γ-ray-pulse formation in a vibrating recoilless resonant absorber

V. A. Antonov, Y. V. Radeonychev, and Olga Kocharovskaya

Phys. Rev. A 92, 023841 — Published 21 August 2015

DOI: 10.1103/PhysRevA.92.023841
Ultimate Possibilities for γ-Ray Pulse Formation in a Vibrated Recoilless Resonant Absorber

V. A. Antonov1,2,3,*, Y. V. Radeonychev1,2,3, Olga Kocharovskaya4

1 Institute of Applied Physics, Russian Academy of Sciences, 46 Ulyanov Street, Nizhny Novgorod, 603950, Russia, 2 N.I. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia, 3 Kazan Federal University, 18 Kremlyovskaya Street, Kazan, 420008, Republic of Tatarstan, Russia, 4 Department of Physics and Astronomy and Institute for Quantum Studies and Engineering, Texas A&M University, College Station, TX 77843-4242, USA.

Abstract We study propagation of γ-radiation from Mössbauer radioactive source through vibrating recoilless resonant absorber and find the optimal conditions to produce periodic train of γ-ray pulses with maximum peak intensity, several times higher than the intensity from the source, and minimum duration, much shorter than the lifetime of the emitting nuclear state of the source. The shape, duration and repetition rate of the pulses are tunable in a wide range. We propose modifications of the recently reported experiment [Nature, 508, 80-83 (2014)] to produce pulses with higher peak intensity and smaller duration using absorbers enriched by the resonant nuclei and discuss possible applications of the generated pulses for the time-domain Mössbauer spectroscopy.

I. INTRODUCTION

Generation of the ultrashort hard x-ray and γ-ray pulses draws persistent attention due to the important diagnostic applications in material science as well as in tracing and steering of the ultrafast chemical and biological processes. Extremely short wavelength of the x-rays and γ-radiation potentially enables to investigate the material structure on the atomic and subatomic scales. The time-resolved x-ray / Mössbauer spectroscopy and dynamical x-ray diffraction based on the resonant scattering of x-ray and γ-ray pulses allow extracting reach information about the properties of the nuclear levels, local fields, phonon spectra and transient structures [1-4].

Picosecond x-ray pulses of synchrotron radiation or femtosecond pulses of sliced synchrotron radiation and of XFELs are typically used in such studies, which limits this research to a few existing facilities in the world [5-7]. Besides, these sources produce extremely broadband radiation, and the x-ray pulses are far from being transform-limited, which restricts their spectroscopic applications. The sources of coherent transform-limited ultrashort pulses, such as self-seeded XFELs [8] and High Harmonic Generation sources [9], in 1-10 keV range just start to emerge.

Formation of the ultrashort pulses of high-energy radiation plays an important role for extension of the concepts and ideas of coherent optics into the x-ray and γ-ray frequency ranges. An active search for the methods to control the interactions of the γ-radiation with the nuclear transitions has rather long history, see books [1-4] and reviews [10-15], including some important experimental results, such as an observation of the ac-Zeeman effect [16], so-called γ-echo effect [17, 18], and magnetic switching of nuclear forward scattering [19-23]. This field has been rapidly developing recently. It includes pioneering experimental demonstrations of the collective Lamb shift [24], cavity EIT [25], and vacuum-assisted generation of coherences [26]; as well as
a number of interesting theoretical ideas related to the field of γ-ray quantum optics, such as the possibilities of the single photon entanglement via magnetic switching [27], coherent control of the branching ratios [28], modulation-induced transparency [29], coherent control of the inhomogeneous broadening of the nuclear transitions [30], single photon coherent storage [31], and stimulated Raman adiabatic passage [32]. All these and many other recent developments (see the recent review [33] and references therein) clearly indicate that the time for γ-ray quantum optics is coming.

There have been several attempts to produce γ-ray pulses via compression of a frequency-modulated radiation from a Mössbauer radioactive source due to the resonant or non-resonant interaction with a Mössbauer absorber [10, 17, 18, 20-22, 34-39]. In papers [10, 17, 18, 34, 35, 37-39] the resonant interaction of δ-function-like frequency-modulated (or, equivalently, step-wise phase-modulated) incident radiation with a Mössbauer absorber was considered. The δ-function-like frequency modulation can be theoretically achieved via rapid acceleration and deceleration of the radiating Mössbauer source (which is sequentially kicked and stopped). However, in an experiment, kicked source fixed on a piezoelectric plate tends to oscillate, so that the δ-function-like frequency modulation is extremely hard to achieve. According to the estimate presented in [10], the time of motion of the Mössbauer absorber should not exceed $1/(100\Gamma)$, where $1/\Gamma$ is the lifetime of the excited nuclear state of the source. Consequently, this approach is well applicable to the Mössbauer sources with especially long lifetimes, such as 67Ga [34, 10], and rather limited for other sources, such as 57Co [17, 18, 35, 37, 39]. Another approach was proposed in [36], where the possibility to produce a train of Mössbauer γ-ray pulses, much shorter, than the lifetime of the excited state of radiating nucleus, was shown theoretically via compression of Mössbauer radiation with harmonical frequency modulation, emitted by an oscillating source, in a far-off-resonant Mössbauer absorber. However, because of the strong nonresonant losses, typical for Mössbauer absorbers, intensity of the output radiation appears to be much smaller, than the incident radiation intensity, since most of γ-quanta are lost in the medium. The problem of γ-ray pulse formation was also considered in papers [20-22], devoted to generation of γ-ray pulses on the basis of abrupt change of energy of the nuclear excitation due to magnetization reversal of a 57FeBO$_3$ absorbing crystal. This method has experimentally allowed for formation of isolated pulses of approximately 10 ns duration from polarized 14.4 keV Mössbauer γ-radiation of modest intensity, limited by considerable nonresonant losses in optically thick absorber and polarizer.

Recently, transformation of 14.4 keV photons spontaneously emitted by a radioactive 57Co source, into a periodic sequence of pulses of duration, shorter than the lifetime of the excited state of the nuclei was realized [40] via radiation passage through a harmonically vibrating foil, containing resonantly absorbing nuclei of 57Fe. The ability to control the shape, duration and repetition period of the produced pulses was shown both experimentally and theoretically. Uniquely large ratio of the resonance energy to the resonance bandwidth of the Mössbauer transitions (3×10^{12} for 14.4 keV transition of 57Fe) makes effective use of the Doppler effect in the photon-nuclei interaction for generation of the well-separated phase-locked γ-ray sidebands and formation of the γ-pulse train. The technique, proposed in [40] is experimentally feasible due to combination of advantages of the methods [34] and [36], namely (i) the resonant interaction of γ-radiation with a Mössbauer absorber and (ii) the harmonic motion of the absorber, respectively. The same technique in a combination with time-delayed coincidence measurement has allowed to demonstrate the possibility to control the waveforms of single γ-photons [40], which is an im-

important contribution into the fast developing quantum γ-optics and its applications for quantum information processing [24-26, 31-33].

