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Abstract

We propose a method to transform a single photon field into bunches of pulses with controllable

timing and number of pulses in a bunch. The method is based on transmission of a photon through

an optically thick single-line absorber vibrated with a frequency appreciably exceeding the width of

the absorption line. The narrow spectrum of the incoming photon is ’seen’ by the vibrated absorber

as a comb of equidistant spectral components separated by the vibration frequency. Tuning the

absorber in resonance with m-th spectral component transforms the output radiation into bunches

of pulses with m pulses in each bunch. We provide a simple analytical solution clearly describing

this effect and experimentally demonstrate the proposed technique with a single 14.4keV photon

and an ensemble of vibrated 57Fe nuclei. This method opens a new way to the production of

time-bin qubits.

PACS numbers: 42.50.Gy
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I. INTRODUCTION

Gamma-photon - nuclear ensemble interfaces represent an interesting alternative to opti-

cal photon - atomic ensemble interfaces and the useful platform for testing new techniques.

It is interesting to point out that in spite of the short wavelength of the gamma-photon, its

coupling with an ensemble of resonant nuclei, incorporated into room temperature solid, can

be made much more efficient than the coupling of optical photon with an ensemble of atoms.

It is due to unique combination of high solid-state density with a very narrow, typically, life-

time broadened spectral lines of recoilless Mössbauer transitions, even at room temperature.

As a result, optical thickness of the order of one can be realized at extremely small physical

thicknesses of the order of 100 nm. Due to this fact many coherent cooperative effects such

as cooperative forward scattering, dynamical beats, single photon superradiance, collective

Lamb shift, etc., have been widely studied in gamma-optics [1–6]. The further advantages

are an existence of natural radioactive sources of heralded single gamma-photons due to

the cascade decay of one nucleus during coherence time of the photon of interest, high ef-

ficiency of gamma-photon detectors, potentially sub-Å focusing, and large capacity of the

information channels.

Recent fundamental and technological breakthroughs in hard x-ray/gamma ray optics,

including development of bright coherent XFELs based sources [7], high-efficient back-

reflecting mirrors, waveguides, and cavities [8–10], nanometer focusing facilities [11] and

efficient beam-splitters [12] stimulate to extension of quantum optics to quantum gamma-

ray optics [13–18] and quantum electronics to quantum ”nucleonics” [19].

The particular problem, addressed in this work, is a temporal shaping of a single gamma-

photon, including formation of the single and multiple peaks waveforms, required for prepa-

ration of time-bin qubits and qudits and for realization of quantum memories [20, 21]. The

techniques, developed for shaping of single optical photons and for time-bin qubits prepa-

ration, include transmission of photons, produced by parametric down conversion, through

unbalanced interferometers [22–24], temporally modulated pumping of a single atom in a

QED cavity [25], and using of electro-optical amplitude modulator, activated by detection of

one photon from the time-energy entangled biphoton pair [26]. Such techniques are currently

not available in gamma domain.

The efficient control of the waveforms of single gamma-photons via vibration of the single-
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line absorber, which results in phase modulation of its interaction with the radiation field due

to the Doppler effect and production of the vibrational sidebands, has been demonstrated

very recently in our work [14]. In particular, the trains of single pulses with high peak inten-

sities and duration much shorter than the duration of the incoming photon were produced by

tuning the absorber into resonance with the first Stokes or anti-Stokes vibrational sideband,

whose intensity was maximized by choosing proper amplitude of the mechanical vibration of

the absorber. In this work we extend and generalize our first results. Namely, we show that

tuning the incoming photon in resonance with a particular sideband ωa ±mΩ, maximized

by proper choice of the vibration amplitude, results in splitting of a single-photon pulse

into a train of bunched pulses, where ωa is a resonant frequency of the single line absorber

and Ω is the vibration frequency. Each bunch contains m pulses. Bunches are separated by

the dark windows. Both, bunches and dark windows, have equal duration coinciding with

the half of the period of the mechanical vibrations. Full width at half maximum of each

pulse in a bunch can be roughly estimated as Tvib/4m, where Tvib = 2π/Ω is the mechanical

vibration period. Therefore, the duration of the pulses shortens m-times with increase of

m. We derived a simple analytical solution explaining the formation of such pulse-bunched

single photons.

We show that single photon pulse bunching opens a way for production of qudits, which is

a new way as compared to already existing ways in optics and so far the only way suggested

in gamma-optics.

We demonstrate our proposal in the gamma domain where single photons are emitted by

a naturally decaying radioactive 57Co nuclei. They are ideal for test experiments since the

coherence length of emitted photons is very long and simple electronics can be used. The

sources containing these nuclei are commercially available and relatively cheap. They emit

14.4 keV photons with the rate 1000-5000 s−1 ensuring that during the coherence time of

the photon (141 ns) we may have no more than only one photon. Moreover, detectors in the

gamma domain have high quantum efficiency and almost no dark counts. In our experiment

a 14.4 keV photon of long coherence length (42 m) and duration of hundreds nanoseconds

is split in time bins by transmission through a vibrating single-line absorber whose physical

thickness (25 micron) is more than million times shorter than the coherence length of a

photon.

We note that other techniques, developed in gamma domain, such as magnetic switching
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[15, 17, 27–29], step-wise phase modulation of the radiation field [30–38], ultrasonic modu-

lation [39], and cooperative emission in planar waveguides [10], can be also used to perform

photon shaping. They could extend standard optical methods of quantum information pro-

cessing.

II. BASIC IDEA

A single photon, emitted by a source nucleus, has a Lorenzian spectrum whose width

is mainly defined by the lifetime of the nuclear excited state. We transmit such a pho-

ton through a thick resonant absorber with a single resonance line having approximately

the same width as the spectrum of the radiation field. The absorber experiences periodic

mechanical vibrations along the photon propagation direction. They are induced by the

piezoelectric transducer.

In the reference frame of the piston-like vibrating absorber the incident field phase os-

cillates as (2πδ/λ) sinΩt, where Ω and δ are the frequency and amplitude of the periodical

displacements, λ is the wavelength of the incident radiation field. The probability amplitude

of the radiation field in the laboratory reference frame, aL(t, z) = a0(t) exp(−iωst + iksz),

is transformed to aA(t, z
′) = aL(t, z

′) exp[ip sin(Ωt + ϕ)] in the vibrating absorber refer-

ence frame. Here ωs, ks are the frequency and wave number of the radiation field, z and

z′ = z+ δ sin(Ωt+ϕ) are coordinates in the laboratory and vibrating reference frames along

photon propagation direction z, p = 2πδ/λ is the modulation index, and ϕ is the phase of

the absorber vibration.

The probability amplitude aA(t, z) can be expressed as

aA(t, z
′) = aL(t, z

′)

+∞
∑

m=−∞

Jm(p)e
im(Ωt+ϕ), (1)

where Jm(p) is the Bessel function of the m-th order. From this expression it is clear

that the vibrating absorber ’sees’ the incident radiation field as an equidistant frequency

comb with spectral components ωs−mΩ having Lorenzian shapes and intensities, which are

proportional to J2
m(p).

Let us say that them-th component of this field is tuned in resonance with the absorber. If

the halfwidth of the components γs [defined by the halfwidth of the spectrum of the incident

field, aL(t, z)] is much smaller than the distance between neighboring components, Ω, then
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we may assume that only the resonant component interacts with the absorber and others

pass through without interaction. Within the adopted approximation only the interacting

component is coherently scattered by nuclei of the absorber.

