the classical solution obtained from the stationary Maxwell equation  –∂2V(x)/∂x2 = 4πke 

ρ(r), where the associated charge density is ρ(x) = e δ(x).  The associated electric field follows as 

E(x) =   –∂V(x)/∂x = 2πke q x/|x| and is constant.  

 The four snapshots show that this particular solution ρD increases with time while the shape 

of the density remains invariant.  There are two immediate observations that suggest a purely 

mathematical character of these particular (numerically fully converged) solutions.  The solution 

grows without any limit and negative charges appear to accumulate around the (originally given) 

negative charge.  While an infinite growth does not necessarily violate energy conservation, the 

accumulation of the like charges around the central charge seems unphysical. 
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Figure 1     The time evolution of the solution Eq. (2) (in units of ρ0= 1.6×10−19 C/m2) as a function 
of the position (in units of the Compton wavelength λC=3.86×10−13 m) under the Dirac and 
Foldy-Wouthuysen Hamiltonians triggered by a localized charge at x=0.  The four moments in time 
are ti=2.15×10−21s + (i−1)4.3×10−21 s with i = 1, 2, 3, 4.    
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 In order to better understand and to separate out the divergent part of the Dirac charge 

density, we have compared it to the corresponding quantity [Eq. (2)] based on the states from the 

Foldy-Wouthuysen (FW) theory [5].  In the special case of a force-free system (V=0), the 

corresponding Hamiltonian β√(m2c4+c2p2) is fully equivalent to hD as it can be obtained by a 

unitary transformation.  To include the potential we examine the Hamiltonian hFW  ≡ 

β√(m2c4+c2p2) + eV(r,t).  As it is diagonal in spinor-space it cannot account for the relativistic 

coupling between the positive and negative energy levels.   This form permits sometimes an 

easier interpretation of the dynamics for weakly coupled processes.  We note that transitions from 

the initially occupied negative energy states (Dirac sea) to positive energy eigenstates are usually 

associated with the creation of electron-positron pairs.  In contrast, hFW cannot reproduce those 

processes that involve the electron-positron pairs such as polarization.  By evolving the field 

operator under hFW, the corresponding density (denoted by ρFW) can be obtained according to Eq. 

(2).  Figure 1 shows that hD and hFW predict nearly identical solutions, except close to x=0. 

 This match of the two densities illustrates that the (unphysical) infinite growth in Figure 1 

occurs already in the no-coupling limit and therefore cannot correspond to the true vacuum 

polarization that is intrinsically relativistic.  To obtain the physical density, the unphysical FW 

distribution ρFW has to be subtracted from the Dirac density ρD.  As we show below, the 

polarization potential [6] is proportional to O(1/c2) and therefore cannot be predicted from hFW 

whose error is of the same order.  It is important to note that the occurrence of mathematical 

solutions that need to be removed is not unusual for the strong-field approximation.  In their 

pioneering work, Wichman and Kroll [7] noted first that this approximation leads to the 

occurrence of diverging mathematical terms for stationary Coulomb systems.  

 The true origin for these particular solutions is presently not fully understood.  One can use 

some perturbative arguments that suggest that the unphysical contribution to the charge density is 

associated exclusively with the coupling between states within the upper energy manifold.  In 

other words, we can eliminate these solutions by restricting the permitted couplings of the (free) 

positive energy states to only those states of the negative energy continuum.  In this sense, it is 

expected that subtracting the FW charge density from the Dirac density eliminates effectively 

these (for the vacuum polarization process) unphysical transitions within the same energy 

manifold.  It also turns out that these unphysical (converged) solutions do not have any 
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non-relativistic analog.  In fact, the corresponding charge density for the non-relativistic limit of 

Eq. 2 (formally obtained by the limit of the speed of light c→ ∞), does not lead to any convergent 

solution at all. 

 While the properties of these unwanted long-range solutions is understood and possible 

techniques to eliminate them, their mathematical origin is not.  For example, it could be that these 

solutions are solely a consequence of the strong-field approximation, where we have neglected 

the operator character of the photon potential.  In the traditional Feynman diagram based 

approach, which we summarize below, it seems that these unphysical solutions do not occur, or, 

at least, they were somehow eliminated effectively during the required infinite charge 

renormalization procedure. 