In the present paper, we investigate the ultimate possibilities for γ-ray pulse formation from radiation of a Mössbauer radioactive source in a single vibrating resonant absorber under readily available experimental conditions. We find the optimal conditions to produce periodic train of pulses with maximum peak intensity, several times exceeding intensity of the incident radiation, and maximum ratio of the peak to the average output γ-ray intensity. We show, that the total efficiency, defined as a ratio between the average intensity of the incident Mössbauer radiation (the average number of γ-quanta, detected per unit time) and the average intensity of the output radiation, i.e. a pulse train, under the optimal conditions can be as high as 70-80% for the realistic parameters of a Mössbauer absorber. We discuss the possibilities to control the shape, duration and peak intensity of the pulses via variation of parameters of the vibrating absorber and propose modifications of the experiment [40] to produce pulses with higher peak intensity, smaller duration and better shape using absorbers with larger optical thickness (achieved via increasing concentration of the resonant nuclei). In general, the possibility to produce pulses with larger intensity and smaller duration originates from interference of the incident and the coherently scattered wave and intensification of the coherently scattered wave with increasing optical thickness of the resonant absorber (see [38] and references therein). As is well known, in the absence of vibrations the interference between the incident and elastic coherently scattered field leads to speed-up effect and dynamical beats in nuclear forward scattering [12, 13, 41]. Oscillation of the absorber alters the coherently scattered field via generation of the vibrational side-bands and dramatically changes the character of interference. Under some optimal conditions (corresponding to the phase matching of all the generated spectral components) it provides constructive interference of the resonantly scattered and the incident radiation fields within the short intervals of the vibration cycle and thus allows producing pulses with the peak intensity, exceeding intensity of the incident field. At the same time, during the rest of the vibration cycle the interference is destructive leading to reduction of the time-averaged output intensity in respect to the incident one [42]. The character of interference between the incident and the coherently scattered fields can be altered not only by vibration but also by other techniques, such as instantaneous shift of the emitter relative to the resonant absorber or vice versa [17, 18, 35, 37-39], as well as by magnetization reversal [20-23], also resulting in γ-ray pulse formation under some optimal conditions.

Increase of optical thickness of the absorber leads to growing amplitude of the resonantly scattered radiation and hence both increasing peak intensity of the produced pulses and decreasing time-averaged intensity of the output radiation. In this paper we show that use of the incident radiation, detuned properly from the absorber resonance allows producing pulses with higher peak intensity without considerable resonant attenuation in optically thick Mössbauer absorbers.

The paper is organized as follows: after the introduction (I) we present the theoretical model (II) as well as the numerical optimization results, accompanied by estimates of the experimental parameter values (III). We conclude with discussion of the capabilities and limitations of the method and its possible applications in the area of time-resolved x-ray Mössbauer spectroscopy (IV).
II. THEORETICAL MODEL

Transformation of Mössbauer γ-radiation in a vibrated resonant recoilless absorber was studied in Refs. [40, 43-50]. Except for [40], the previous works were focused on the spectral, rather than temporal properties of the transmitted γ-radiation. A similar problem was considered in Refs. [10, 34, 35, 51, 52], devoted to the experimental and theoretical study of the time dependence of intensity of Mössbauer radiation, emitted by a vibrated source and propagated through the resonant absorber at rest. It was observed that the output γ-radiation acquires an amplitude modulation which is highly sensitive to small energy shifts and can be used for their measurement. Quite general theory applicable to absorbers of arbitrary optical depth was derived in [52]. However, the authors analyzed only the case of a thin resonant absorber. As a result, they predicted and observed only an amplitude modulation of a small depth and did not discuss the possibility of γ-ray pulse formation. Our model is closer to that presented in Refs. [45]. However, we focus on modifications of the temporal properties of γ-radiation, propagated through an optically thick vibrating absorber, and consider the more general case, assuming that linewidth of the resonant transition of the absorber can differ from the transition linewidth of the radioactive source.

Radiation of the source is considered as a flow of photons emitted at random times. The electric field of a single photon within the semiclassical approach can be represented as a quasimonochromatic wave propagating along the coordinate \(z_l \) in the laboratory frame of reference [12, 13]:

\[
E_{\text{inc}}(z_l, t) = E_0 \theta \left((t-t_0)-(z_l-z_0)/c \right) e^{-i(\omega_0+\Gamma_s/2)((t-t_0)-(z_l-z_0)/c)+i\phi_0} + \text{c.c.}, \tag{1}
\]

where we assume that the Mössbauer source has an unsplit transition line with the angular frequency \(\omega_0 \) and the excited state lifetime \(\Gamma_s^{-1} \); \(t_0 \) is the instant of formation of the excited state of radiating nucleus, \(z_0 \) is the coordinate of radiating nucleus, \(c \) is the speed of light in vacuum, \(\phi_0 \) is the random phase, \(\theta(x) \) is the unit step function, and c.c. stands for complex conjugate.

The resonant absorber oscillates as a whole along the direction of propagation of \(\gamma \)-photons with amplitude \(R \), angular frequency \(\Omega \), and the initial phase of oscillation \(\vartheta_0 \). The coordinate in the laboratory reference frame, \(z_l \), is related to coordinate in the reference frame of oscillating absorber, \(z_a \), as

\[
z_l = z_a + R \sin (\Omega t + \vartheta_0). \tag{2}
\]

This equation assumes that the absorber thickness, \(h \), is much smaller, than the wavelength of sound:

\[
h \ll 2\pi V_s/\Omega, \tag{3}
\]

where \(V_s \) is the speed of sound in the absorber. The latter condition is typically well satisfied in the experiments dealing with oscillating Mössbauer sources or absorbers.

Let us consider propagation of the \(\gamma \)-photon (1) in the reference frame associated with the vibrated absorber. Transformation from the laboratory to the absorber's frame of reference is accomplished via Eq. (2). Since the speed of vibration is much smaller than the speed of light, \(R\Omega/c \ll 1 \), time in the reference frame of oscillating absorber, \(t_a \), is the same as in the laboratory reference frame, \(t_l = t_a = t \).

In the reference frame of the oscillating absorber, the electric field strength of the incident \(\gamma \)-photon takes the form

\[
E_{\text{inc}}(z_a, t) = E_0 \theta \left[(t-t_0)-(z_a+R \sin (\Omega t + \vartheta_0)-z_0)/c \right]
\times \exp \left\{ -i(\omega_0+\Gamma_s/2)((t-t_0)-(z_a+R \sin (\Omega t + \vartheta_0)-z_0)/c)+i\phi_0 \right\} + \text{c.c.} \tag{4}
\]

Neglecting modulation of decay as compared to modulation of the carrier frequency, (which is well justified for Mössbauer radiation, since \(\omega_0 \gg \Gamma_s/2 \)) and taking into account, that...
\[
\exp\{ikR\sin(\Omega t + \vartheta_0)\} = \sum_{n=-\infty}^{\infty} J_n(kR) \exp\{in(\Omega t + \vartheta_0)\}, \text{ where } J_n(kR) \text{ is Bessel function of the first kind of order } n, \text{ one obtains}
\]

\[
E_{inc}(z_a, t) = E_0 \Theta\left\{(t - t_0) - (z_a - z_0)/c\right\} e^{-i(\omega_0 + \Gamma_0)/2)((t-t_0)-(z_a-z_0)/c)+\vartheta_0
\]

\[
\times \sum_{n=-\infty}^{\infty} J_n(kR) \exp\{in(\Omega t + \vartheta_0)\} + \text{c.c.},
\]

(5)

where \(k = \omega_0/c \) is the wavenumber of \(\gamma \)-photon in vacuum.