For a weak field the output radiation can be expressed as a sum of the incident and

coherently scattered radiation fields [40]. In the case of a resonant single-line radiation these

fields interfere destructively, resulting in radiation damping. For the frequency comb only

the resonant component is coherently scattered by resonant nuclei and the scattered field

interferes with the whole frequency comb at the exit of the absorber. Therefore the output

radiation field reveals unusual properties.

The shape of a single photon wave-packet is described by the exponentially decaying

function with the rate γs,

aL(t− t0) = Θ(t− t0) exp[−(iωs + γs)(t− t0) + iksz], (2)

where Θ(t− t0) is the Heaviside step function and t0 is the moment of time when the excited

state of the source nucleus is formed. Such a shape is typical for single photon wave-packets

if the time of formation of the excited state particle, producing this single photon, is known

(see, for example Refs. [41, 42]). In our experiments the source nucleus, 57Co, decays by

electron capture to 57mFe, which decays in turn by emission of a 122 keV photon, followed

by a 14.4 keV photon to the ground state 57Fe. In this cascade decay the detection of the

122 keV photon heralds the formation of a 14.4 keV excited state of the 57Fe nucleus in the

source (see, for example, Ref. [41]). The absorber contains ground state 57Fe nuclei resonant

for 14.4 keV photons.

The propagation of the field, Eq. (2), through a single-line resonant absorber (not vi-

brating) can be described classically, Ref. [41], or quantum mechanically, Ref. [43]. The

result is well known in gamma domain [41, 43] and in quantum optics [44]. In the simplest

case if ωs = ωa and γs = γa, where ωa and γa are the resonant frequency and halfwidth of

the absorption line of the absorber, respectively, the output probability amplitude is

aout(t, l) = aL(t, l)J0

(

2
√
bt
)

, (3)

where t0 = 0 and l is the physical thickness of the absorber. Here and below we disregard

retardation effects, t − l/c ≈ t, since the physical length of the absorber is small and

retardation time l/c is short with respect to the time scale of the amplitude evolution. The
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parameter b = γaTa/2 depends on the optical depth of the absorber, which is Ta = αBl,

where αB = Nσ is the Beer’s law absorption coefficient, N is the density of 57Fe nuclei in the

absorber, and σ is the resonant cross section. Here we disregard recoil processes in nuclear

absorption and emission assuming that recoilless fraction (Debye-Waller factor) is fa = 1.

These processes will be taken into account in data analysis.

Since we are interested only in the detection probability of a photon, which is equivalent

to the radiation intensity, the cases when the absorber vibrates with respect to the source at

rest or vice versa give the same result. For simplicity we consider the case of the vibrating

source. Then, the radiation field at the exit of the absorber at rest is the sum of the

incident comb, Eq. (1) with z′ → z, and the coherently scattered field. We suppose that

the frequency component ωs − mΩ is in resonance with the absorber. Then, according to

Eq. (3) the probability amplitude of the coherently scattered field is

asct(t, l) = aL(t, l)Sm(t)e
im(Ωt+ϕ), (4)

where Sm(t) = Jm(p)
[

J0

(

2
√
bt
)

− 1
]

. This field is just the output field aout(t, l) for

the component aL(t, z)Jm(p) exp[im(Ωt + ϕ)] minus this component if it would propa-

gate without interaction with the absorber [35, 45]. Simple calculation of the probability

P (t) = |aA(t, l) + asct(t, l)|2 of the output radiation field gives

P (t) = Θ(t)e−2γt
[

1 + 2Sm(t) cosψm(t) + S2
m(t)

]

, (5)

where γ = γa = γs and ψm(t) = m(Ωt+ϕ)−p sin(Ωt+ϕ). Time evolution of the probability

P (t) for m = 1, 2, and 3, is shown in Fig. 1 (a, b, and c, respectively) where the results

of approximate Eq. (5) are compared with the exact expression Pext(t) = |aext|2, which
is obtained if we calculate the probability amplitude without any assumptions (see, for

example, Ref. [33]), i.e.,

aext(t, l) = aA(t, l)− b

t
∫

0

aA(t− τ, l)j1(bτ)e
−γaτ−iωaτdτ, (6)

where j1(bτ) = J1

(

2
√
bτ
)

/
√
bτ . Small misfits can be almost excluded if we take into

account the contribution of the two neighboring satellites, both red and blue detuned from

the resonant component of the comb, see Appendix A.

We see that the shape of the photon wave packet is transformed into bunches of pulses

with m pulses in a bunch. The pulses are produced due to constructive interference of the
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FIG. 1: (color on line) Time dependence of the detection probability of a photon, P (t), at the exit

of the absorber vibrating with the frequency Ω = 10 MHz and phase ϕ = 0. Optical thickness

of the absorber is Ta = 5.2 and γa = γs = 1.13 MHz. The frequency of the radiation field ωs is

tuned in resonance with the first sideband ωa + Ω (a), the second sideband ωa + 2Ω (b), and the

third sideband ωa + 3Ω (c). The value of the modulation index is taken optimal in each case, i.e.,
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incident field with coherently scattered field when ψm(t) = (2n + 1)π, n = 0, 1, 2, ..., while

the dark windows appear due to destructive interference when ψm(t) = 2nπ, if Sm(t) is

negative. The probability has maxima, corresponding to pulses, [1− Sm(t)]
2 exp(−2γt) and

minima [1+Sm(t)]
2 exp(−2γt), relevant to the radiation drop. The most pronounced pulses

appear if the intensity of the resonant component [∼ J2
m(p)] has global extremum. In this

case, the maximum intensity of the pulses, predicted by Eq. (5) without exponential factor

exp(−2γt) and assuming that J0

(

2
√
bt
)

≈ 0, which means that the scattered field had time

to fully develop, exceeds almost two times the intensity of the radiation field if it would not

interact with the absorber. The radiation intensity between bunches is quite small because

of the destructive interference, and it is almost an order of magnitude smaller with respect

to the pulse maxima.

Qualitatively the appearance of bunches can be understood from the time evolution

analysis of the phase difference of the scattered field and the comb, which is ψm(t) + π if

Sm(t) < 0. Time dependence of phase ψm(t) is shown in Fig. 2 for m = 1 (a), m = 2 (b),

and m = 3 (c) if ϕ = 0 and modulation index p has optimal value for each m. The phase

ψm(t) evolves almost linearly as (m+ p)Ωt+ C during the pulse (pulses) formation around

tp = (n+1/2)Tvib = (n+1/2)2π/Ω (C is constant within each time interval), and the phase

evolution almost stops around ts = nTvib = 2πn/Ω. Durations of linear time evolution and

the phase stopping intervals are nearly equal each other and they are nearly confined within

the time intervals (tp − Tvib/4, tp + Tvib/4) and (ts − Tvib/4, ts + Tvib/4), respectively. The

phase ”stops” could be explained by ”destructive interference” of two terms in expression

for the phase ψm(t) at the optimal values of the modulation indexes since at the stops the

phase evolution is approximated as (m−p)Ωt+C. Actually these ”phase stopping” periods

are the periods when time evolution of ψm(t) changes the slope from (m+p)Ωt to (m−p)Ωt.
Since for the optimal values of the modulation index p we have p > m and approximately

the relation p ≈ m+1 is valid, then the slope of the phase change during formation of pulses

is (2m+ 1)Ωt and this slope is negative, −Ωt, during the dark windows.