 In Figure 2 we display the time evolution of the physical polarization charge density ρ ≡ ρD 

– ρFW.  In contrast to the data of Figure 1 (and now fully consistent with our intuition), we 

observe that a positive charge cloud grows around the central charge.  After about 10-20 s this 

density approaches a finite steady state, which has a spatial extension on the order of the Compton 

wavelength λC ≡ ћ/(mc).  

 

  
Figure 2     The time evolution of the physical polarized charge density triggered by a point charge 
centered at r≡|x|=0.   

 

 The formation of the steady state is accompanied by a combination of small amounts of 

positive and negative charges that leave the region close to r=0 and propagate outward.  The front 

edge evolves precisely with the speed of light c as is visible by the straight diagonal line in the 

surface plot.  This outgoing portion is transient and damps out in the long-time limit.  The period 
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of the damped oscillations is 4×10-21 s.  This matches exactly πћ/(mc2), which is a typical short 

time scale characteristic of pair creation processes.  The amplitude of the oscillations might be 

related to the sudden turn-on of the charge-vacuum coupling at time t=0.  
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Figure 3     The comparison between the QED (lowest order Feynman diagram) charge density and 
the steady state obtained from the strong-field approximation.  The inset graph is the time averaged 
total induced charge between x= −25λC and 25λC.  

 

 As mentioned in the introduction time-independent quantities such as the stationary 

polarization charge density are usually computed in QED based on Feynman diagrams.  If we 

apply this standard technique to our system we have to compute the one-loop correction to the 

unperturbed photon propagator [8].  If we follow the usual steps (as summarized in the appendix), 

including the introduction of the Feynman parameter β and the charge renormalization we obtain 

the first-order modified photon propagator as  

 

 D’F μν (k)  =  −(4π ke ћ c-1) gμν  /k
2
 −  4π ke ћ c-1 (gμνk

2−kμkν) α/k2
 [P(k2)-P(0)]       (3) 

 

Here k denotes the two-momentum, ke is the Coulomb constant and α is the corresponding fine 

structure constant.  The finite term P(k)-P(0) simplifies to −8 ћ2 m-2c-2∫ 0
1dβ β2(1−β)2 k2 

(m2c2ћ-2− β(1−β)k2)-1.  The inverse Fourier transformation of the first term in Eq. (3) reproduces 

the usual Coulomb law in one dimension, V(x) = −2πke  e
 |x|, while the second term V(x) = 2πke e 

α ћ3m-3c-3 ∫1
∞dτ τ-5 √(τ2-1)-1 exp[−2mcτ|x|/ћ] gives us the correction due to the vacuum 

polarization.  Invoking the 1d Maxwell equation ρ(x) =–(4πke)
-1∂x

2 V(x), we can compute the 
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associated effective charge density [7].   

 

         ρ(x)  =  (e+Qpol)
 δ(x)  –  2  e α ћm-1c-1 ∫1

∞dτ τ-3 √(τ2-1)-1 exp[−2mcτ|x|/ћ]  (4) 

 

where Qpol ≡ 2 e α ћ2m-2c-2  ∫1
∞dτ τ-4 √(τ2-1)-1 ] denotes the induced charge, which is the negative 

of the spatial integral over the second term.  The renormalized charge Qpol+e ensures that ∫ dx ρ(x) 

= e.  

 In Figure 3 we compare the induced charge distributions obtained from the Feynman 

method and from the strong-field approximation.  The agreement is superb.  The small oscillatory 

structures are remnants of the time evolution and vanish in the long-time limit.  The match is an 

encouraging confirmation that the semi-classical strong field approximation, which is usually 

employed for super strong fields, is valid to predict the vacuum polarization process.   

 The total induced charge around x=0 approaches a constant value for the dynamical process, 

which can be computed as Qpol(t) = 1/t ∫0
t dt' ∫ dx ρpol(x, t') to average locally over the oscillations.  

It is shown in the inset of the Figure 3. 

 Interestingly, the total amount of the induced charge that originates close to r=0 is positive, 

but this does not violate charge conservation, as the total charge operator commutes with the 

Dirac Hamiltonian.  This conservation law should not be misinterpreted and be applied locally to 

the charge density.  It is a global quantity.  The missing equal portion of the accompanying 

induced negative charges is generated at the boundaries of our numerical box (not shown in the 

figure) where the potential behaves as if there was effectively a second (oppositely charged) 

mirror charge.  While the vacuum’s polarization is a quantum mechanical process, a comparison 

with the polarization of a classical dielectric medium could help us to better understand this.  As 

classical microscopic dipoles realign themselves in an electric field (for instance between two 

charged parallel plates), also here the induced charges build up simultaneously at both edges of 

the capacitor, in full analogy to our situation where the total charge is also conserved.   