At the front edge of the absorber the incident radiation has the form

\[
E_{inc}(z_a = 0, t) = \exp\{-i\omega_0((t-t_0)+z_0/c)+i\vartheta_0\} \sum_{n=-\infty}^{\infty} \exp\{in(\Omega t + \vartheta_0)\}
\]

\[
\times \int E_{inc}^* (\omega) \exp(-i\alpha t) d\omega + \text{c.c.},
\]

(6)

where

\[
E_{inc}^* (\omega) = \frac{E_0^2 J_n(kR)}{2\pi} \frac{\exp(i\omega(t_0 - z_0/c))}{\Gamma_0/2 - i\omega}.
\]

(7)

Propagation of \(\gamma \)-radiation through the Mössbauer absorber is described by wave equation

\[
\frac{\partial^2 E}{\partial z_a^2} - \frac{1}{c^2} \frac{\partial^2 E}{\partial t^2} = \frac{2\delta E}{c^2} \frac{\partial E}{\partial t} + \frac{4\pi}{\varepsilon c^2} \frac{\partial^2 P}{\partial z_a^2},
\]

(8)

where \(P \) is the resonant polarization, which arises due to interaction with the nuclei, \(c' = c/\sqrt{\varepsilon} \), and \(\varepsilon \equiv 1 \) is the nonresonant dielectric permittivity of the absorber for \(\gamma \)-radiation. The nonresonant absorption, primarily caused by interaction with electrons, is taken into account via the linear photoelectric absorption coefficient, \(2\delta' \).

The resonant polarization of the Mössbauer absorber with an unsplit transition line, induced by the incident radiation, has the form

\[
\vec{P} = f_a N \cdot \vec{d}_{12} \rho_{12} + \text{c.c.},
\]

(9)

where \(f_a \) is the recoilless absorption probability (the Lamb-Mössbauer factor), \(N \) is concentration of the resonant nuclei, \(\vec{d}_{12} \) is the dipole moment of the resonant transition, and \(\rho_{21} \) is the nuclear coherence (the nondiagonal density matrix element of the nuclei).

The nuclear response is adequately described by Bloch-like equations (see, e.g., [10]) which for the coherence \(\rho_{21} \) take the form

\[
\frac{d \rho_{21}}{dt} + i(\omega_0 - i\gamma_a) \rho_{21} = \frac{i}{\hbar} n_{12} \left(\vec{d}_{21} \cdot \vec{E} \right),
\]

(10)

where \(\omega_0 \) is the angular frequency of the absorber transition, \(\gamma_a \) is the decay rate of the resonant coherence, and \(n_{12} = \rho_{11} - \rho_{22} \) is population difference between the resonant energy levels. We will further consider the isotropic medium, where \(\left(\vec{d}_{21} \cdot \vec{E} \right) \) can be replaced by \(d_{21} E_z \), \(d_{21} \) being the root mean square of the dipole moment matrix element. Since intensity of Mössbauer radiation is quite small, as compared to the saturation value, the population difference, \(n_{12} \), between the lower and upper levels of the resonant transition remains unperturbed: \(n_{12} \equiv n_{12}^0 \equiv 1 \), where \(n_{12}^0 \) is the population difference in the equilibrium.

Since reflection of \(\gamma \)-radiation from the edges of Mössbauer absorber is negligible, we seek for the solution of Eqs. (8)-(10) inside the medium, \(0 \leq z_a \leq h \), in the form
In the rotating wave approximation, \(|\omega - \omega_i| < < \omega + \omega_i\), from Eqs. (9) and (10) one finds:

\[
P_a(z_a, \omega) = \frac{n_{12}^0 f_a N|d_{12}|^2}{h(\omega_a - \omega_i + n\Omega - \omega - i\gamma_a)} E_a(z_a, \omega). \tag{13}
\]

In the additional approximation of slowly-varying envelopes, which implies (i) \(N_{\max} \Omega < < \omega_i\), where \(N_{\max}\) is the number of spectral components of the radiation (11) with the appreciably non-zero amplitudes, (for the incident radiation (5), (6), \(N_{\max} = 2kR +1\), and (ii) \(|\partial E_a(z_a, \omega)/\partial z_a| < < k|E_a(z_a, \omega)|\), the wave equation (8) takes a form

\[
\frac{\partial E_a(z_a, \omega)}{\partial z_a} + \left(\delta + \frac{2\pi n_{12}^0 f_a N|d_{12}|^2}{\sqrt{\varepsilon h(\gamma_a + i(\omega_a - \omega_i + n\Omega - \omega))}} \right) \frac{\omega}{c} E_a(z_a, \omega) = 0. \tag{14}
\]

Eq. (14) takes into account, that the absorber thickness is much smaller, than both the decay length of the photon, \(h < c/\Gamma_s\), and the smallest beat length between its spectral components, \(h < c/(N_{\max} \Omega)\). The last inequality is well satisfied, if the condition (3) is fulfilled.

The solution of Eq. (14), which satisfies the boundary condition \(E_a(z_a = 0, \omega) = E_{a,inc}(\omega)\), is

\[
E_a(z_a, \omega) = E_{a,inc}(\omega) \exp(-\delta z_a) \exp(-g_a(\omega)z_a), \tag{15}
\]

where \(g_a(\omega)\) are the complex coefficients of resonant absorption,

\[
g_a(\omega) = \frac{2\pi n_{12}^0 f_a N|d_{12}|^2}{\sqrt{\varepsilon h(\gamma_a + i(\omega_a - \omega_i + n\Omega - \omega))}} \frac{\omega}{c}. \tag{16}
\]

Thus, in the reference frame of oscillating absorber, \(\gamma\)-radiation inside the absorber has the form

\[
E(z_a, t) = e^{-i\omega((t-T_a)-(z_a-z_0)/c)} \sum_{n=-\infty}^{\infty} \exp\left\{in\left(\Omega t + \theta_0\right)\right\}
\times e^{-\delta z_a} \int_{-\infty}^{\infty} E_{a,inc}(\omega) \exp(-g_a(\omega)z_a) \exp(-i\omega t) d\omega + c.c. \tag{17}
\]

Consequently, the output radiation in the frame of reference of oscillating absorber satisfying the boundary condition \(E_{a,\text{out}}(\omega) = E_a(z_a = h, \omega)\), has the form

\[
E_{\text{out}}(z_a, t) = e^{-i\omega((t-T_a)-(z_a-z_0)/c)} \sum_{n=-\infty}^{\infty} \exp\left\{in\left(\Omega t + \theta_0\right)\right\}
\times \int_{-\infty}^{\infty} E_{\text{out}}(\omega) \exp(-i\omega t) d\omega + c.c., \tag{18}
\]
\[E_{\text{out}}(\omega) = \frac{E_0}{2\pi} \exp(-T_c/2) \]

\[\times J_n(kR) \exp \left\{ -\frac{\gamma_a T_a/2}{\gamma_a + i(\omega_a - \omega_c + n\Omega - \omega)} \right\} \exp\left(i\omega(t_0 - z_0/c)\right) \]

\[\Gamma_s/2 - i\omega \right\}, \]

where \(\phi' = \phi_0 + \omega_0 \left(\sqrt{\epsilon - 1}\right) h/c \) is the modified radiation phase, \(T_a = \frac{4\pi m_1^2 f_s N d_{11}^2}{\sqrt{\epsilon h \gamma_a}} \omega_a h \) is the resonant optical (Mössbauer) thickness of the absorber, and \(T_c = 2\delta h \) is the exponent of photoelectric absorption.

The backward transformation from the reference frame of oscillating absorber to the laboratory reference frame is accomplished via Eq. (2), \(z_a = z_i - R \cdot \sin(\Omega t + \phi_0) \), and simply leads to multiplication of the field (18) by the factor \(\exp[-ikR \sin(\Omega t + \phi_0)] \). One should note, that the different spectral components of radiation possess different wavenumbers, and, while it is possible to neglect this difference inside the absorber, which thickness is limited by the inequality \(h << c/(N_{\text{max}} \Omega) \), one can't do it for an arbitrary long propagation length in vacuum. Thus, in the laboratory reference frame one obtains

\[E_{\text{out}}(z_i, t) = e^{-i\omega t_0} \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} J_n(kR) \exp\left\{ i(n-m)(\Omega \xi + \phi_0)\right\} \]

\[\times \int_{-\infty}^{\infty} E_{\text{out}}(\omega, t_0) \exp(-i\omega \xi) d\omega + \text{c.c.}, \]

where \(\xi = t - z_i/c \) is the local time and \(\xi_0 = t_0 - z_0/c \).