It is interesting to note that tuning into resonance with the m = −1 component (if ϕ = 0)

shifts the position of the pulses with respect to the case ofm = +1 such that maxima become

minima and vice versa. Such a difference is explained by the fact that the amplitude of the

m = −1 component of the comb is proportional to J−1(p) = −J1(p) and hence the amplitude

of the antiphase scattered field [proportional to S−1(t)] becomes positive. The details how
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FIG. 2: (color on line) Time evolution of the phase difference of the comb and resonantly scattered

field component, ψm(t), for m = 1 (a), m = 2 (b), and m = 3 (c), thick line in red. Black circles

indicate the points when ψm(t) = (2n+1)π. The values of the modulation index are taken the same

as in Fig. 1. The modulation phase is ϕ = 0. Thin solid line in blue shows the formation of pulses

according to Eq. (5). For visualization the exponential factor is removed and time dependent

Bessel function is set equal to zero. The amplitudes of the pulses are scaled to fit a half of each

plate.

to move the radiation field from one time-bin to the other time-bin by changing the phase

ϕ and how this effect can be used to create time-bin qubits and qudits are described in Sec.

IV.
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III. EXPERIMENT

Our experimental setup was previously used for detecting of slowing down of gamma-

photon in the absorbers with a doublet structure in the spectrum [45], observation of gamma-

echo for gamma-photon far detuned from resonance with a single line absorber [35], and for

observation of subradiant state transformation to superradiant state in sandwich absorbers

by fast displacement of their appropriate layers [37, 46]. Recently we developed a new scheme

of photon counts selection, inspired by the method [26], and reported our first observation

of photon shaping into a train of short pulses [14]. This transformation is performed by

tuning the radiation source in resonance with the first sideband m = 1.

The experimental setup is based on an ordinary delayed coincidence scheme usually used

in measurements of the lifetimes of nuclear states. The schematic arrangement of the source,

absorber attached to a piezo polymer transducer, detectors D1 and D2, and electronics is

shown in Fig. 3.

As the photon source we use 57Co nuclei in Rh matrix, which decay via a two photon

cascade. The source nucleus decays by electron capture to 57mFe with nuclear spin I = 5/2,

which decays in turn by emission of a 122 keV photon followed by a 14.4 keV photon

(competing with internal conversion) to the ground state with nuclear spin I = 1/2. The

source is mounted on the holder of the Mössbauer drive causing Doppler shift of the 14.4

keV radiation field to tune the source in resonance with the preselected component of the

absorber spectrum.

The 122 keV photons are detected by a NaI(Tl) scintillator 25 mm in diameter and

15 mm in length (detector D1), coupled to the RCA 8575 photomultiplier. The lower-

energy radiation 14.4 keV is filtered out by a 0.1 mm copper foil placed in front of the 122

keV detector. The output from the fast dynode of the photomultiplier is amplified with a

timing filter amplifier (2111, Canberra) and triggered by a constant fraction discriminator

(2121, Canberra). This timing pulse was employed to produce a start signal for the time-

to-amplitude converter TAC/SCA (2145, Canberra). A second detector D2 with a NaI(Tl)

scintillator, 25 mm in diameter and 0.1 mm thick, serves as a detector for the 14.4 keV

photons. The fast pulse is amplified by the Model 2111 timing filter amplifier and triggered

by the Model 2121 constant fraction discriminator to derive a time-pickoff signal, and then it

is fed through an adjustable delay line into the stop input of the TAC. The slow pulses from
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FIG. 3: (color on line) Schematic layout of the experimental setup. TAC is a time to amplitude

converter. PHA is a pulse-height analyzer. TA and SA are timing and spectroscopy amplifiers,

respectively. SCA is a single-channel analyzer. CFD is a constant fraction discriminator. DFG-MD

is the Mössbauer driving unit and function generator. HV is a high-voltage supply. The PVDF

transducer (PZT), where the absorber is mounted, is driven by an RF generator, which provides

also synchronizing pulses for the Gate generator, gating the START input of TAC.

the 14.4 keV detector are amplified with the spectroscopy amplifier, SA. The timing single

channel analyzer AMP&TSCA, model 290A, Ortec is utilized to select the 14.4 keV photons.

These signals are used as strobe signals to generate the TAC output pulses corresponding

to the time intervals between the 122 keV and successive 14.4 keV γ-quanta.

As the resonant absorber we used 25-µm-thick stainless-steel foil (from Alfa Aesar) with

a natural abundance (∼2.2% of 57Fe). Optical depth of the absorber is Ta = 5.18. The

stainless-steel foil is glued on the polyvinylidene fluoride piezo-transducer (Measurement

Specialties, Inc.), which transforms the sinusoidal signal from the radio-frequency (RF) gen-

erator into the uniform vibration of absorber nuclei. RF generator provides also a synchro-

nizing pulses for the Gate generator (Ortec Gate&Delay Generator, Model 416A), which

gates the START input of TAC. So the output of the TAC consists of pulses of various

heights corresponding to different time intervals between the 122 and 14.4 keV gamma
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quanta. These pulses are analyzed by two CMCA-550 data acquisition cards (Wissel) in

pulse-height mode, PHA. The selection of the card to store the signal is gated by the in-

coming signal from the Mössbauer driver function generator, which defines the frequency

of the radiation of the source. When the source is driven with a velocity corresponding to

the central frequency or to the m-th sideband of the vibrating absorber, the time-domain

spectrum is stored in the memory of the first card. The second acquisition card is used to

store the time spectrum when the frequency of the radiation of the source is far away from

these frequencies. It should be noted that the Gate generator pulses allow TAC and PHA

to measure the time domain spectrum only within a short interval at times, matching the

chosen phase of the sinusoidal signal from the RF generator.

Thus, D1 (shielded by copper foil) detects only heralding 122 keV photons and starts the

clock. Detection of 14.4 keV photon by D2 stops the clock. In this time-delayed coincidence

count technique we reconstruct the time evolution of the photon wave packet transmitted

through the resonant absorber. Since time t0 of the formation of 14.4 keV state nucleus

in the source is random, we select only those counts of the heralding 122 keV photons,

which are detected within short time interval ∆t around the time tph satisfying the relation

Ωtph = ϕ + 2πn, where n is integer. This selection ensures that the phase of the absorber

vibration is always the same for all detected photons. Since small time window of count

selection ∆t is not zero, we have to average the theoretical expressions for the signal P (t)

over small jitter ∆ϕ of phase ϕ caused by finite value of ∆t.

In Ref. [14] we modulated the absorber with frequency Ω = 10.2 MHz and tuned the

radiation field into resonance with the first satellite. We observed pulses as short as 28 ns,

which are artificially broadened due to ∆ϕ 6= 0 and finite time resolution of the electronics in

our setup limited to 8 ns. To be able to resolve the content of the pulse bunches, for example,

consisting of two or three pulses, we had to reduce Ω two or three times, respectively,

compared to the modulation frequency, used in our first experiment. The experimental

results of the detecting of pulse bunching are presented in Fig. 4(a-c), where time dependence

of the number of counts N(t), normalized to the value N0 without resonant absorbtion, is

shown. The contribution of photons emitted with recoil is subtracted. The ratio N(t)/N0 is

proportional to the probability P (t). The details of fitting procedure are described in Ref.

[14].

To avoid smearing out of the pulses within the bunch due to ∆ϕ 6= 0 we performed
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FIG. 4: (color on line) Time dependence of the photon counts N(t) (a-c) and the t0 averaged

detection probability of a photon, 〈N(t)〉 ∼ 〈P (t)〉t0 , (d-f) at the exit of the absorber vibrating

with the frequency 10.2 MHz (a,d), 4.79 MHz (b,e), and 2.94 MHz (c,f). The frequency of the

radiation field is tuned into resonance with the first (a,d), second (b,e), and third (c,f) sidebands.

