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We investigate the feasibility of precision frequency metrology with large ion crystals. For clock
candidates with a negative differential static polarisability, we show that micromotion effects should
not impede the performance of the clock. Using Lu+ as a specific example, we show that quadrupole
shifts due to the electric fields from neighbouring ions do not significantly affect clock performance.
We also show that effects from the tensor polarisability can be effectively managed with a compen-
sation laser at least for a small number of ions (. 103). These results provide new possibilities for
ion-based atomic clocks, allowing them to achieve stability levels comparable to neutral atoms in
optical lattices and a viable path to greater levels of accuracy.

PACS numbers: 06.30.Ft, 06.20.fb

I. INTRODUCTION

The realisation of accurate, stable frequency references
has enabled important advances in science and technol-
ogy. Well-known examples include the Global Position-
ing System, and tests of fundamental physical theories.
Increasing levels of accuracy and stability continue to
be made with atomic clocks based on optical transitions
in isolated atoms [1–9]. By now a number of groups
have demonstrated superior performance over the cur-
rent caesium frequency standards with the best clocks to
date having inaccuracy at the 10−18 level [1, 2]. For the
past decade single ion clocks have held a leading position.
However in recent years, advances in laser stability have
allowed neutral atoms to take advantage of large numbers
of atoms giving superior performance in stability while
maintaining some of the best accuracies [10]. Ion-based
clocks have been limited to single atoms predominately
due to the fact that trap influences such as micromotion
are difficult to control for multiple ions. Indeed, for the
Al+ clock, micromotion is a dominant factor in the over-
all error budget [1]. We note that consideration has been
given to clocks based on small strings of less than 10 ions
stored in linear radio-frequency (RF) traps [11].

Micromotion is caused by the RF drive used to con-
fine the ion. It causes two correlated effects: the rapid
oscillatory motion at the RF frequency Ω gives a second-
order Doppler shift, and the electric field driving the mo-
tion induces an AC stark shift proportional to ∆α where
∆α = αe − αg is the differential static scalar polarisabil-
ity. In 1998 [12] it was noted that, when ∆α < 0, these
two effects could be made to exactly cancel for a well
chosen value of Ω. This value, which we refer to here as
the magic RF frequency in analogy with the magic wave-
length for optical lattices, depends only on the properties
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of the atom. The existence of such a magic RF frequency
gives rise to the important question of what happens in
a large ion crystal where micromotion effects can be very
pronounced at the edges of the crystal. If the cancelation
is maintained, then precision frequency metrology with
large ion crystals is potentially feasible.

In this paper we show that dominant higher order mi-
cromotion effects can also be mitigated, and that clock
operation would not be affected by micromotion. For
atoms with an electronic angular momentum J > 1/2,
we show that quadrupole shifts due to the electric fields
from neighbouring ions do not significantly affect clock
performance. We also show that shifts arising from the
tensor polarisability can be effectively compensated with
an additional laser field. Together these results show that
ions having ∆α < 0 can reap the benefits of large num-
bers of ions, just as neutral atoms can in optical lattices.
We illustrate our analysis using 176Lu+ as a concrete ex-
ample [13], but the ideas can be readily adapted to any
other ion with ∆α < 0.

II. MICROMOTION

We start by writing the RF and static electric field
potentials in the form

φrf =
mΩωz

2q
rTΛrfr cos Ωt, φs =

mω2
z

2q
rTΛsr (1)

where ωz is one of the pseudo-potential oscillation fre-
quencies, Ω is the RF drive frequency, and m and q are
the mass and charge of the ion respectively. The matrices
Λrf and Λs determine the curvatures of the potentials and
in general, we may choose Λrf to be diagonal. Defined in
this way, the pseudo-potential approximation is

V (r) =
1

2
mω2

zr
T

(
Λs +

1

2
Λ2
rf

)
r (2)
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If we scale time by 2/Ω and length by

l =

(
q2

4πε0mω2
z

)1/3

,

then the equations of motion (e.o.m.) are given by

r̈i +
(
ε2Λs + 2εΛrf cos 2t

)
ri − ε2

∑
j 6=i

rij
r3ij

= 0 (3)

where ε = 2ωz/Ω. Following the treatment in [14] we
assume a stable π-periodic crystal solution exists, which
may be expressed as a Fourier expansion

rπi (t) =

n=∞∑
n=−∞

R2n,ie
2int. (4)