Intensity of the output single-photon radiation, \(I = \frac{c}{4\pi} \frac{E_{\text{out}}^2}{\omega} \) (where \(\frac{E_{\text{out}}^2}{\omega} \) stands for averaging over the radiation cycle), or, equivalently, the probability of \(\gamma \)-quanta detection per unit time, is given by

\[I_{\text{out}}(\xi) = I_0 \exp(-T_c) \sum_{m=-\infty}^{\infty} \sum_{n=-\infty}^{\infty} J_n(kR)J_m(kR) \exp\left\{ i(n-m)\phi_0\right\} \]

\[\times \exp\left\{ i(n-m)\Omega \xi \right\} \frac{1}{4\pi^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp\left\{ -i(\omega_1 - \omega_2)(\xi - \xi_0)\right\} \left(\Gamma_s/2 - i\omega_1\right)\left(\Gamma_s/2 + i\omega_2\right) \]

\[\times \exp\left\{ -\frac{\gamma_a T_a/2}{\gamma_a + i(\Delta \omega - \omega_1)} - \frac{\gamma_a T_a/2}{\gamma_a - i(\Delta \omega - \omega_2)}\right\} d\omega_1 d\omega_2, \]

where \(I_0 = \frac{c}{2\pi} E_{\text{in}}^2 \) is intensity of the incident Mössbauer radiation, \(\Delta \omega \equiv \omega_a - \omega_c + n\Omega \).

Up to now, we considered transformation of Mössbauer radiation of a radioactive source at rest in a vibrated resonant absorber. Alternatively, one may consider a vibrated source and the resonant absorber at rest. Motion of the absorber relative to the source is equivalent to the motion of the source relative to the absorber. Thus, if the source vibrates along the axis, pointed from the source to the absorber,

\[z_0(t) = z_0 - R \cdot \sin(\Omega t + \phi_0), \]

at the absorber's entrance the incident single-photon field is given by

\[E_{\text{in}}(z_i, t) = E_\theta \left\{ (t - t_0) - (z_i + R \sin(\Omega t + \phi_0) - z_0)/c \right\} \]

\[\times \exp\left\{ -(i\omega_a + \Gamma_s/2)(t - t_0) - (z_i + R \sin(\Omega t + \phi_0) - z_0)/c + i\phi \right\} + \text{c.c.} \]
Eqs. (4) and (23), coincide, if z_a is replaced by z_l, so that the field of the vibrated source in the laboratory reference frame coincides with the field of the source at rest in the reference frame of the vibrated absorber. Therefore, solution obtained previously for transformation of a γ-photon in the vibrated absorber also describes transformation of the photon, emitted by the vibrated source in the resonant absorber at rest. In the latter case the output radiation (in the laboratory reference frame) is given by

$$E_{\text{out}}(z, t) = e^{-i\omega z} \sum_{n=-\infty}^{\infty} \exp\left\{ i\left(\Omega z + \theta_0\right) \right\} \times \int_{-\infty}^{\infty} E_{\text{in}}^{\text{out}}(\omega, \xi_0) \exp(-i\omega \xi) d\omega + \text{c.c.},$$

where $E_{\text{in}}^{\text{out}}(\omega)$ are defined by Eq. (19). The corresponding intensity is expressed by Eq. (21), since

$$\left|\exp(-i kR \sin(\Omega \xi + \theta_0))\right|^2 = \left| \sum_{n=-\infty}^{\infty} J_n(kR) \exp(-i m \Omega \xi + \theta_0) \right|^2 = 1.$$

Concluding this section, let us calculate an intensity of the overall stochastic flow of γ-photons, propagated through the vibrating resonant absorber. By the choice of zero moment of time one can set $\xi_0 \equiv 0$, however the instant of formation of the excited state of radiating nucleus, ξ_0, is absolutely undefined, so that ξ_0 in Eq. (21) is a random value spreading from 0 to 2π with equal probability. Thus, the experimentally observed detection probability of γ-quanta corresponds to that, averaged over ξ_0. Summing up the intensities (21) of individual γ-photons, radiated in different instants of time, one obtains

$$I_{\xi}(\xi) = \frac{M}{\Gamma_s} I_0 \exp(-T_s) \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} J_n(kR) J_m(kR) B_{nm} \exp\{i(n-m)\Omega \xi\},$$

where M is the average number of γ-quanta, detected per unit time, and

$$B_{nm} = \frac{\Gamma_s}{\pi} \int_{-\infty}^{\infty} \frac{1}{\omega^2 + \Gamma_s^2 / 4} \exp\left(-\frac{\gamma_n T_a/2}{\gamma_a + i(\Delta \omega_n - \omega)}\right) \exp\left(-\frac{\gamma_m T_a/2}{\gamma_m - i(\Delta \omega_m - \omega)}\right) d\omega.$$ \hspace{1cm} (26)

In dimensionless variables equations (25), (26) take the form

$$I_{\xi}(x) = \frac{M}{\Gamma_s} I_0 \exp(-T_s) \sum_{n=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} J_n(kR) J_m(kR) B_{nm} \exp\{i(n-m)\eta x / 2\kappa\},$$

$$B_{nm} = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{z^2 + 1} \exp\left(-\frac{T_a/2}{1 + i(\Delta_n - \kappa z)}\right) \exp\left(-\frac{T_a/2}{1 - i(\Delta_n - \kappa z)}\right) dz,$$ \hspace{1cm} (28)

where $x = \Gamma_s \xi$, $\nu = (\omega_n - \omega_m) / \gamma_a$, $\eta = \Omega / \gamma_a$, $\Delta_n = \nu + \eta \cdot n$, $\kappa = \Gamma_s / 2\gamma_a$, $\kappa = 2\omega / \Gamma_s$. It is worth noting, that in the limit of very small linewidth of the Mössbauer source as compared to either linewidth of the absorber, or the detuning of each spectral component from the resonance, $\kappa \ll \Delta_n, \Delta_m$, and the relatively small Mössbauer thickness of the absorber, $T_a/2 \leq 1 + \Delta_n^2$, $T_a/2 \leq 1 + \Delta_m^2$, the coefficients B_{nm} take the form

$$B_{nm} = \exp\left(-\frac{T_a/2}{1 + i\Delta_n}\right) \exp\left(-\frac{T_a/2}{1 - i\Delta_m}\right).$$

This result can be obtained if one assumes that radiation of the Mössbauer source is monochromatic. Therefore, in this limiting case the output γ-radiation intensity can be adequately calculated within the approximation of monochromatic incident radiation.
According to (25) and (27), the time dependence of intensity of the output γ-radiation is determined by interference of the spectral components, separated from each other by the frequency of vibration, Ω. If (i) the output bandwidth substantively exceeds the vibration frequency, (ii) the amplitudes of considerable number of the output spectral components are of the same order of magnitude, and (iii) the difference between initial phases of every pair of the neighboring spectral components is approximately the same, the time-dependence of the output intensity corresponds to a train of pronounced pulses. As we will show in the next section, under the optimal conditions the pulse duration can be much smaller, than the period of vibration, while the peak pulse intensity can be several times higher, than intensity of the incident radiation.