 In contrast to the standard mathematical charge renomalization procedure where the 

amount of the bare charge is dictated by the required (measured) long distance behavior of the 

Coulomb force law, the time-dependent simulation started with a given central negative charge, 

which then induced the positive charge cloud around it.  As a result, the central charge becomes 

naturally screened such that the total effective charge observed from a large distance would be 
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less than the original amount.  In other words, the dynamical polarization process lowers the total 

charge.  This is in contrast to the mathematical renormalization procedure where the original 

value of the bare charge has to be artificially re-adjusted (renormalized) after the fact to become 

consistant with the required total charge observed from a distance.  In this sense the mathematical 

renormalization procedure based on a re-adjustment of the central charge can reproduce the 

steady state distribution that is obtained from the dynamical polarization process starting from an 

isolated charge.  One could therefore expect that there might be other non-perturbative quantum 

field theoretical methods available for which an initial unrenormalized charge state would 

naturally relax into the fully polarized state.  This could be analogous to the standard imaginary 

time integration technique routinely used to determine ground states.  
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Figure 4    The induced polarization density for two infinitely extended parallel charged plates. 
 

 The semi-classical field approach might suggest that the quantum vacuum can be viewed as 

a simple classical dielectric medium that can be polarized by an external force field.  To examine 

if this analogy really holds and the electric field is solely responsible for the polarization, we have 

modified the geometry of the original charge configuration.  Instead of the point charge studied 

above, we compute the polarization charge density for two initially charged plane parallel 

capacitor plates.  It is well known that if the two plates are infinitely extended and oppositely 

charged, the two electric fields associated with each plate cancel exactly out and there is no 

classical electric field in the two regions outside the plates.  If this capacitor were inserted into a 

classical dielectric medium, we would not expect any polarization charges outside the plates.  

 In Figure 4 we examine the corresponding induced density from the vacuum.  For 
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simplicity we have assumed that the two plates are infinitesimally thin.  Again, the long-time limit 

matches the charge density predicted by the lowest-order Feynman diagram method.  We observe 

that there are induced charges from the vacuum even in the two regions where the (classical) 

electric field is zero.  This is in contrast to the absence of any polarization as predicted by the 

Maxwell equations for a classically dielectric medium.  Apparently charges can be induced from 

the vacuum even in “classically forbidden” regions.  While there are commonalities between the 

dynamical response of the vacuum and a dielectric medium, this finding suggests that it is not 

reasonable to assign a dielectric permeability to the quantum vacuum.  The induced charges have 

also a detectable impact on the total attractive force between the plates, similar to the Casimir 

force. 

 In conclusion, we have shown that the strong-field approximation can be directly connected 

with the traditional Feynman diagram based approach for the vacuum polarization if appropriate 

mathematical solutions (related to the Foldy-Wouthuysen theory) are subtracted from the density 

obtained from the Dirac Hamiltonian.  This has two consequences.  First, it leads to the 

observation that the mathematical charge renormalization procedure can be identified as the 

long-time limit of a dynamical relaxation process.  This opens the possibility to derive alternative 

relaxation-based techniques to the usual renormalization procedures.  Second, it has a direct 

implication for self-consistent solution techniques to the coupled Maxwell-Dirac equation, where 

the current and charge densities act as source terms.  To mention an important example, these 

coupled equations are the basis for examining the interfermionic interactions of the strong-field 

induced electron-positron pair creation process, which has been studied so far [9,10] exclusively 

in the frame work of the strong-field approximation.  Here it is important to note that reliable 

results can only be obtained, if in each step of the coupled dynamics the corresponding  

mathematical solutions are removed from the space-time dependent current density.  We will 

provide more details on how this can be accomplished in a separate work.    
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Appendix 
 Here we summarize briefly the usual derivation for the vacuum’s polarization charge 

density of Eq. (4).  We denote with x the two-vector xµ≡(ct,x) and with k the two-vector 

kµ≡(ω/c,k x).  We use the same polarization tensor as in 3d calculations, except that we replace 

∫d4k/(2π)4 by ∫d2k/(2π)2.  The corresponding diagram exhibits also a logarithmic divergence, 

however, by using dimensional regularization it turns out that this contribution in fact cancels 

such that the polarization tensor is finite in 1D.  As a result it can be directly simplified to 