In this form, R0,i is the time-averaged position of the
ith ion. Substituting this expansion into the e.o.m. and
using a Taylor series expansion for the Coulomb term
about R0,ij = R0,i −R0,j we can obtain an infinite set
of coupled equations for R2n,i representing the Fourier
expansion of the e.o.m. Defining

Fij =
R0,ij

|R0,ij |3
, Qij = −

3R0,ijR
T
0,ij − |R0,ij |2

|R0,ij |5
, (5)

the first two Fourier equations are given by

ε2ΛsR0,i + 2εΛrfR2,i − ε2
∑
j 6=i

Fij = 0 (6)

and(
ε2Λs − 4I

)
R2,i + εΛrf (R0,i + R4,i)

− ε2
∑
j 6=i

Qij (R2,i −R2,j) = 0. (7)

To lowest order, Eq. 7 gives

R2,i =
ε

4
ΛrfR0,i (8)

which expresses the fact that the micro-motion ampli-
tude is directly proportional to the RF electric field at
the position of the ion. With this approximation, the
fractional shift of a clock transition is given by

∆νi
ν

= −
(
ωzl

2c

)2
[

1 +
∆α

hν

(
mΩc

q

)2
]
RT

0,iΛ
2
rfR0,i.

(9)
For ∆α < 0 this leads to a magic RF drive frequency
defined by

Ω0 =
q

mc

√
hν

−∆α
(10)

at which micro-motion shifts cancel as first pointed out in
[12]. For one ion, Eq. 9 is sufficient for even the very best

clocks [1, 3, 4]. However, for large ion crystals, higher
order corrections should be considered. To this purpose,
we first note that the n = 2 Fourier component of the
e.o.m. is

R4,i =
ε

16
ΛrfR2,i, (11)

to lowest order. Substitution into Eq. 7 then gives(
ε2
(

Λs +
1

16
Λ2
rf

)
− 4I

)
R2,i + εΛrfR0,i

− ε2
∑
j 6=i

Qij (R2,i −R2,j) = 0. (12)

Using the fact that
(
I− ε2A

)−1 ≈ I + ε2A, we can solve
for R2,i to get

R2,i =
1

4

(
I +

ε2

4

(
Λs +

1

16
Λ2
rf

))
εΛrfR0,i

− ε3

16

∑
j 6=i

QijΛrf (R0,i −R0,j) . (13)

The term on the second line of Eq. 13 is the coupling
of the micromotion amplitudes of each ion through the
Coulomb interaction. Physically it arises from a distor-
tion of the space-charge potential due to differential mi-
cromotion amplitudes between ions, which provides an
effective RF electric field in addition to the trap drive.
This effective electric field also provides an additional AC
stark shift.

The electric field at the ith ion due to the space charge
is

Ei =
mω2

z l

q

∑
j 6=i

(Fij + 2Qij(R2,i −R2,j) cos(2t)) . (14)

Using Eq. 8 and defining

W0,i =
∑
j 6=i

QijΛrf(R0,i −R0,j), (15)

the amplitude of the net RF electric field on the ith ion
is then

Ei,RF = −mωzΩl
q

(
ΛrfR0,i −

ε2

4
W0,i

)
. (16)

Using Eq. 13, Eq. 16 and noting that
(
I + ε2A

)2 ≈
I+2ε2A the fractional frequency shift of a clock transition
due to terms oscillating at the RF drive frequency is then

∆νi
ν

= −
(
ωzl

2c

)2
{[

1−
(

Ω

Ω0

)2
]
RT

0,iΛ
2
rfR0,i

− ε2

2

[
1−

(
Ω

Ω0

)2
]
RT

0,iΛrfW0,i

+
ε2

2
RT

0,iΛrf

(
Λs +

1

16
Λ2
rf

)
ΛrfR0,i

}
. (17)
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To the same order of approximation, we must include a
DC stark shift from the space charge and a time dilation
shift from the higher harmonic R4,i. These can be added
independently, which follows from the orthogonality of
the Fourier components. At equilibrium, the sum of all
DC fields on the ith ion exactly balances the pseudo-
potential force from the RF field so we have