III. RESULTS OF OPTIMIZATION AND POSSIBLE EXPERIMENTS

The time dependence of intensity of the output radiation (27), (28) is determined by six dimensionless parameters

$$P_\omega = kR, \quad T_a = \frac{4\pi n_0^0 f \gamma d_{21}^2}{\sqrt{\epsilon h\gamma_a}} \frac{\omega}{c}, \quad T_e = 2\delta h, \quad \nu = \frac{\omega_e - \omega_a}{\gamma_a}, \quad \eta = \frac{\Omega}{\gamma_a}, \quad \kappa = \frac{\Gamma_s}{2\gamma_a},$$

(29)

fully characterizing interaction between the incident γ-radiation and the resonant absorber. Here P_{ω} is the modulation index, T_a is the Mössbauer thickness of the absorber, T_e is the exponent of photoelectric absorption, ν is the detuning of the absorber resonant frequency from the central frequency of the source, normalized to the halfwidth of the absorber spectral line, η is the frequency of vibration, normalized to the halfwidth of the absorber spectral line, and κ is the linewidth of the Mössbauer source, normalized to the absorber linewidth.

An arbitrary set of parameters (29) corresponds to time-dependence of the output intensity (21), given by a superposition of beats of different spectral components of the output radiation. However, as was shown in [40], under the optimal conditions the output radiation acquires the form of a train of ultrashort pulses. Since time-dependencies of the output intensity in the laboratory reference frame and in the absorber reference frame coincide, the pulse formation can be viewed as a conversion of the frequency modulated incident γ-radiation (in the absorber's reference frame in the case of oscillating absorber, and in the laboratory reference frame in the case of oscillating source) into an amplitude modulated output radiation. This conversion occurs due to selective attenuation and phase incursion acquired by the spectral components of γ-radiation during its propagation through the absorber due to the resonant absorption and dispersion, respectively (for more details see [40]). Alternatively, one may consider pulse formation as a consequence of interference of the incident and the resonantly scattered radiation in the time domain [17, 18, 20-23, 37-39]. However, in the case of harmonic motion of either the source or absorber, the spectral representation is generally more convenient.

In this section, we study the optimal conditions of pulse formation numerically, using the two criteria of optimality. At first, we seek for solution with maximum pulse peak intensity, $\max\{I_{\text{max}}/I_0\}$, where I_{max} is the peak intensity of the produced pulses, while I_0 is the intensity of the incident Mössbauer radiation. Then, we seek for solutions with maximum ratio between the pulse peak intensity and the time-averaged intensity of the output Mössbauer radiation, $\max\{I_{\text{max}}/I_{\text{aver}}\}$, where I_{aver} is the time-averaged output intensity. We present the results of global optimization of intensity (27), (28) versus parameters P_ω, T_a, η, ν for the fixed values of $\kappa=1$ and $T_e = T_a/180$ in the experimentally feasible region $1 \leq P_\omega \leq 7$, $1 \leq T_a \leq 20$, $1 \leq \eta \leq 45$, and at arbitrary ν. Discussion of the expected results outside this region and for different values of parameters κ and T_e is given after the results of optimization.

The discussed approach to formation of the ultrashort γ-ray pulses can be experimentally realized using various Mössbauer sources and absorbers. Let us consider the most popular 57Co radioactive source, which is characterized by the photon energy 14.4 keV, corresponding to the radiation wavelength 0.861 Å, the transition linewidth $\Gamma_s/2\pi = 1.13$ MHz (corresponding to the
lifetime of radiating nucleus 141 ns), and the probability of recoilless emission at room temperature \(f_i = 0.77 \). In particular, this kind of source was used in our recent experiment [40]. The sketch of the proposed experimental setup is drawn in Fig. 1 and described in the caption to this figure (the more detailed description is given in [40].) As a resonant absorber let us consider the stainless steel foil 100% enriched by \(^{57}\)Fe isotope, possessing unsplit resonant transition line with the natural linewidth \(2\gamma_a = \Gamma_s \) (corresponding to \(\kappa = 1 \)). This differs from the experiment [40], where the stainless steel absorber had a natural abundance, \(\sim 2\% \), of \(^{57}\)Fe. Since \(\gamma \)-radiation resonantly interacts only with \(^{57}\)Fe nuclei, while it is nonresonantly absorbed because of photoionization from inner electronic shells of all the atoms of a compound, increase of concentration of \(^{57}\)Fe allows achieving the same value of Mössbauer thickness of the absorber at proportionally reduced physical length and, consequently, to reduce the undesired nonresonant absorption and increase the conversion efficiency of the incident Mössbauer radiation into a pulse train. In the case of stainless steel, 100% enriched by \(^{57}\)Fe, the coefficient of resonant absorption equals \(2\gamma_a = 8.8 \mu m^{-1} \), while the decrement of nonresonant absorption is approximately \(2\delta_e = 0.05 \mu m^{-1} \) [12], corresponding to \(T_e = T_a/180 \). Accordingly, even for the maximal considered Mössbauer thickness of the absorber, \(T_a = 20 \), the nonresonant losses, \(1 - \exp\{-T_e\} \), do not exceed 11%.

Let us first consider the results of optimization according to the criterion \(I_{max}/I_0 \rightarrow \max \), which corresponds to formation of pulses with the highest peak intensity. The time-dependence of the output radiation intensity, corresponding to the optimal parameter values \(T_a = 20 \), \(\eta = 11.96 \), \(\nu = -65.78 \), is plotted in Fig. 2. The peak intensity of the produced pulses is nearly three times higher than intensity of the incident \(\gamma \)-radiation, \(I_{max} = 2.77 I_0 \), the time-averaged output intensity is \(I_{ave} = 0.79 I_0 \), the duration of pulses is \(\tau_{pulse} = \pi/(6\Omega) \times 0.09/\Gamma_s \). In the case of \(^{57}\)Co radioactive source and 100% enriched by \(^{57}\)Fe stainless steel absorber the above listed values of dimensionless parameters correspond to the frequency of absorber vibration \(\Omega/(2\pi) = 6.8 MHz \), the amplitude of vibration \(R = 0.93 \) \(\AA \), the absorber thickness \(h = 2.3 \mu m \), and the constant velocity of the source towards the absorber \(V_s = 3.22 mm/s \). The pulse duration comprises 12.5 ns, which is order of magnitude smaller, than the lifetime of excited state of the radiating nucleus; the pulse repetition period equals 147 ns. However, the major pulses are accompanied by the trains of minor peaks, which indicates that the phases of the output spectral components are not fully aligned (there remains an uncompensated frequency chirp). This fact can be most easily explained in the reference frame of the resonant absorber (recollecting once again, that the time-dependencies of intensity of the output \(\gamma \)-radiation in the laboratory reference frame and in the reference frame, associated with the absorber, coincide). In the absorber's reference frame the complex amplitude of the \(n \)-th incident spectral component (7) (note, that according to Eq. (6) the frequency of the \(n \)-th component is smaller than the central frequency of the incident radiation by \(n\Omega \)) is proportional to Bessel function of the corresponding order, \(J_n(P_\omega) \).

Since sign of Bessel function unperiodically alters with change of its order, the dependence of phases of the incident spectral components on their frequencies is nonlinear. With increase of the modulation index \(P_\omega \) the number of substantially nonzero spectral components of the incident radiation increases \(\sim 2P_\omega + 1 \), and the spectral dependence of their phases becomes more complicated. Since the possibilities to transform the incident spectrum (7) into the output spectrum (19) are limited to attenuation of the spectral components via the resonant absorption and incursion of their phases via the resonant dispersion, for the large values of modulation index it turns out to
be impossible to fully align phases of all the appreciably nonzero output components. The more detailed discussion of this issue will be given in connection with Figs. 4 and 5. This mismatching of phases of the output spectral components (and the "oscillating tails" behind the major pulses) can be reduced via reduction of the modulation index at the cost of decreasing pulse peak intensity and increasing pulse duration. Noteworthy, that reduction of the modulation index makes the produced pulses closer to the bandwidth-limited ones. Accordingly, the pulse peak intensity only slightly decreases with reduction of the output radiation bandwidth.