Πσλ(k) ≡ κb
2 ћ-2(4π)-1 (gσλk2−kσkλ) P(k2), with  

 

                                   P(k2)= − 8 ∫01dβ β(1−β) [m2c2ћ-2− β(1−β)k2]-1                  (A1) 

 

As the result, the propagator takes the form: 

  

     D’F μν (k)  = −(4πke ћ c-1) k-2gμν  

    – κb
2 ћ-2 (4π)-1 P(k2) (gμνk

2−kμkν) (4πke ћ c-1)2 k-4                   (A2) 

 

 Next we convert the modified photon propagator into the potential for a bare charge κb 

centered at z=0, according to jν(x) = c κb δ
ν0 δ(x).  In Fourier space, we obtain the zeroth 

component of the potential: 

  

      A’0(k)  =  κb(4 π ke c
-1) kx

-2 
 2π δ(k0)  

                                             + κb
3 ke  (cћ)-1 P(-kx

2) (4 π ke c
-1) kx

-2 2π δ(k0)                   (A3) 

 

 Similarly as in the corresponding derivation of 3d world, we need to find (renormalize) the 

(unknown) value of the coupling κb.  In contrast to the real 3d world, where we have an 



                                                  12            8/13/15 

 

 

observable value of the charge of the underlying fundamental particle (positron), there are 

obviously no experimental reference measurements in the mathematical 1d-world.  We denote 

with e the physical charge of the corresponding elementary particle in 1d.   

 The corresponding true 1d potential should behave as Aref 
0(x) → c-1 e 2πke |x| for large 

distances.  In Fourier space, this corresponds to Aref
0(k) → e 4πkec

-1
 /kx

2.  So equating Eq. (A3) 

and Aref
0(k) we obtain 

 

         4πke c
-1 e /kx

2  =  κb 4πke c
-1 kx

-2
 +  κb

3 ke  (cћ)-1 P(-kx
2) (4πke c

-1) kx
-2                              (A4) 

 

where we have the factor 2π δ(k0) was cancelled o nboth sides and where k2 was replaced by 

–kx
2.  This equation simplifies for kx →0 to  

 

                                           e    =  κb  +  κb
3 ke  (ћc)-1 P1d(0)                           (A5) 

 

If we solve this equation for κb as a function of e we obtain again one real and two complex 

solutions.  We assume also that we can expand the real solution to first order in the unitless 

parameter ke (ћc)-1
 e

2 P(0), noting, however, that (in contrast to the 3d theory) P(0) is finite [11].  

We define ke e
2/(ћc) ≡ α, which introduces α as an effective fine structure constant.  The final 

solution of Eq. (A5) is 

 

            κb  =  e – α P (0) e  +  O[( α P(0) )2]                        (A6) 

 

 If we replace this expression for the coupling κb in terms of the elementary charge e back 

into Eq. (A3), we obtain the final result for the potential of a 1d elementary charge e (and the 

1d-fine structure constant α) 

 

                        A’ 0(k)  =  {1 +  α  [P(-kx
2)-P(0)]}  e kx

-2  4πc-1ke  2π δ(k0)                         (A7) 

 

The finite term P(k)-P(0) simplifies to 



                                                  13            8/13/15 

 

 

 

                       P(k) - P(0) = −8 ћ2 m-2c-2∫01 dβ β2(1−β)2 k2 (m2c2ћ-2− β(1−β)k2)-1      (A8) 

 
 In position representation, the zeroth component of the potential, V = cA’0, for the charge e 

centered at x=0 becomes 

 

   V(x) = −2πke  e
 |x|                        (A9) 

         + 2πke e α ћ3m-3c-3 ∫1
∞dτ τ-5 √(τ2-1)-1 exp[−2mcτ|x|/ћ] 

 

This result can be effectively interpreted as being due to a polarization charge density due to 

the vacuum polarization correction, which can be determined from the classical Maxwell 

equation as ρ(x) =–(4πke)-1∂x
2 V(x). We obtain Eq. (4) of the main text: 

 
 ρ(x)  =  (e+Qpol)

 
δ(x)  –  2  e α ћm-1c-1 ∫1

∞dτ τ-3 √(τ2-1)-1 exp[−2mcτ|x|/ћ]     (A10) 

 

where Qpol ≡ 2 e α ћ2m-2c-2  ∫1
∞dτ τ-4 √(τ2-1)-1  denotes the induced charge, which is the 

negative of the spatial integral over the second term. 
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