Ei,DC =
1

2

mω2
z l

q
Λ2
rfR0,i. (18)

This gives a fractional frequency shift

∆νi
ν

= −∆α

2hν

(
mω2

z l

2q

)2

RT
0,iΛ

4
rfR0,i

=
ε2

8

(
ωzl

2c

)2(
Ω

Ω0

)2

RT
0,iΛ

4
rfR0,i (19)

and the time dilation shift from R4,i is

∆νi
ν

= − ε
2

64

(
ωzl

2c

)2

RT
0,iΛ

4
rfR0,i. (20)

The shifts given in Eq. 19 & 20 can then be added to
Eq. 17 to give the total shift correct to O(ε2).

In addition to a fractional frequency shift, micromotion
also gives rise to an effective frequency modulation of the
probe; a fact that can be used to detect micromotion [12].
The effect reduces the probe coupling to J0(β) where J0 is
the first order Bessel function and the modulation index
is given by β = 2lk · R2,i. Because the micromotion
amplitude can be very large for ions far removed from
the zero point of the RF field [12], the ability of the
probe to drive the clock transition can be significantly
diminished. This can be avoided by probing along the
RF null axis of a linear Paul trap, for which there is very
little micromotion.

For the linear Paul trap, we can write

Λrf =

a 0 0
0 −a 0
0 0 0

 , Λs =

− 1
2 + δ 0 0
0 − 1

2 − δ 0
0 0 1

 , (21)

where a determines the strength of the RF confinement
relative to the DC field. The parameter δ determines
the asymmetry in the transverse dimension and can be
tuned arbitrarily by appropriate choice of biasing volt-
ages. Writing Λrf = aΛ, the total shift from Eq. 17, 19,
& 20 can be written

∆νi
ν

= −
(
aωzl

2c

)2
{[

λ0 −
(

Ω

Ω0

)2
]
λ1R

T
0,iΛ

2R0,i

+
δε2

2
RT

0,iΛR0,i −
ε2

2a

[
1−

(
Ω

Ω0

)2
]
RT

0,iΛW0,i

}
, (22)

where the λk are given by

λ0 = 1− 16 + 5a2

32

ε2

2λ1
, and λ1 = 1 +

a2ε2

8
. (23)

The first term of Eq. 22 is zero for Ω = Ω0

√
λ0 and this

can be viewed as a correction to the magic RF frequency
given by Eq. 10. It also applies to the single ion case
even though this term includes the shift due to the DC
component of the space charge. This is because it is
the space charge that provides the static electric field
necessary to displace an ion to the equilibrium position
R0,i. The second term also applies to the single ion case
and is only present when the transverse confinement is
non-degenerate. The third term is only applicable to the
many ion case as it is a consequence of the induced RF
field from the oscillating space charge.

When probing a clock transition, micromotion will give
rise to an inhomogeneous broadening of the line and a
shift of the line centre. Since the first term in Eq. 22
can be tuned to zero, the inhomogeneous broadening is
limited only by the remaining terms and the degree of
broadening is determined by the size of the crystal. The
second term is suppressed for small δ and, at Ω = Ω0

√
λ0,

the final term scales as ε4. If we can neglect the inhomo-
geneous broadening, the shift of the line centre is then
determined by the average of Eq. 22. For large crys-
tals we can assume the density of ions is approximately
constant and the average of Eq. 22 can be taken as an
integral over a continuum. The shift of the clock tran-
sition then scales as N2/3, where N is the number ions
and the scale factor depends on the geometry of the trap
[15]. This leads to a further modification to the magic
RF drive frequency at which the scale factor vanishes. In
a practical application we would simply vary the number
of ions and tune the variation of the clock frequency to
zero by adjustment of Ω.