Solid line (in red) corresponds to the theoretical fitting, which takes into account the phase jitter

for (a-c). The experimental results in (d-f) are fitted to the exact calculation of the integral in

Eq. (7) (solid line in red). Nave is the averaged count rate. The phase, and the phase jitter ∆ϕ

in (a-c) are ϕ = 0, and ∆ϕ = π/2 (a), ϕ = 0, and ∆ϕ = π/3 (b), ϕ = −π/10, and ∆ϕ = π/5 (c).

The modulation index is p = 1.8 (a,d), p = 3.08 (b,e), and p = 4.21 (c,f). The dots with error

bars (in blue) show experimental points. Thin line (in black) in (a-c) shows the probability time

dependence without absorber.
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experiments without detector D1. Time t0 is still random but we count time delay of 14.4

keV photon detection with respect to the fixed moments of time tstart, when the modulation

phase ϕ is the same (differing only by 2πn). In this way we escape an artificial phase jitter

∆ϕ inherent to the first scheme of the experiment. What we measure in the modified scheme

is the probability P (t), integrated over time t0, which varies from −∞ to t, i.e.,

〈P (t)〉t0 = 2γs

t
∫

−∞

P (t− t0)dt0. (7)

Calculation of this integral for the analytical approximation, Eq. (5), gives

〈P (t)〉t0 = 1− 2Vm(p) cosψm(t) + Um(p), (8)

where Vm(p) = Jm(p)[1 − exp(−Ta/4)], Um(p) = V 2
m(p) + J2

m(p) exp(−Ta/2)[I0(Ta/2) − 1],

and I0(Ta/2) is the modified Bessel function of zero order. We notice that for a single line

absorber (not vibrating) a steady state transmission of resonant gamma-quanta is propor-

tional to the function exp(−Ta/2)I0(Ta/2), where Ta is the optical depth of the absorber.

The exact expression for 〈P (t)〉t0 , obtained without analytical approximation (5), looks very

complicated and does not allow simple interpretation and analytical analysis, see Ref. [33].

Meanwhile, our approximation slightly deviates from this exact result. However, if the con-

tribution of two neighboring sidebands, blue and red detuned from resonant component, are

taken into account, then the difference becomes negligible (see Appendix B). Figures 4(d-f)

demonstrate the results of our time-delayed measurements with respect to a fixed phase of

the vibrations. In spite of poor time resolution of our electronics the pulses within bunches

are clearly seen.

IV. TIME BIN QUBITS VIA PULSE BUNCHING

Single photons are ideal information carriers for quantum communication and computing.

In many quantum protocols photon polarization is used as the information carrier [20]. Time-

bin qubits, proposed and implemented in Refs. [22, 23], were early examples of how the

time domain can be involved in the information coding by splitting a single photon into two

pulses with a fixed phase difference and controllable amplitudes. The information carried

by such a photon is well protected during its propagation in optical fiber since cross talk,
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usually influencing polarization states of a photon, is excluded. Time-coding of information is

implemented in [22, 23] by an interferometer having different arm lengths and a phase shifter

placed in the long arm. Unbalanced three path interferometers were used in [24] to create

three-state quantum objects (qutrits). Interferometers are practical to split short single-

photon pulses produced by parametric down conversion and lasting hundreds picoseconds or

shorter. Therefore, one can use the difference of the interferometer arm lengths as small as

several centimeters or shorter to split a photon in time into distinguishable pulses. Recently

creation of time-bin qubits, qutrits, and ququads with long coherence length photons has

been performed by pumping a single atom in a QED cavity having relatively small size [25].

Time-bin qubit, produced by transmitting a single photon through unbalanced interfer-

ometers, have analogy with spin 1/2 since the output photon can be expressed as a coherent

superposition of two states |short〉 and |long〉 [22]

|a〉TB = α |short〉+ β |long〉 , (9)

where |short〉 and |long〉 describe photon parts propagating through the short and long

arms of the interferometer, respectively. The relative norm and phase of the coefficients are

determined by the coupling ratio of the beam splitter, which splits a photon into the arms of

the interferometer, and the phase shifter, placed in the long arm. By varying the coefficients

α and β one can span the two-dimensional Hilbert space by the state (9). Hence, this state

is equivalent to the state of spin 1/2 covering two-dimensional Poincare sphere. Ideally the

state (9) can be created without losses.

Photon shaping, proposed in [26], also produces a photon consisting of time bins. How-

ever, this shaping is performed by transmitting a photon through the electro-optic amplitude

modulator, which consists of phase modulators in both arms of a Mach-Zehnder (MZ) in-

terferometer. One port of the output beam splitter of the MZ interferometer is terminated

so that the portion of the photon wave function that is not transmitted is lost. One can

roughly estimate the fundamental losses of the amplitude modulation scheme as follows. If,

during the production of the time-bin qubit, half of the photon probability is lost (since it is

not transmitted but ”converted” into the dark windows at the output port), then the losses

are simply 50% .

Similar losses are also inherent to the shaping of ultrashort pulses produced by acousto-

optic modulators (AOM) [47]. For example, coding the information into the spectrum of the
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pulse by its Bragg scattering on the acoustic wave, generated by RF pulses in AOM, [48] also

selects and cuts only a part of the input pulse energy. As a result the smooth broadband

spectrum of the radiation pulse becomes comblike since some parts of it are not scattered

in Bragg direction. In this method of the pulse shaping the acoustic wave propagates very

slowly with respect to the pulse duration and the pulse sees the wave as a standstill structure

whose oscillation period is extremely large with respect to the pulse duration. In contrast,

we demonstrate the pulse shaping by the absorber vibrating with the period, which is much

shorter than the pulse duration.

Here we propose two algorithms how pulse bunching can be used to create and operate

with time bin qubits. Assume that the phase of absorber vibrations is zero, ϕ = 0, and we

tune the radiation source in resonance with the first satellite, ωs = ωa +Ω. Then the pulses

are formed at the moments of time tp = (2n+1)Tvib/2, where n = 0, 1, 2... The dark windows

are formed around the moments of time td = nTvib. The illustration of these pulses and dark

windows is given in Fig. 5a. In the bottom panel, Fig. 5d, the evolution of the radiation

phase, sin(Ωt), is shown. It is divided into bins A and B. The A bins are centered at times tp

where the pulses are formed due to constructive interference of the incident and coherently

scattered radiation fields. The B bins are centered at times td where dark windows appear

due to destructive interference of the incident and coherently scattered radiation fields. The

length of these bins is equal to half a period of the vibrations, Tvib/2.

Below we assume that we have a local oscillator, for example, a generator producing the

voltage oscillating according to the function sin(Ωt + ϕlo) with phase ϕlo = 0. The same

oscillator generates mechanical vibrations of the absorber with tunable phase ϕ. If ϕ = 0, all

the pulses are formed at the output of the absorber in A bins and dark window are located

in B bins (see Fig. 5a). If ϕ = π the pulses are generated in B bins, while dark windows are

located in A bins (see Fig. 5b). If ϕ = π/2, then the radiation field is equally distributed

among A and B bins (see Fig. 6c). Thus, we are able to construct a photon state

|a〉PB = |cos(ϕ/2)| |A〉+ |sin(ϕ/2)| |B〉 , (10)

by appropriate change of the vibration phase ϕ.

In optical domain such bins can be spatially separated by a router based, for example,

on the Mach-Zehnder interferometer with a phase shifter placed in one of the interferometer

arms. If this phase shifter is fed by the local oscillator, one can send the radiation field from
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FIG. 5: (color on line) (a)-(c) Time dependence of the detection probability of a photon, which is

in resonance with the first satellite of the central component of the frequency comb, ωs = ωa +Ω.