The spectra of the incident and the output γ-radiation, corresponding to the time-dependence of intensity, shown in Fig. 2, as well as the curves of resonant absorption and dispersion are plotted in Fig. 3. The spectra are drawn in the absorber's reference frame (which oscillates in the case of the oscillating absorber, and coincides with the laboratory reference frame in the case of the oscillating source). As seen from these spectra, the radiation bandwidth greatly exceeds the linewidth of the absorber's transition, and none of the spectral components is in resonance. Thus, the resonant absorption plays a minor role in transformation of the incident radiation, although it can't be completely neglected. The major role is played by the resonant dispersion, which leads to positive phase incursion for the spectral components above the resonance and negative phase incursion for the spectral components below the resonance, thus enabling to adjust their phases inside the absorber. We would like to note the two advantages of the resonant dispersion versus the nonresonant one for compensation of the harmonic frequency modulation [36]. Firstly, it enables to transform the incident Mössbauer radiation into a pulse train in a relatively thin absorber, \(T_A \leq 20 \), where the nonresonant electronic absorption is not substantial (for the stainless steel absorber, 100% enriched by \(^{57}\text{Fe}\), it does not exceed 11%), while conversion of Mössbauer radiation via nonresonant dispersion requires increase of the absorber thickness by orders of magnitude, resulting in drastic nonresonant damping of the output radiation. Secondly, in the limit \(T_A \gg 1, \quad \Omega/\gamma_o \gg 1, \quad T_A\gamma_o/\Omega = \text{const} \), the resonant dispersion allows better compensation of the harmonic frequency modulation, than the nonresonant one [36], even in hypothetic case of zero electronic absorption.

Let us now examine the dependencies of the peak pulse intensity on the values of parameters (29) and analyze the optimal conditions of pulse formation. The dependence of the peak pulse intensity \(I_{\text{max}} \), normalized to intensity of the incident radiation \(I_0 \), on modulation index \(P_o = kR \) and dimensionless vibration frequency \(\eta = \Omega/\gamma_o \) for the optimal (and, generally, different for each point of the surface) values of Mössbauer thickness \(T_A \) and dimensionless detuning of resonance frequency of the absorber from central frequency of the source \(\nu = (\omega_o - \omega_i)/\gamma_o \) is plotted in Fig. 4. Generally, the resonant absorber either works as a nonlinear dispersive element leading to different phase incursions of different spectral components of the incident radiation in the absorber's reference frame (6), (7), or performs selective attenuation of the most intensive antiphase (to the majority) spectral component, or combines phase incursions with selective attenuation. As seen from Fig. 4, there are two major parameter regions, where the peak pulse intensity approaches its maximum value. The first region corresponds to vibration frequencies, 6-7 times exceeding the absorber's linewidth, \(\Omega = 10-15\gamma_o \), and modulation indexes \(P_o \geq 3.5 \). In this region the pulse formation relies on the resonant dispersion, which provides partial compensation of harmonic frequency modulation of the incident γ-radiation. The pulses with better shape, similar to those reported in [40], but with a bit smaller peak intensity, can be produced in the second optimal region: \(1.5 < P_o < 2.5, \quad \Omega = 20-40\gamma_o \), where the resonant absorption,
rather than the resonant dispersion, plays a crucial role. The main effect of the absorber on the incident radiation in such a case is suppression of the strongest antiphased component of its spectrum in the absorber's reference frame [40]. In-between these regions, \(2.5 < P_\omega < 3.5\), \(\Omega = 15 - 25 \gamma_a\), intense pulses can be produced due to joint action of the resonant absorption and dispersion on \(\gamma\)-radiation. In next Fig. 5 we show the dependence of the normalized peak intensity of the pulses, \(I_{\text{max}}/I_0\), on the modulation index \(P_\omega = kR\) and Mössbauer thickness \(T_a\) for the optimal (and, generally, different) values of dimensionless vibration frequency \(\eta = \Omega/\gamma_a\) and dimensionless detuning of frequency of the absorber from frequency of the source, \(\nu = (\omega_a - \omega_\gamma)/\gamma_a\). As seen from Fig. 5, the pulse peak intensity rises monotonically in the region \(1 \leq T_a \leq 20\) with increasing Mössbauer thickness of the absorber, \(T_a\). This rise originates either from the possibility to increase the frequency of vibration \(\Omega\), preserving phase incursions of the spectral components, and, thus to decrease absorption of nonresonant components in the regime of dominating resonant dispersion, or via ability to reduce stronger the antiphased resonant component in the regime of dominating resonant absorption, or due to both these mechanisms. The dependence of the pulse peak intensity on the modulation index \(P_\omega\) is quasiperiodic with a quasiperiod, reflecting alternations of sign of the Bessel functions \(J_n(P_\omega)\) of successive orders \(n\). This periodicity is caused by modification of phase distribution of the incident spectral components (6), (7), which occurs with alternation of sign of Bessel functions \(J_n(P_\omega)\), and changes the optimal conditions of the radiation-matter interaction. As seen from Fig. 5, the pulse peak intensity just slightly grows with increase of the modulation index \(P_\omega\) from 2 up to 7. Such behavior originates from impossibility of full compensation of the harmonic frequency modulation via interaction with a single resonant absorber for \(P_\omega \geq 2\). As a result, with increase of the modulation index above \(P_\omega = 2\) the "oscillatory tails" grow behind the pulses, although the peak pulse intensity slightly increases. In the opposite case \(P_\omega < 2\) there is only one negative Bessel function of substantially nonzero amplitude, that is \(J_{-1}(P_\omega)\). In such a case, the pulse formation implies either suppression of the corresponding "1" spectral component via tuning it to the absorber resonance [40], or inversion of its sign via \(\pi\) phase incursion on the tail of the resonance. Whatever approach is chosen, in the case \(P_\omega < 2\) the produced pulses are nearly bandwidth-limited. Further reduction of the modulation index leads to narrowing of both the incident and the output radiation spectra, decrease of the pulse peak intensity and increase of the pulse duration. Finally, as seen from both Figs. 4 and 5, there are minimal values of parameters \(P_{\min} \sim 1\), \(T_{a\min} \sim 5\), \(\eta_{\min} \sim 1\), below which the pulse train can not be formed.

Let us now turn to the results of optimization according to the criterion of highest ratio between the peak and the time-averaged intensity of the produced pulse train, \(I_{\text{max}}/I_{\text{aver}} \to \text{max}\). The highest value of this ratio inside the considered parameter region equals \(I_{\text{max}}/I_{\text{aver}} = 3.61\) and is achieved for \(P_\omega = 2.0\), \(T_a = 20\), \(\eta = 17.94\), and \(\nu = -22.425\). The time dependence of intensity of the output radiation corresponding to these parameter values is plotted in Fig. 6. The peak pulse intensity \(I_{\text{max}} = 2.52I_0\), the average intensity of the output radiation \(I_{\text{aver}} = 0.70I_0\), the pulse duration \(\tau_{\text{pulse}} = \pi/(2.75\Omega)\) that is \(\tau_{\text{pulse}} \approx 0.13/\Gamma_s\) for \(\eta = 17.94\). The pulse train shown in Fig. 6 can be produced using 100% enriched by \(^{57}\text{Fe}\) stainless steel absorber, vibrating at fre-
frequency $\Omega/(2\pi) = 10.1\text{MHz}$ with amplitude $R = 0.27\text{Å}$ and ^{57}Co radioactive source, moving towards the absorber with constant velocity $V = 1.09\text{mm/s}$. The required absorber thickness is $h = 2.3\mu\text{m}$. The duration of pulses are $\tau_{\text{pulse}} = 18\text{ns}$, the pulse repetition period equals $2\pi/\Omega = 99\text{ns}$. The corresponding spectra in the absorber's reference frame are shown in Fig. 7. The "–1" and "–3" spectral components of the incident γ-radiation (6), (7) are in antiphase to the other components, but the amplitude of "–3" component is rather small to affect the time-dependence of the output radiation, so that the role of the resonant absorber is to adjust the "–1" component; this is done by means of both the resonant attenuation and the resonant phase incursion, the later is close to π, providing constructive interference of the "–1" spectral component with the other components outside the absorber. It is worth noting, that in the case of thinner Mössbauer absorber, the optimal regime will be based on the full resonant absorption of the "–1" spectral component, while if one admits thicker absorbers, the optimal regime will be based solely on the resonant phase incursion.