For reasons to be discussed in the next section, it is
advantageous to take a spherically symmetric trap for
which a =

√
3 and δ = 0. In the spherically symmet-

ric case, an analytic approximation for W0,i can be ob-
tained. By taking the continuum limit with a constant
density of ions, we can approximate the sum in Eq. 15
by an integral and we obtain

W0,i ≈ −
1

5
ΛrfR0,i. (24)

In this case the fractional frequency shift takes the simple
form

∆νi
ν

= −
(
aωzl

2c

)2
[
λ′0 −

(
Ω

Ω0

)2
]
λ′1R

T
0,iΛ

2R0,i (25)

where the λ′k are given by

λ′0 = 1− 31

64

ε2

λ′1
, and λ′1 = 1 +

19

40
ε2. (26)

Note that λ0−λ′0 ∼ O(ε4) indicating that the oscillating
space charge has no significant affect to the accuracy of
the treatment given.

At this point it is useful to illustrate our analysis with
an example. We simulate the distribution of ions by in-
tegrating the e.o.m. in the pseudo-potential approxima-
tion including a small damping term to anneal the initial
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FIG. 1. (a) Level structure of 176Lu+, which has a nuclear
spin I = 7, showing the clock transition at 848 nm and the
cooling and detection transition at 646 nm. A laser at 615 nm
provides a magic wavelength to compensate tensor polaris-
ability shifts from the RF field. (b) Transitions need for hy-
perfine averaging. (c) Transitions needed to effectively realise
the transitions in (b) due to constraints on the quantisation
axis - see Sect. III B

state. For the initial state we use multi-layered Mackay
icosahedra [16] with a random offset to each particle co-
ordinate of about 10% of the initial minimum particle
spacing. With N = 100 to 5000 ions we were able to
confirm the results given in [15]. In particular, to a good
approximation we have〈

RT
0,iΛ

2R0,i

〉
=

2

5
N2/3 − 0.3964. (27)

For the ion properties we use 176Lu+ which has a level
structure as illustrated in Fig. 1. For 176Lu+, the esti-
mated value of the differential static scalar polarisability
is ∆α = −2.19 a.u. [17][18], giving a magic RF frequency
of Ω0 ≈ 2π × 23.2 MHz [19]. We take ωz = 2π × 200 kHz
which, for 176Lu+, gives l = 7.94µm. So, for the param-
eters given, we have(

aωzl

2c

)2

≈ 8.3× 10−16, ε2 ≈ 3.0× 10−4. (28)

With Ω = Ω0 and N = 5000 ions, the higher order terms
result in a broadening of 3.3×10−17 and an average shift
of 1.4× 10−17. These values would scale as N2/3. When
Ω = Ω0

√
λ′0 the average shift vanishes and this is only

a 7 × 10−5 fractional change to the RF drive frequency.
Comparison of the clock frequency at different numbers
would therefore provide an accurate assessment of Ω and
∆α.

From the above analysis it would appear micromotion
would not limit the accuracy that can be achieved. More-
over, the small broadening effects would not affect achiev-
able stability in the foreseeable future. As the crystal size
increases, so does the demands on the pointing stability

of the probe but, for 104 ions and an angular misalign-
ment of 0.1◦, the Rabi frequency for the outermost ions
would be diminished by just 3× 10−4.

Our analysis has only considered the scalar polarisabil-
ity. Levels with J = 1/2 have a vector polarisability but
this is only relevant for circular polarisations. For candi-
dates such as Lu+, which have clock states with J > 1/2,
we must also consider effects arising from the quadrupole
moment and the tensor polarisability.

III. CONSIDERATIONS FOR J > 1/2

In [13], Barrett showed that averaging over transitions
to all hyperfine states of a fixed mF ≤ I−J cancels dom-
inant magnetic field effects and quadrupole shifts when-
ever the nuclear spin, I, is at least as large as J . This
averaging, which we shall refer to as hyperfine averaging,
is very general and applies to any perturbation that can
be described by a rank k > 0 tensor operator that does
not depend on I. Hence, we need only consider the in-
homogeneous broadening arising from such interactions.
The following considerations can also be readily adapted
for candidates with I = 0, such as 88Sr+ for example [4],
which utilise averaging over all mJ .