The vibration frequency of the absorber is Ω = 10MHz and the modulation index is p = 1.8.

Effective thickness of the absorber is T = 12. The value of the vibration phase ϕ is indicated in

each plot. (d) The phase evolution of the radiation field interacting with the vibrating absorber in

its reference frame if ϕ = 0. The value of the field phase is normalized to the modulation index p.

Dashed vertical lines separate time bins A and B (see the text for details).
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bins A to the detector A and from bins B to the detector B in accordance with the phase

evolution shown in Fig. 5d. If the phase modulator of the radiation field, placed between

the source and absorber to create a frequency comb, has the modulation phase ϕ, which is

the same as ϕlo = 0, then only the detector A will detect the radiation field. If this phase

has a π shift with respect to ϕlo = 0, only the detector B will detect the radiation field. If

the modulation phase is π/2, both detectors have the same probability of photon detection.

In such a way a time bin qubit (10) can be produced.

The pulses (bins) |A〉 and |B〉 are always in phase with the incident radiation field (see Sec.

Discussion for details). Since there is no variable phase difference between the components

of state (10), this state does not cover the whole Poincare sphere. If we place phase shifters

in the paths of the time bins A and B after the router, then state (10) can be modified as

|a〉1/2 = cos(ϕ/2) |A〉+ eiφ sin(ϕ/2) |B〉 , (11)

where φ is a phase difference, which is introduced by the phase shifters between paths

traveled by the bins A and B. We notice that here, as it is usual in quantum mechanics, the

phase of state |a〉1/2 as a whole is not defined since it may be arbitrary. Now state (11) can

be considered as state, which is equivalent to spin 1/2.

In gamma domain the routers are not currently available. However, main elements, from

which they could be constructed, have been recently developed. They are high-efficient

back-reflecting mirrors [8], efficient beam-splitters [12], and tight focusing facilities [11].

Meanwhile, even without routers we can distinguish A and B bins electronically (see Fig.

6). In time delayed coincidence counting technique we have only two detectors. One is for

the heralding 122 keV photon, which starts the clock, and the other is for the resonant 14.4

keV photon, which stops the clock. We distinguish detection events of 14.4 keV photon

in time by multichannel data acquisition system with quite short duration of each channel

(see, for example, Ref. [35, 45]). This scheme can be easily modified to simulate effective

detectors A and B electronically, having physically only one detector for the resonant gamma

photon.

We assume that in optical domain it is possible to produce qubits of higher dimension,

known as qudits, by transformation of a single photon into bunches of pulses and by routers.

We estimate that it would be hard to vibrate the absorber piston like with large amplitude

comparable with the wavelength of the optical radiation field. The simplest way to produce
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FIG. 6: (color on line) Schematic presentation of the method how with one detector (dark oval in

blue) the pulses, formed by the vibrating absorber from single gamma-photon, can be transferred

by electronics (data acquisition system) into bins A and B. The correspondence of these bins to

the time evolution of the oscillating phase (waving line in green) is shown in the bottom.

the phase modulation of the radiation field with high frequency and large deviations is

to use the phase modulators. If the modulation index is large enough the single frequency

radiation field is transformed into a frequency comb with desirable properties. As an example

we consider the case when the second satellite of the central component of the radiation field

incident to the absorber is tuned in resonance, ωs = ωa + 2Ω, and modulation index has

optimal value p = 3.1, i.e., it is close to π. Then the single-photon wave packet after passing

through the absorber is split into bunches of pulses with two pulses in each bunch (see Fig.

7a, solid curve in red). Now, time can be grained into time bins A, B, C, and D with a

duration Tvib/4 each. If the phase of the phase modulation (PM) is zero, ϕ = 0, i.e. it

coincides with the phase of the local oscillator, ϕlo, then only bins A and B contain the

radiation pulses, while bins C and D fall into dark windows (see Fig. 7a, solid curve in red).

If the phase of PM is ϕ = −π/2, the pulse bunches are shifted to a quarter of modulation

period and then bins B and C are occupied while bins A and D are almost empty (see

Fig. 7a, dotted line in blue). Changing the modulation phase further (ϕ = −π) we can

move pulses from bins B and C to bins C and D (see Fig. 7b, dotted line in blue). If the

modulation phase is ϕ = −3π/2, the pulses occupy D and A bins only (see Fig. 7c, dotted

line in blue).

To separate spatially time bins A, B, C, and D we propose to transmit the radiation field

through a set of routers R1, R2, and R3 (see Fig. 8). Router 1 (R1) separates the couple

of time bins A and B from couple of time bins C and D. R1 is synchronized with the local
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FIG. 7: (color on line) (a)-(c) Time dependence of the detection probability of a photon with

comb spectrum, whose second satellite of the central component is in resonance with the absorber,

ωs = ωa + 2Ω. Frequency of the phase modulation is Ω = 10MHz and the modulation index is

p = 3.1. Effective thickness of the absorber is T = 12. The value of the modulation phase ϕ is zero

for solid line (in red) and it is −π/2 (a), −π (b), and −3π/2 (c) for dotted lines (in blue). (d) The

phase evolution of the field after the phase modulator (normalized to the modulation index p) if

ϕ = ϕlo = 0. Dashed vertical lines separate time bins A, B, C, and D (see the text for details).

oscillator such that the first half a period Tlo = Tvib of the local oscillator the radiation field

is sent to the router R2 and the second half of the oscillation period the radiation field is

sent to the Router 3. These routers, R2 and R3, switch the path of the radiation field two

times faster than R1 but with the same phase ϕlo. Then the radiation field, contained in

time bin A, will always go to the detector A. The same is realized for time bins B, C, and

D. The radiation field contained in these time bins will go to the detectors B, C, and D,

respectively (see Fig. 8). By changing the phase of PM, ϕ, with respect to the phase of
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FIG. 8: (color on line) Spatial separation of pulses from bunches. Single photon radiation field

is transformed to the frequency comb by phase modulator PM. Passing through the absorber the

single photon wave packet is shaped into pulses, which are spatially separated by routers R1, R2,

and R3 such that bins A, B, C, and D are sent to the corresponding detectors A, B, C, and D (see

the text for details).

local oscillator, ϕlo, one can control the population of bins A, B, C, and D.

It is already mentioned that single pulses, generated when we tune in resonance the first

satellite (see Fig. 5), are in phase with the incident radiation field. When we tune in

resonance the second satellite, two pulses are grouped in a bunch (see Fig. 7). The first

pulse in a bunch has a phase shift π/2 with respect to the incident field and the second

pulse has opposite phase, −π/2. This feature could be used to implement some operations

with bins A, B, C, and D if we make them interfere after passing appropriate bins through

a delay line.

Our scheme of photon transformation into bunches of pulses is not ideal since the vibrated

absorber introduces losses. However they are small. We estimate roughly the integrated

absorbtion as follows. If m-component of the comb is in resonance with the absorber, then

time-integrated intensity of the transmitted radiation

〈P (t)〉t = 2γs

+∞
∫

−∞

P (t)dt (12)

can be approximated as

〈P (t)〉t = 1− J2
m(p)

[

1− e−Ta/2I0(Ta/2)
]

. (13)

The first term (unity) in the right hand side of the equation is just the intensity of the

frequency comb. The second term, J2
m(p), is the intensity of the resonant component whose

transmission through the absorber gives the third term J2
m(p) exp(−Ta/2)I0(Ta/2). If m = 1
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we loose 25% of photon probability when generating the train of single pulses. If m = 2 we

loose 17% of photon probability when generating two pulse bunches. If m = 3 we loose 14%

of photon probability when generating three pulse bunches. These estimates are done for

the absorber with optical thickness Ta = 5.2 and optimal values of the modulation index p

for each m. Decrease of losses with increase of number of pulses in a bunch is due to the

decrease of the first maximum of J2
m(p) with increase of m. The losses in our method are

appreciably smaller than in the scheme of photon shaping, based on electro-optic amplitude

modulator [26].