In next Figs. 8 and 9 we show the dependencies of the ratio between the peak pulse intensity I_{max} and the time-averaged intensity of the output Mössbauer radiation I_{aver} on modulation index P_ω and either the dimensionless vibration frequency $\eta = \Omega/\gamma_a$, or the Mössbauer thickness of the absorber T_a. The graphs are plotted for the optimal (and, generally, different for each point of the surfaces) values of dimensionless detuning of resonance frequency of the absorber from central frequency of the source $\nu = (\omega_a - \omega_s)/\gamma_a$, and either Mössbauer thickness T_a or dimensionless vibration frequency η, respectively. Figs. 8 and 9 resemble the dependencies of absolute value of the pulse peak intensity on the same parameters, shown in Figs. 4 and 5. However, maximum value of the ratio $I_{\text{max}}/I_{\text{aver}}$ is achieved at smaller modulation indices $P_\omega = 1.75–2.0$ and corresponds to pulses of better shape as compared to those, which maximizes the peak intensity.

At this point we would like to discuss what should be expected outside the considered parameter region $1 \leq P_\omega \leq 7$, $1 \leq T_a \leq 20$, $1 \leq \eta \leq 45$ and for the values of parameters κ and T_e, different from $\kappa = 1$ and $T_e = T_a/180$. Increase of the modulation index P_ω (the oscillation amplitude) leads to proportional increase of the output radiation bandwidth, and, under the optimal conditions, to decrease of the pulse duration. However, because of unperiodically alternating signs of Bessel functions $J_n(P_\omega)$ of different orders n, the phases of both the incident and the output spectral components (20) become more and more disordered with increasing P_ω. Therefore, a sequence of minor pulses grows behind the major pulse with increasing P_ω. As discussed in connection to Fig. 4, increase of Mössbauer thickness of the absorber T_a allows increasing both the peak pulse intensity I_{max} and the ratio between the peak and the time-averaged output radiation intensity $I_{\text{max}}/I_{\text{aver}}$. However, increase of the Mössbauer thickness T_a is accompanied by increase of the exponent of photoelectric absorption inside the absorber T_e, leading to essential attenuation of the output radiation. Therefore, for a fixed ratio T_a/T_e (which is determined by concentration of ^{57}Fe nuclei in the absorber) there is an optimal Mössbauer thickness T_a (generally, different for each value of P_ω) at which the largest values of I_{max} or $I_{\text{max}}/I_{\text{aver}}$ can be achieved. Increase of the dimensionless oscillation frequency η enables to increase both I_{max}
and $I_{\text{max}}/I_{\text{aver}}$, if the Mössbauer thickness T_a can be simultaneously increased. With increasing oscillation frequency both the pulse duration and the pulse repetition period are proportionally reduced, and can take the values, much smaller than considered above. Decrease of the source's linewidth relative to the absorber's linewidth, κ, for the fixed values of all the other parameters enhances both I_{max} and $I_{\text{max}}/I_{\text{aver}}$. The best results would be obtained for monochromatic incident radiation, $\kappa = 0$. However, the source's linewidth can't be smaller, than the natural limit, thus decrease of parameter κ below $\kappa = 1$ can be achieved only via broadening of the absorber's transition line, which leads either to decrease of Mössbauer thickness T_a for a fixed T_e (fixed absorber's thickness h), or to increase of the exponent of photoelectric absorption T_e for a fixed T_a (and increased absorber's thickness h). Both decrease of T_a, and increase of T_e affect pulse formation negatively. Thus, although slight decrease of parameter κ below $\kappa = 1$ might lead to certain enhancement of I_{max} and $I_{\text{max}}/I_{\text{aver}}$, substantial decrease of κ via increase of the absorber's linewidth deteriorates the effect.

We would like to stress the remarkably high efficiency of conversion of the incident radiation into the γ-pulse train, defined as a ratio between intensity of the incident Mössbauer radiation (the average number of γ-quanta, detected per unit time) and the time-averaged intensity of the output radiation, i.e. a pulse train under the optimal conditions. This total efficiency equals 79% for the pulses, shown in Fig. 1, and 70% for the pulses, shown in Fig. 6.

IV. CONCLUSION

In this paper, we investigated the ultimate possibilities of the recently proposed method for γ-ray pulse formation [40], based on the resonant interaction of γ-quanta with a vibrating absorber, or the resonant interaction of γ-quanta, radiated by a vibrating source with an absorber at rest. We discussed the possibilities of experimental realization using 57Co Mössbauer radioactive source of 14.4 keV γ-photons and the fully enriched by 57Fe stainless steel Mössbauer absorber with natural transition linewidths, corresponding to the excited state lifetime of 141 ns. We have shown the experimental possibility to generate 10-20 ns pulses with the peak intensity up to 2.8 times higher than intensity of the incident radiation. The efficiency of conversion into the pulse train can be as high, as 70-80% under the experimentally feasible conditions. Reduction of the pulse duration to 2-5 ns can be achieved via increase of the vibration frequency. In such a case, if the pulse formation relies on the resonant dispersion, the increase of vibration frequency should be accompanied by the proportional increase of Mössbauer thickness of the absorber. However, if the resonant absorption plays the major role, the optimal value of Mössbauer thickness remains unchanged. Further reduction of the pulse duration below 1 ns might be possible via broadening of the output radiation spectrum through increase of the vibration amplitude and phase-matching of the generated spectral components either in a set of vibrating resonant absorbers [53], or in Mössbauer absorber(s), moving with constant velocity [54]. Use of the piezoelectric transducers vibrating at gigahertz frequencies [55, 56] would allow proportional reduction of the pulse duration (by two and more orders of magnitude as compared to the above case of tens megahertz vibration frequencies). Since the discussed method of γ-ray pulse formation is based on the resonant interaction of γ-radiation with the nonstationary absorber, it is inherently related to our recent works on generation of extremely short (atto- and femtosecond) few-cycle optical pulses [57-61]. As compared to the previously proposed techniques for γ-ray pulse formation from radiation of a Mössbauer radioactive source [10, 17, 18, 20-22, 34-39], for the pair of 57Co source and 57Fe absorber, the discussed approach promises formation of shorter pulses than that, generated via abrupt displacement of the source/absorber and more intense, as compared to the pulses, produced via magnetization reversal. The discussed method is especially fruitful for the purpose
of a pulse train formation with high repetition rate, considerably exceeding relaxation rate of the resonant nuclear transition. This is possible, since the pulse formation in a vibrating absorber does not require the resonantly scattered radiation to approach the steady-state value before formation of each pulse, unlike the methods, based on instantaneous displacement of the source/absorber or magnetization reversal. On the other hand, combination of the discussed approach with the technique of resonant interruption of γ-radiation \cite{19, 21, 23}, or optimized unperiodic motion of the source/absorber might be useful for generation of isolated ultrashort γ-ray pulses of large amplitude. These problems will be considered elsewhere. The proposed approach is promising for the development of a compact source of nearly bandwidth-limited γ-ray pulses and realization of the precise time-resolved x-ray / Mössbauer experiments in a laboratory.