A. Quadrupole Shifts

Since the quadrupole shift from the DC trapping field
is fixed, it does not contribute to any broadening and so
we only consider the quadrupole fields arising from the
space charge. Since the quadrupole field from neighbour-
ing ions falls off cubicly with distance, the quadrupole
field experienced by an ion is due mostly to its local en-
vironment. Except for ions near to the edge of the crystal
we can anticipate that the local environment is essentially
the same for each ion and the resulting quadruple shift
is relatively homogeneous. Indeed for sufficiently large
numbers, it is known that a crystal of long range order
forms [15, 20, 21] and the limiting structure is that of
a body-centered cubic (bcc) lattice. In this regime, the
quadrupole shift would be constant for the bulk of the
crystal and by symmetry it would be zero.

The tensor describing the quadrupole field for the ith

ion due to all other ions is given by

∇E(2)
i =

mω2
z

e
Qi =

mω2
z

e

∑
j 6=i

Qij , (29)

where Qij is given in Eq. 5. Itano [22] has derived the
quadrupole shift for a general orientation of the quanti-
sation axis relative to the coordinate system for which Qi
is given. This shift factors into a geometric term, a state
dependent scale factor CF,mF

on the order of unity, and
an overall scale factor quantifying the size of the shift.
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The geometrical factor is given by

Qzz
4

(
3 cos2 β − 1

)
+

1

2
sin(2β) (Qxz cosα+Qyz sinα)

+
1

4
sin2 β

(
(Qxx −Qyy) cos(2α) + 2Qxy sin(2α)

)
, (30)

where we have used the Euler angle definitions in [22] and
dropped the subscript i for convenience. For the mF = 0
states of the 3D1 level of 176Lu+, the state dependent
scale factors are −2/5, 1,−3/5 for the F = 6, 7, 8 hyper-
fine levels, respectively. In the calculations that follow we
omit this factor. The overall scale factor depends on the
quadrupole moment. For the estimated value of −1.3ea20
[17], its size is −1.3mω2

za
2
0 ≈ h × 2.5 Hz where a0 is the

Bohr radius.

In Fig. 2 we plot the distribution of quadrupole shifts
for N = 5000 for a spherically symmetric trap. As in
[15], we do see a dependence of the final crystal config-
uration on the initial condition for larger N . Configu-
rations starting from a bcc-lattice tend to stay in this
configuration with some rounding near the boundary of
the crystal. Hence we give the distribution of quadrupole
shifts for two types of initial conditions: a multi-layered
Mackay icosahedra applicable to smaller numbers of ions,
and a bcc lattice applicable in the limit of large N . The
distribution on the left is more applicable to smaller num-
bers as considered here and is approximately Gaussian
with a standard deviation of 0.078 Hz. The distribution
does not depend on N and we have verified that there
is no significant dependence on the field orientation as
expected from the spherical symmetry. This level of the
broadening should not be an issue even for the very best
lasers available today.

The distribution on the right is applicable to larger
numbers of ions. However crystals of long range order
have been reported for smaller numbers [20]. Compar-
ing the two distributions we clearly see the effect of the
bcc-lattice component giving the expected peaking of the
distribution near zero. This distribution does have a de-
pendence on the orientation of the B-field and we have
oriented the field along one of the axes of the interior
bcc structure which coincides with the trap axis [23]. We
would expect the dependence on the orientation of the B-
field to diminish for larger numbers as the bcc component
becomes much more prominent.

The distribution of quadrupole shifts depends only
on the geometry of the crystal and not on its overall
size, at least for the range of numbers we have explored.
Prolate ellipsoidal crystals in more conventional linear
Paul traps, in which the transverse confinement is much
stronger than the axial confinement, have a much broader
distribution of quadrupole shifts. Moreover, the width of
the distribution depends on the orientation of the trap
relative to the quantisation axis as may be expected. For
these reasons, we have restricted our attention to a spher-
ical geometry.

FIG. 2. (Colour online) Distribution of quadrupole shifts for
5000 ions in a spherically symmetric trap. Initial starting
distributions are a multi-layered Mackay Icosahedra (left) and
body-centered cubic lattice (right).