There is another option to shape a photon into time bins with the help of a sandwich

absorber. Let us consider the case when the source is vibrated with the frequency Ω and

the probability amplitude of the emitted photon is described as

as(t) = aL(t) exp[iΨ(t)], (14)

where aL(t) is defined in Eq. (2), t0 = 0, and Ψ(t) = p sin(Ωt + ϕ). We propose to use

a sandwich absorber, which consists of two samples. One is tuned by Mössbauer drive in

resonance with the first sideband ωs + Ω of the frequency comb, Eq. (14), and another one

is tuned in resonance with −1 sideband ωs − Ω by its own separate Mössbauer drive. We

propose to use the absorbers of the wedge form as shown in the inset into Fig. 9. Moving

the wedges up or down such that their total thickness remains the same one can change their

individual thicknesses for the radiation field propagating in the transverse direction shown

by the arrow (in red). The radiation field is collimated by a diaphragm such that only small

spot on the absorber is irradiated. Therefore, thickness of the sandwich absorber is almost

uniform in the radiation beam area. The probability amplitude of the radiation field at the

output of the first sample of the sandwich absorber is

as1(t) = as(t)− b1

t
∫

0

as(t− τ, l)j1(b1τ)e
−γa1τ−iωa1τdτ, (15)

where b1 = γa1Ta1/2, γa1 is the decay rate of the nuclear coherence in the first sample,

Ta1 = αBl1 and l1 are effective and physical thickness of the first sample, respectively, ωa1

is the resonant frequency of the first sample tuned by its Mössbauer drive. The probability

amplitude of the radiation field at the output of the second sample of the sandwich absorber
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FIG. 9: (color on line) Time evolution of the detection probability of a photon, P (t), at the output

of the sandwich absorber. The effective thickness of the absorbers are Ta1 = Ttot and Ta2 = 0 in (a),

Ta1 = 2Ttot/3 and Ta2 = Ttot/3 in (b), Ta1 = Ta2 = Ttot/2 in (c), Ta1 = Ttot/3 and Ta2 = 2Ttot/3

in (d), and Ta1 = 0 and Ta2 = Ttot in (e), where Ttot = 5.2 is the total thickness of the absorber.

The schematic arrangement of the sandwich absorber (consisting of the wedges 1 and 2) and the

propagation direction of the radiation field are shown in the inset. The plot in the inset shows

dependence of losses Llos(x) on the ratio of thicknesses of the sandwich elements x = Ta2/Ttot.
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is

as2(t) = as1(t)− b2

t
∫

0

as1(t− τ, l)j1(b2τ)e
−γa2τ−iωa2τdτ, (16)

where b2 = γa2Ta2/2, γa2 is the decay rate of the nuclear coherence in the second sample,

Ta2 = αBl2 and l2 are effective and physical thickness of the second sample, respectively, ωa2

is the resonant frequency of the second sample tuned by its Mössbauer drive. If γa1 = γa1 =

γ, where γ is the decay rate of the radiation field, emitted by the source, and both samples

are tuned in resonance with spectral components, as discussed above, i.e., ωa1 = ωs+Ω and

ωa2 = ωs − Ω, then Eq. (16) can be approximated as

as2(t) = as(t)− J1(p)aL(t)
[

2i sin(Ωt)− eiΩtJ0

(

2
√

b1t
)

+ e−iΩtJ0

(

2
√

b2t
)]

, (17)

where ϕ = 0 for simplicity. Time evolution of the probability P (t) = |as2(t)| for different

values of b1 and b2 if b1+b2 = b (b is constant) is shown in Fig. 9. The vibration frequency of

the source is Ω = 10 MHz and the decay rate of the nuclear coherence of the source and the

elements of the sandwich absorber is γ = 1.1 MHz. It is clearly seen that the distribution

of the amplitudes of the pulses in the time bins can be regulated by moving sandwich up or

down. Such a movement changes individual thickness of the absorbers.

We estimate radiation losses in the second scheme in a similar way as it is done in the

first scheme. Time-integrated intensity of the radiation, transmitted through the sandwich,

is

〈Ps(t)〉t = 1− J2
1 (p)

[

2− e−Ta1/2I0(Ta1/2)− e−Ta2/2I0(Ta2/2)
]

, (18)

where Ta1 and Ta2 are optical thicknesses of the elements of the sandwich. Here we use

the identity J2
−1(p) = J2

1 (p). The meaning of the terms in Eq. (18) is the same as in Eq.

(13) since for the sandwich two components of the comb (m = 1 and m = −1) interact

separately with their own resonant element of the sandwich. Simple calculations show that

if Ta1 + Ta2 = Ttot = 5.2, i.e., the sandwich has the same optical thickness as we take in the

first scheme, then the radiation losses are also 25% if Ta1 = 5.2, Ta2 = 0 [see Fig. 9 (a)] or

Ta1 = 0, Ta2 = 5.2 [see Fig. 9 (e)]. When Ta1 tends to be equal to Ta2, then losses increase

taking maximum value 40% if Ta1 = Ta2 = Ttot/2 [see Fig. 9 (c)]. Their dependence, Llos(x)

on the relative thickness of the sandwich elements, x = Ta2/Ttot, is shown in the inset.
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V. DISCUSSION

Mathematically the interaction of the frequency comb, created by vibrating the source or

by another method of the phase modulation of a single-line narrow-bandwith radiation field,

with the narrow linewidth absorber and the interaction of a single-line narrow-bandwith

radiation field with vibrating absorber or absorber whose resonant frequency is modulated

can be described similarly. In both cases we obtain the same expression for the radiation

intensity, transmitted through the absorber. However, physically they are different. For

example, the amplitude of a single-photon gamma-radiation field, transmitted through the

vibrated absorber, can be approximated as

aL(t, l) = aL(t)
[

1 + Sm(t)e
im(Ωt+ϕ)−ip sin(Ωt+ϕ)

]

, (19)

if the vibration frequency is large (Ω ≫ γ) and resonant condition ωs = ωa+mΩ is satisfied.

This amplitude for the vibrated source and absorber at rest is

aL(t, l) = aL(t)
[

eip sin(Ωt+ϕ) + Sm(t)e
im(Ωt+ϕ)

]

. (20)

For the vibrated absorber the phases of the produced pulses coincide with the phase of

the incident single-line radiation field. For the vibrated source the phases of the pulses

are m(Ωt + ϕ) − (2n + 1)π, since pulses appear when ψm(t) = (2n + 1)π, where ψm(t) =

m(Ωt+ϕ)− p sin(Ωt+ϕ) and n is the pulse number in a sequence (see Fig. 2). For a single

pulse in a bunch (m = 1), pulses appear when Ωt + ϕ = (2n+ 1)π and they have the same

phase. If m > 1, we have m pulses in a bunch, and the phases of pulses in a bunch are

different.

Physical processes responsible for the pulse generation are also different in the considered

cases. If the source vibrates, we have interference of the resonantly scattered component

of the radiation field with the comb. If the absorber vibrates coherently, it induces Raman

scattering of the monochromatic radiation field producing frequency comb (see, for example,

Ref. [49]). Similar comb is also produced by the source vibration (see, for example, Ref.