We are grateful to F.G. Vagizov and R.N. Shakhmuratov for the fruitful discussions. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University. V.A.A. and Y.V.R. acknowledge support by RFBR under the grants No. 14-02-31044, No. 13-02-00831, and No. 14-02-00762. O.K. acknowledges support by NSF under the grant No. PHY-1307346. V.A.A. acknowledges a personal grant for young scientists and PhD students from the Grant Council of the President of Russian Federation and a personal grant for young scientists from Dynasty Foundation.

Corresponding author: antonov@appl.sci-nnov.ru
\[\gamma \text{-ray photons from } ^{57}\text{Co Mössbauer radioactive source propagate through the resonant } ^{57}\text{Fe absorber, mounted on a piezoelectric plate which oscillates along the direction of } \gamma \text{-ray propagation with the frequency } \Omega, \text{ the amplitude } R, \text{ and the initial phase } \vartheta_0 \text{ under the action of harmonic voltage, produced by a radiofrequency (RF) generator. The RF generator also produces "Start" signals, synchronized to some fixed phase of the absorber vibration. These signals start the clock in the processing unit. The clock stops upon receiving the "Stop" signals from detector of the resonant } 14.4 \text{ keV } \gamma \text{-ray photons, placed behind the absorber. Such a technique allows measuring the probability of } \gamma \text{-photon detection vs. the phase of absorber's vibration, which corresponds to the time-dependence of intensity of the output } \gamma \text{-radiation, averaged over the time of formation of the excited state of radiating nuclei.} \]

\[\text{FIG. 1. (Color online) Generic scheme of the proposed experimental setup. } \gamma \text{-ray photons from } ^{57}\text{Co Mössbauer radioactive source propagate through the resonant } ^{57}\text{Fe absorber, mounted on a piezoelectric plate which oscillates along the direction of } \gamma \text{-ray propagation with the frequency } \Omega, \text{ the amplitude } R, \text{ and the initial phase } \vartheta_0 \text{ under the action of harmonic voltage, produced by a radiofrequency (RF) generator. The RF generator also produces "Start" signals, synchronized to some fixed phase of the absorber vibration. These signals start the clock in the processing unit. The clock stops upon receiving the "Stop" signals from detector of the resonant } 14.4 \text{ keV } \gamma \text{-ray photons, placed behind the absorber. Such a technique allows measuring the probability of } \gamma \text{-photon detection vs. the phase of absorber's vibration, which corresponds to the time-dependence of intensity of the output } \gamma \text{-radiation, averaged over the time of formation of the excited state of radiating nuclei.} \]

\[\text{FIG. 2. (Color online) The time-dependence of intensity of } \gamma \text{-radiation transformed in a vibrating resonant absorber under the conditions, optimal for formation of pulses with the highest peak intensity (see the text). The output intensity, } I, \text{ is normalized to intensity of the incident radiation, } I_0. \text{ Time is normalized to the cycle of absorber's vibration, } 2\pi/\Omega. \text{ The pulse peak intensity is } I_{\text{max}} = 2.77I_0, \text{ the time-averaged output intensity is } I_{\text{aver}} = 0.79I_0. \text{ The duration of the main pulse is } \tau_{\text{pulse}} = \pi/(6\Omega) = 0.09/\Gamma_s. \text{ In the case of } ^{57}\text{Co radioactive source and } ^{57}\text{Fe resonant absorber } \tau_{\text{pulse}} = 12.5 \text{ ns, the pulse repetition period equals } 2\pi/\Omega = 147 \text{ ns.} \]
FIG. 3. (Color online) Spectra of the incident (dashed blue line) and output (solid blue line) γ-radiation, resonant absorption (bold solid red line) and dispersion (bold dashed black line), corresponding to the time dependence of intensity, shown in Fig. 2. All the spectra are plotted in the reference frame, associated with the resonant absorber.

FIG. 4. (Color online) The dependence of maximum achievable peak intensity of the pulses, \(I_{\text{max}} \), normalized to intensity of the incident Mössbauer radiation, \(I_0 \), on modulation index, \(P_\omega = \kappa R \), and dimensionless vibration frequency, \(\eta = \Omega/\gamma_a \). The results are presented for the optimal (and, generally, different for each point of the surface) values of Mössbauer thickness of the absorber, \(T_a \), and dimensionless detuning of the resonance frequency of the absorber from the central frequency of the source, \(\nu = (\omega_a - \omega_i)/\gamma_a \).

FIG. 5. (Color online) The dependence of maximum achievable peak intensity of the pulses, \(I_{\text{max}} \), normalized to intensity of the incident Mössbauer radiation, \(I_0 \), on modulation in-
dex, \(P_0 = kR \), and Mössbauer thickness of the absorber, \(T_a \), for the optimal (and, generally, different for each point the surface) values of dimensionless vibration frequency, \(\eta = \Omega/\gamma_a \), and dimensionless detuning of the absorber's resonance frequency from the central frequency of the source, \(\nu = (\omega_a - \omega_c)/\gamma_a \).

![Image](image1.png)

FIG. 6. (Color online) The time-dependence of intensity of \(\gamma \)-radiation transformed in a vibrating resonant absorber under the conditions, optimal for generation of pulses with the highest ratio between the peak and the time-averaged intensity (see the text). The output intensity, \(I \), is normalized to intensity of the incident Mössbauer radiation, \(I_0 \). Time is normalized to the cycle of absorber's vibration, \(2\pi/\Omega \). The pulse peak intensity is \(I_{\text{max}} = 2.52I_0 \), the time-averaged output intensity equals \(I_{\text{aver}} = 0.70I_0 \), the ratio between peak and time-averaged intensity is \(I_{\text{max}}/I_{\text{aver}} = 3.61 \). The pulse duration is \(\tau_{\text{pulse}} = \frac{\pi}{2.75\Omega} = 0.13/\Gamma_s \). In the case of \(^{57}\text{Co} \) radioactive source and \(^{57}\text{Fe} \) resonant absorber \(\tau_{\text{pulse}} \approx 18 \text{ns} \), the pulse repetition period equals \(2\pi/\Omega = 99 \text{ns} \).

![Image](image2.png)

FIG. 7. (Color online) Spectra of the incident (dashed blue line) and output (solid blue line) \(\gamma \)-radiation, resonant absorption (bold solid red line) and dispersion (bold dashed black line), corresponding to the time dependence of intensity, shown in Fig. 6. All the spectra are plotted in the reference frame of the resonant absorber.
FIG. 8. (Color online) The dependence of ratio between the peak intensity of the pulses, I_{max}, and the time-averaged intensity of the output radiation, I_{aver}, on modulation index, $P_\omega = k R$, and dimensionless vibration frequency, $\eta = \Omega/\gamma_a$. The results are presented for the optimal (and, generally, different for each point of the surface) values of Mössbauer thickness of the absorber, T_a, and dimensionless detuning of the resonance frequency of the absorber from the central frequency of the source, $\nu = (\omega - \omega_r)/\gamma_a$.

FIG. 9. (Color online) The dependence of ratio between the peak intensity of the pulses, I_{max}, and the time-averaged intensity of the output radiation, I_{aver}, on modulation index, $P_\omega = k R$, and Mössbauer thickness of the absorber, T_a, for the optimal (and, generally, different for each point the surface) values of dimensionless vibration frequency, $\eta = \Omega/\gamma_a$, and dimensionless detuning of the absorber's resonance frequency from the central frequency of the source, $\nu = (\omega - \omega_r)/\gamma_a$.