B. Tensor Polarisability

The tensor polarisability also gives rise to a shift of the
clock frequency from the RF fields. As shown in [22, 24],
this contribution is given by

δν

ν
= −CF,mF

4

α2,J

hν
〈3E2

z − E2〉, (31)

where CF,mF
is a state dependent scale factor identical

to those for the quadrupole shift, 〈·〉 indicates a time
average over one cycle of the oscillating field, and the
tensor polarisability α2,J is in general frequency depen-
dent. Since the RF frequency is small relative to any
optical frequency of interest, we can use the DC value
of α2,J ≈ −5.0 a.u. for the tensor polarisability [17].
If the quantisation axis is aligned along the trap axis,
then Ez = 0 and the shift has the same form as dis-
cussed for the scalar polarisability. In general, due to the
F dependent scale factors, we cannot simply modify the
scalar polarisability to account for the effect [25]. Since
Eq. 31 applies at all frequencies, we can use a laser field
to reduce the broadening that arises. We also note that
the constraint on the quantisation axis forces us to re-
alise mF = 0 to mF = 0 transitions as an average over
mF = ±1 to mF = 0 as illustrated in Fig. 1. This in-
troduces further averaging to that discussed in [13] but
does not affect any of the points considered here.

Use of a laser to reduce the broadening arising from
the tensor polarisability requires the spatial dependence
of the beam to match the spatial variation of the RF field
and the use of a magic wavelength at which the dynamic
differential scalar polarisability of the clock transition is
zero. For Lu+, such a wavelength can be found for a laser
tuned between the 3D1 to 3P0 and 3D1 to 3P1 transitions.
From matrix elements given in [26], we find a magic wave-
length at ≈ 615 nm with α2,J ≈ 100 a.u. The sign of α2,J

relative to the DC value requires the use of a doughnut
mode [27] which, to lowest order, has an intensity profile
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FIG. 3. (Color online) Distribution of shifts due to the tensor
polarisability for N = 1000 ions. Distribution on the right has
been compensated using a doughnut Laguerre-Gauss beam
with a waist of 100l ≈ 800µm. We have used the same spher-
ical geometry as in the previous sections.

that has the same quadratic dependence on the distance
from the trap axis as the E2 amplitude of the RF field.
In this case, off-resonant scattering from the compensa-
tion beam is completely determined by the amount of
compensation needed. For a crystal of 104 ions, we esti-
mate a scattering rate ≈ 0.005 s−1 for the outermost ions.
Hence, for Lu+, off-resonant scattering will not limit this
approach. A more practical limit would be the mode
matching of the laser profile to the spatial variation of
the RF field. But we emphasise that the mode match-
ing need only be sufficient to reduce the broadening since
hyperfine averaging eliminates any residual shift.

In Fig. 3 we illustrate the compensation of broaden-
ing for N = 1000 ions using a doughnut Laguerre-Gauss
beam with a waist of 100l ≈ 800µm with the same spher-
ical trap geometry used in the previous sections. Due
to the fact that the width of the broadening scales as
N2/3 it would likely become impractical to go beyond
N = 1000 ions. This assessment is based on due con-
sideration of demonstrated mode purity of higher order
Laguerre-Gauss beams [27], and realistic constraints on
beam size and intensity stabilisation.

Determining the level of compensation and separating
this from considerations of the scalar polarisability may
be experimentally challenging. For 176Lu+, ∆α can be
determined independently. The combined effect of ∆α
and α2 is given by the shift

∆ν = −1

2

(
∆α− CF,mF

2
α2

)
E2. (32)

Since ∆α − CF,0

2 α2 < 0 for F = 6, and F = 8, a magic
RF frequency can be found for each transition to these
states which includes α2. As outlined in Sect. II, clock
operation on a single transition would allow an accurate

determination of ∆α−CF,0

2 α2 for F = 6 and F = 8. From
these, ∆α and α2 can be inferred along with the magic
RF frequency associated with ∆α alone. Any residual
broadening or number variation could then be attributed
to improper compensation of the tensor polarisability.

Effect Shift (10−18)

Blackbody Radiation @ 300K 53.3

Secular Doppler -0.05

Micromotion 0

Quadrupole shifts 0

Tensor polarisability shifts 0

Quadratic Zeeman @ 10µT -1.4

Probe AC Stark (200 ms π-pulse) < 50

TABLE I. Summary of systematic shifts for Lu+ after hyper-
fine averaging.