[50]). We have to emphasize that in gamma-domain these comb structures were observed

in many experiments [49–60]. However, to the best of our knowledge no transients were

observed for a single gamma-photon at high frequencies (Ω ≫ γ), except transients, averaged

over time of formation of the 14.4 keV excited state nucleus in the source t0, i.e., without use
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of detector D1 (see, for example, Refs. [55, 56]). Moreover, no attempts were made earlier

to observe pulse bunching, which is reported in the present paper and found by tuning in

resonance m-th sideband of the absorption spectrum and choosing appropriate modulation

index p to maximize the intensity of the m-th sideband.

In optical domain generating of the comb structure, which is produced by coherently

induced molecular vibrations, is reported in Ref. [61]. Short and strong nonresonant pulse

(30 fs) excites uniform molecular vibrations of gaseous SF6. Then, long pulse (200 fs)

of much smaller intensity propagates through the gas of vibrating molecules. Coherent

vibration of the molecules transforms the resonant laser radiation into higher-order Stokes

and anti-Stokes components. The measured output Raman spectra are quite reminiscent of

the comb structures, observed in gamma-domain, especially in the intensity dependence of

the comb components on the modulation index, varied in the experiment by changing the

gas pressure. However, the physical process of generating sidebands in [61] does not involve

any resonant transitions in the molecules and the pulse bunching was not observed.

We would like to mention also two recent interesting proposals of forming the frequency

combs, accordingly, in x-ray range(based on imprinting the structure of an optical frequency

comb onto the emitted, x-ray resonance fluorescence spectrum of atoms [62]) and in gamma-

ray range (based on nonlinear Compton scattering of a broad bandwidth radiation [63].

VI. CONCLUSION

We suggested a method to shape single-photon wave packets into bunches of m pulses by

transmission through the optically-thick single-line absorber, which is mechanically vibrated.

The pronounced shaping is performed by tuning radiation field into resonance with the m-

th vibrational sideband, whose intensity is maximized by the proper choice of the vibration

amplitude. We found a simple analytical solution clearly explaining formation of bunches

of pulses under these conditions. Our method allows to shape long-coherence-length single-

photon radiation field with the help of geometrically small devices.

We experimentally demonstrated this method in gamma domain for 14.4 keV photons,

emitted by 57Co radioactive source. These photons interact with the resonant absorber,

which is a stainless steel foil. The 14.4 keV photons with 42 m coherence length were

shaped into the trains of single, double, and triple pulses using 25 microns thick foil with a
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natural abundance of 57Fe. The same result could be achieved using 0.5 micron thick foil if

it would be 100% enriched with 57Fe.

We discussed potential applications of this technique for realization of time-bin qubits

in gamma domain. We suggested two different ways to control the relative amplitudes of

the time bins in the qudit, i.e., via the variation of the vibration phase, or via the variation

of relative optical thicknesses of two absorbers, which are tuned to Stokes and anti-Stokes

sidebands of the same order, respectively.

We believe that our method of controlling the shape of a single-photon wave packet is also

applicable in the optical domain for atoms, molecules or impurity ions resonantly interacting

with the radiation field. The proposed method could complement the existing arsenal of a

single-photon shaping and time-bin qudit preparation techniques. The modulation of the

resonant interaction of the field with atoms, molecules or impurity ions can be realized by

time dependent Zeeman/Stark effects, which are capable to produce extremely short pulses

[64, 65], by coherent molecular vibrations, which could be induced by a short nonresonant

pulse of large intensity, as it is demonstrated in [61], or by phase modulators. The method

is capable to make fine tuning the amplitudes, time, and intervals between pulses produced

from a single photon.
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VIII. APPENDIX A

If the modulation frequency Ω is much larger than the halfwidth of the absorption line

γa and only one spectral component of the frequency comb is tuned in resonance with the
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absorber then one can neglect the interaction with other nonresonant components. Such

an idealization works quite well if the spectrum of a single-line radiation source has rapidly

falling tails as it is inherent, for example, to the Gaussian spectrum. In case of heralded

single photons the spectrum of the radiation field is a(ω) = i/(ω−ωs+ iγs), see, for example

Ref. [45]. This spectrum has long tails falling as ∼ 1/(ω − ωs). They appear because the

front of the photon wave packet has sharply rising leading edge. Therefore many satellites

start wringing immediately after this front comes, however with small amplitudes. As a

result the approximate Eq. (5) describes the modulation of a single photon field with small

misfit compared with exact Eq. (6). Below we improve fitting by taking into account the

interaction with the nearest satellites of the resonant component.

The propagation of a single line radiation field with carrier frequency ωs through a single

line absorber with resonant frequency ωa is described by Eq. (6). It is derived by the

convolution of the incident field amplitude with the response function (Green function) of a

single line absorber, which is

R(t) = δ(t)−Θ(t)e−(iωa+γa)tbj1 (bt) , (21)

where δ(t) is the Dirac delta function (see, for example, Refs. [33, 45, 66]). According to

Eq. (6) the coherently scattered field amplitude is

asct(t− t0, l) = −Θ(t− t0)b

t−t0
∫

0

aA(t− t0 − τ, l)j1(bτ)e
−γaτ−iωaτdτ. (22)

If the m-component of the frequency comb, Eq. (1), is in resonance with the absorber, i.e.,

ωs = ωa + mΩ and γs = γa, then the amplitude of the coherently scattered field for this

component is reduced to

am(t− t0, l) = aL(t− t0, l)Sm(t− t0)e
im(Ωt+ϕ), (23)

where for simplification of the notations we drop index sct. The contribution of the satellites

ωs − (m ± n)Ω, where n = 1, 2, 3, ..., was not taken into account in Eq. (5). According to

Eq. (22) the amplitudes of the fields, scattered by the satellites are

am±n(t− t0, l) = −aL(t− t0, l)Jm±n(p)e
i(m±n)(Ωt+ϕ)b

t−t0
∫

0

j1(bτ)e
−(γa−γs)τ∓inΩτdτ. (24)
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FIG. 10: (color on line) Comparison of the exact result for the probability P (t), derived from

Eq. (6) (solid line in red), with that, which is obtained from Eq. (25), where only the resonant

component, n = 0, and two nearest satellites, n = ±1, are taken into account (dotted line in blue).

The parameters and notations are the same as in Fig.1 (a-c).

Then, the exact result, Eq. (6), can be expressed as follows

aext(t, l) = aA(t, l) +
+∞
∑

n=−∞

am+n(t, l), (25)

where t0 = 0. Comparison of the exact result with the approximation, when only two nearest

sattelites (n = ±1) of the resonant component (n = 0) are taken into account, is shown in

Fig. 10. In this case misfit is almost negligible. To estimate the contribution of the satellites

we calculated the integral

K±n(t) = b

t
∫

0

j1(bτ)e
±inΩτ−(γa−γs)τdτ (26)
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FIG. 11: (color on line) Comparison of the time dependencies of the real (a) and imaginary (b)

parts of the integral K1(t), Eq. (26), (solid line in red) with the equation (27), where only the first

term in the sum, Eq. (28), is taken into account (dotted line in blue). The parameters are b = 1.47

MHz and Ω = 10 MHz.

in Eq. (24) with the help of the method, presented in Refs. [41, 44, 67, 68]. The result is

K±n(t) = 1− e−ib/[±nΩ+i(γa−γs)] +M±n(t), (27)

M±n(t) = e±inΩt−(γa−γs)t
∞
∑

k=1

[ −ib
±nΩ + i(γa − γs)