IV. PROSPECTS FOR LU+

As a clock candidate, Lu+ has a number of favourable
properties leading to low systematic shifts which are sum-
marised in Table I. The blackbody radiation shift at
300 K is based on the current estimate of the differential
static polarisability of ∆α = −2.19 a.u. [17]. The second-
order Doppler shift due to residual secular thermal mo-
tion assumes Doppler limited cooling on the 646 nm tran-
sition. This has a line-width of Γ = 2π × 2.45 MHz pro-
viding one of the lowest Doppler cooling limits amongst
the ions and yet sufficiently large to allow a collection
of > 5 photons/ms per ion during detection. Hyperfine
averaging cancels dominate Zeeman shifts leaving only a
residual quadratic shift of ≈ 5 Hz/mT2 due to coupling
to the 3D2 fine structure level [13]. The shift given in
the table assumes an operating field of 10µT. Finally,
AC Stark shifts from the probe laser are based on cur-
rent estimates of the dynamic polarisabilities at the clock
frequency (∆α0 = −18.12 a.u. and α2 = −12.44 a.u.),
and a lifetime of 62 h [17]. The inequality given in the ta-
ble applies to all six transitions involved in the hyperfine
averaging as indicated in Fig. 1(c).

We can expect much of the AC Stark shift from
the clock laser to be eliminated by hyper-Ramsey spec-
troscopy [28, 29]. Thus a temperature inaccuracy of 1
degree at room temperature would permit fractional in-
accuracies below 10−18. Within a cryogenic environment
we can also anticipate inaccuracies beyond 10−19.

As discussed in Sec. III B, we can expect to be lim-
ited in practice to N ≈ 1000 ions. For this many ions, if
we combine the quadrupole shifts and the compensated
shifts from the tensor polarisability, we obtain a reason-
ably symmetric distribution which can be roughly ap-
proximated to a Gaussian with a standard deviation of
about 0.1 Hz. With the actual distribution, a simulated
Ramsey experiment with a Tm = 1 s free precession time
yields an 80% contrast in the Ramsey fringes. For Lu+

state preparation and detection can be expected to take
∼ 1% of the total interrogation time and hence the Dick
effect [30] should not have a significant role. Neglect-
ing the slight loss in fringe contrast, gives an estimated
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projection noise limited stability [8, 31] of

σ(τ) =
1

2πν0
√
NTmτ

≈ 1.5× 10−17√
τ

. (33)

With a stability given by Eq. 33, measurement of
the clock frequency at levels of 10−18 could be achieved
within ≈ 5 minutes. Assessment of micromotion shifts
associated with small inaccuracies of the magic RF fre-
quency does, however, require comparison of clock mea-
surements with different numbers of ions. Integration
times of approximately 1 day would permit assessment
of the clock at the 2 × 10−19 level for 100 ions. Sub-
sequent comparison with 1000 ions would then provide
a measurement accuracy of ∆α and the magic RF fre-
quency at the 10−6 level. Using micromotion shifts to
determine ∆α has been demonstrated with a single ion
[32]. With many ions, the sensitivity of this approach is
substantially improved.

V. ALTERNATIVE TRAPS

Our approach has focused on linear Paul traps. Other
approaches may be feasible such as multipole traps or
Penning traps. In multipole traps low numbers of ions
initially populate a single 1-dimensional ring of ions
that can hold up to several tens of ions. By symmetry
quadrupole shifts and shifts from the tensor polarisabil-
ity are practically constant for all ions. As more ions
are added, more rings form. For more than 2 rings, the
shifts split into multiple values that can be separated at
the Hertz level. Thus it would be difficult to go beyond
a few 102 ions by this approach. Nevertheless, this could
be achieved with very little broadening thus allowing for
much longer Ramsey times.

Penning traps have been used to confine and control
very large numbers of ions [21]. Ion confinement in a
Penning trap is due to the ion crystal rotation through
a large uniform magnetic field. In a Penning trap the
combined fractional frequency shift is

∆ν

ν
= −1

2

(ωr
c

)2 [
1 +

∆α

hν

(mωrc
e

)2]
ρ2, (34)

where ρ is the cylindrical radius of an ion in the crys-
tal and ωr is the rotation frequency of the crystal. This
then leads to a magic rotation frequency analogous to
the magic RF frequency for the RF Paul trap. For the
Penning trap there are no higher-order corrections so
the 2nd order Doppler and polarization compensation
should work very well, but there are constraints on ωr
due to available magnetic fields. Specifically, the rota-
tion frequency is bounded by the cyclotron frequency
Ωc = eB/m [33]. This leads to the constraint

B >

√
hν

−c2∆α
. (35)

Unfortunately this favours a large polarisability and
small clock frequency. Even a clock frequency as low
as 1014 Hz and a differential polarisability ∆α = −100
requires B > 22 T.

VI. CONCLUSION

We have shown that ions with a negative differential
static polarisability should allow high precision metrol-
ogy on large ion crystals. More specifically, we have
shown that micromotion does not give rise to any signif-
icant inhomogeneous broadening and that higher order
frequency shifts can be managed through adjustment of
the magic RF frequency. For clock candidates that sup-
port a quadrupole moment, we have shown that spher-
ically symmetric traps show very little broadening due
to quadrupole shifts induced by neighbouring ions and
this broadening is not dependent on the size of the crys-
tal. We have also shown that broadening arising from
the tensor polarisability can be compensated by a laser
field, at least for smaller numbers of ions (. 1000). This
will extend the advantage of using large numbers to ion-
candidates having ∆α < 0; an advantage that has al-
lowed neutral atoms to surpass the performance of single
ion standards. In the case of 176Lu+, this approach could
outperform the current state of the art by an order of
magnitude in both stability and accuracy.

We have not included effects due to anharmonicities of
the trapping fields as these effects are design dependent.
However the framework we have used follows that given
in [14] and should allow such effects to be included given
a particular design. The effect will be to give a spatial
dependence to Λs and Λrf . But the influence of Λs only
appears to second order in ε and we have shown that
these effects do not contribute significantly under most
circumstances. Furthermore, the spatial dependence of
Λrf in Eq. 8 would not change the lowest-order equation
for the magic RF frequency. Hence, we believe that the
main effect of anharmonicity will be to affect the higher
order terms only. This would introduce a small amount
of broadening and not change the general conclusions we
have made here. We may anticipate a variation in crys-
tal density giving further broadening due to quadrupole
shifts, but this would likely only be significant for highly
anharmonic confinement.

We have also not considered magnetic field inhomo-
geneities as these are again design dependent. Magnetic
fields arising from currents induced by the trap driving
field [1] can be expected to have a significant spatial vari-
ation giving rise to a broadening through the quadratic
Zeeman shift of the clock states. Static field inhomo-
geneities would also give rise to additional broadening
through the linear Zeeman effect. Thus candidates with
small B-field sensitivities would be desirable, but this
is true of any clock. Moreover, it may be possible in
a specific implementation to compensate any significant
broadening with additional fields as we have shown for
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tensor polarisability effects.
Although the importance of ∆α < 0 was pointed out

over fifteen years ago [12], it has not played a signifi-
cant role in the development of ion-based atomic clocks.
This is perhaps due to the scarcity of candidates having
this property. To our knowledge there are eight can-
didates that have been reported in the literature: B+

[34] , Ca+ [34], Sr+ [34], Ba+ [35], Ra+ [35], Er2+[19],
Tm3+[19], and Lu+[19]. Of these candidates, B+ is the
only candidate with a J = 0 to J = 0 clock transition
for which quadrupole and tensor polarisability restric-
tions do not apply. However, the magic RF frequency for
B+ is ≈ 800 MHz which may be technically challenging
to implement. Moreover, the only cooling and detection
channel available is the 1S0 to 1P1 at 137 nm.

From the alkaline-earth metals, Ba+ is an interesting
possibility. For 137Ba+, there are a number of states
of the D3/2 level with CF,mF

= 0. Hence, quadrupole
and tensor polarisability considerations would not apply.

Since these are the main limitations to working with large
numbers, very high levels of stability could be possible
with this ion. It is hoped that this discussion spurs in-
terest in finding new candidate transitions with ∆α < 0.
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