]k

jk(bt), (28)

where jk(bt) = Jk

(

2
√
bt
)

/(bt)k/2 and Jk(x) is the Bessel function of the k-th order. If

nΩ ≫ b, then the smallness of the satellites contribution is of the order of b/nΩ. For

example, when b/Ω = 0.146, n = 1, and γa ≈ γb, then it is already fine approximation if one

takes into account only the first term in the sum M±1(t) in Eq. (28), which is proportional

to b/Ω, see Fig. 11.
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IX. APPENDIX B

The averaged probability amplitude 〈P (t− t0)〉t0 = 〈N(t)〉, Eq. (7), is described by the

equation (see Refs. [33, 68])

〈N(t)〉 = Re

[

1− 2fsbF+(t)

∫ t

−∞

dt′j1[b(t− t′)]/F+(t
′)

+ 2fsb
2e−2γat

∫ t

−∞

dt′F−(t
′)j1[b(t− t′)]

∫ t′

−∞

dt′′j1[b(t− t′′)]/F+(t
′′)

]

. (29)

where fs is the recoilless fraction of the source photons and

F±(t) = exp [−(γs ± γa)t− i(ωa − ωs)t− ip sin(Ωt)] . (30)

If γs = γa = γ, then Eq. (29) can be simplified as follows

〈N(t)〉 = 1− 2fsb

∫ ∞

0

dt′j1(bt
′)e−2γt′ cos [φ(t)− φ(t− t′)−∆ωt′]

+ 2fsb
2

∫ ∞

0

dt′
∫ t′

0

dt′′j1(bt
′)j1(bt

′′)e−2γt′ cos [φ(t− t′)− φ(t− t′′) + ∆ω(t′ − t′′)] . (31)

where ∆ω = ωs−ωa is the resonant detuning and φ(t) = p sin(Ωt+ϕ) is the phase modulation

of the radiation field in the reference frame of the vibrating absorber.

Equations (29) and (31) are hard to analyze analytically. On the contrary, analytical

approximation, given in Eq. (8), helps to estimate the periodicity of pulses, the values of

their maxima 〈Nm〉max, and the intensity level of the dark windows, 〈Nm〉min, where index m

indicates that m-th component is in resonance. According to the analytical approximation

these values are

〈Nm〉max = [1 + Vm(p)]
2 + J2

m(p)(〈N〉res − e−Ta/2), (32)

〈Nm〉min = [1− Vm(p)]
2 + J2

m(p)(〈N〉res − e−Ta/2), (33)

where 〈N〉res = exp(−Ta/2)I0(Ta/2) is proportional to the number of counts per unit time at

the output of the single-line absorber if it is tuned in resonance with the source. Comparison

of the analytical approximation, Eq. (8), with the exact expression, Eq. (31), for the

number of counts at the output of the vibrating absorber, is shown in Fig. 12, along with

the values 〈Nm〉max, 〈Nm〉min, and 〈N〉res, which are 〈N1〉max = 2.089, 〈N1〉min = 0.397

for ∆ = Ω and p = 1.8; 〈N2〉max = 1.877, 〈N2〉min = 0.463 for ∆ = 2Ω and p = 3.1;
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FIG. 12: (color on line) Time dependence of the photon counts, averaged over t0, for ∆ = Ω and

p = 1.8 (a), ∆ = 2Ω and p = 3.1 (b), ∆ = 3Ω and p = 4.2 (c). Solid line (in red) represents the

exact result and dotted line (in blue) - analytical approximation, Eq. (8). Dashed black line shows

the level 〈Nm〉max, solid line (in green) - 〈Nm〉min, and dash-dotted line represents 〈N〉res. Other

parameters are defined in the text.

〈N3〉max = 1.768, 〈N3〉min = 0.504 for ∆ = 3Ω and p = 4.2. These values are obtained if

modulation frequency is Ω = 10 MHz and Ta = 5.2, when 〈N〉res = 0.264. The maximum

intensity of the pulses exceeds almost two times the radiation intensity without absorber.

Minimum intensity in the dark windows 〈Nm〉min is almost an order of magnitude smaller

than the maximum pulse intensity 〈Nm〉max and slightly exceeds the intensity level of the

radiation field, transmitted through the resonant absorber not vibrating, 〈N〉res. However

their difference 〈Nm〉min − 〈N〉res rises with increase of the value of the modulation index
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FIG. 13: (color on line) Comparison of the exact result (solid line in red) for time dependence of

the photon counts, averaged over t0, for ∆ = Ω and p = 1.8 (a), ∆ = 2Ω and p = 3.1 (b), ∆ = 3Ω

and p = 4.2 (c) with analytical approximation Eq. (23) (dotted line in blue). Other parameters

are the same as in Fig.1 (a-c) of the main part of the manuscript.

from p = 1.8 to p = 4.2.

It is possible to improve the analytical approximation, given in Eq. (8), if the contribution

of two nearest satellites of the resonant component are taken into account, i.e.,

aapx(t, l) = aA(t, l) + am(t, l) + am+1(t, l) + am−1(t, l). (34)

In the corresponding probability amplitude Papx(t) = |aapx(t, l)|2 we can

make further simplification neglecting the terms |am+1(t, l) + am−1(t, l)|2 and

2Re
{

[am+1(t, l) + am−1(t, l)] aL(t, l)Jm

(

2
√
bt
)

eim(Ωt+ϕ)
}

since their contribution into

the averaged probability 〈Papx(t− t0)〉t0 is small. The contribution of other terms results in
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expression

〈Napx(t)〉 = 〈Nm(t)〉 − 〈Cm+1(t)〉 − 〈Cm−1(t)〉 , (35)

where 〈Nm(t)〉 = 〈P (t− t0)〉t0 is defined in Eq. (8) and

〈Cm±1(t)〉 = 2Jm±1(p)

{

cosψm±1(t)− e−B cos [ψm±1(t)±D]

− Jm(p)
[

cos(Ωt+ ϕ)− e−B cos(Ωt + ϕ+D)
]

}

, (36)

B + iD =
b

2γ − iΩ
. (37)

It is easy to show that the contribution of terms 〈Cm±1(t)〉 is as small as 2bγ/Ω2 if Ω ≫ 2γ

and Ω ≫ b. However, in spite of the smallness of the corrections, Eq. (35) describes much

better the formation of pulses than the analytical approximation Eq. (8), see Fig. 12, where

Eq. (35) is compared with the exact result. Misfit between them is almost negligible.
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[11] F. Döring, A.L. Robisch, C. Eberl, M. Osterhoff, A. Ruhlandt, T. Liese, F. Schlenkrich, S.

Hoffmann, M. Bartels, T. Salditt, and H.U. Krebs, Opt. Express 21, 019311 (2013).

[12] T. Osaka, M. Yabashi, Y. Sano, K. Tono, Y. Inubushi, T. Sato, S. Matsuyama, T. Ishikawa,

and K. Yamauchi, Opt. Express 21, 2823 (2013).

[13] B. W. Adams, et al., J. Mod. Opt. 60, 2 (2013).

34



[14] F. Vagizov, V. Antonov, Y.V. Radeonychev, R.N. Shakhmuratov, and O. Kocharovskaya,

Nature 508, 80 (2014).

[15] W.-T. Liao, A. Pálffy, and C. H. Keitel, Phys. Rev. Lett. 109, 197403 (2012).

[16] W.-T. Liao, A. Pálffy, Phys. Rev. Lett. 112, 057401 (2014).

[17] K. P. Heeg, H.-C. Wille, K. Schlage, T. Guryeva, D. Schumacher, I. Uschmann, K. S. Schulze,
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