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Abstract

Nonstationary molecular states which contain electronic coherences can be impulsively created

and manipulated by using recently-developed ultrashort optical and X-ray pulses via photoex-

citation, photoionization and Auger processes. We propose several stimulated-Raman detection

schemes that can monitor the phase-sensitive electronic and nuclear dynamics. Three detection

protocols of an X-ray broadband probe are compared - frequency dispersed transmission, integrated

photon number change, and total pulse energy change. In addition each can be either linear or

quadratic in the X-ray probe intensity. These various signals offer different gating windows into

the molecular response which is described by correlation functions of electronic polarizabilities.

Off-resonant and resonant signals are compared.
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I. INTRODUCTION

Many spectroscopic techniques involve the creation and manipulation of coherences fol-

lowed by a stimulated Raman detection of a probe pulse[1–12]. The field of multidimensional

spectroscopy was launched by looking at the delays between impulsive stimulated Raman

events [13]. In the simplest conventional one-dimensional (1D) time-domain stimulated Ra-

man technique, the molecule is first prepared in a vibrational superposition state by an

off-resonant Raman pulse and, after a variable delay period T , the transmission change of

a second probe pulse is detected. The transmission oscillates with T between gain and loss

at the vibrational period, and a Fourier transform then reveals the vibrational frequencies

[14–16]. Optical Raman techniques have been applied to study electron transfer and nona-

diabatic dynamics at conical intersections. Using recently developed FEL and HHG sources

[17–19], Raman techniques can be further extended to the X-ray regime [20–24] whereby the

system is initially prepared in the superposition of valence electronic states and an X-ray

Raman probe then reveals information about electronic, rather than vibrational, coherence.

We had recently investigated multidimensional Raman techniques in the visible/IR regime

[15]. Signals quadratic in the probe pulse intensity which use broadband or shaped pulses to

probe excited state dynamics following the preparation by resonant UV actinic pulse were

studied. Various simulation protocols which differ by the level of complexity and computa-

tion cost were compared. Starting with the most computationally expensive expensive exact

numerical propagation, we developed more approximate sum-over-states expansion and the

Stochastic Liouville Equation (SLE) to describe complex dynamics. Excited state prepa-

ration has been limited to excited electronic state populations which do not carry phase

information. In our recent work [25] we had extended the SLE approach to both linear and

quadratic off-resonant Raman signals with shaped pulses. The Raman resonance line shapes

were calculated for systems with nonequilibrium initial state prepared by a resonant actinic

pulse. We then investigated the relative phase dependence of time evolving Stokes and anti-

Stokes components of the spectra in quadratic signal with shaped pulse [26]. The results

show the energy redistribution between different spectral components in Raman signals.

This paper presents several electronic Raman techniques performed with X-ray pulses that

carry higher levels of information [21, 27, 28]. The same techniques apply to conventional

vibrational Raman as well. Using an intuitive diagrammatic approach, we derive expressions

2



for three basic detection protocols of the probe: (i) the change in number of photons S(N),

(ii) the change in the transmitted probe energy S(E) and (iii) the frequency-dispersed probe

transmission S(fd). In addition, signals may be linear or quadratic in the probe intensity

and may utilize broadband or hybrid shaped (a combination of broad and narrow) probes

as well as resonant or off-resonant with material transition. The energy exchange between

field and matter is discussed. In the case of an off-resonant probe, the number of photons

is conserved and S(N) = 0. For a hybrid pulse composed of a narrowband and a broadband

component, we see oscillations between Stokes/anti-Stokes components [26] with the delay

T , whereas for a single broadband pulse the entire pulse envelope oscillates, smearing out

the spectral features in the hybrid signal [29].

We present a systematic organization scheme for stimulated Raman multidimensional

spectroscopies applicable when the preparation of some nonstationary state, the nature or

dynamics of which is the object of study, is temporally well-separated from the detection

process. Many conventional spectroscopic techniques (e.g. pump-probe type) fulfill these

conditions [30–32]. The scheme takes the inital state as a given and classifies signals by

their dependence on detection parameters. These parameters control which features of the

nonstationary state are observable and how they manifest. In particular, we examine dif-

ferent choices for the field (whether the field spectrum is resonant or off-resonant with the

material transitions), the intensity scaling with the detecting field (linear or quadratic), the

spectral shape of the detecting field (broadband or hybrid broad-narrowband). These are

only a few of the possible combinations of parameters that could describe spectroscopic

detection of a nonstationary state. Similar ideas were pursued for off-resonant X-ray scat-

tering (diffraction) [33, 34] and for spontaneous emission following impulsive Raman X-ray

excitation [35].

While off-resonant Raman signals are simpler to analyze, resonant pulses are more se-

lective to a given atomic core transition and provide additional specific information about

molecules. We examine different simulation protocols and derive expressions that may be

used for direct numerical propagation of the wavefunction in Hilbert space, which includes

all degrees of freedom explicitly, or the density matrix in Liouville space [36], which gives a

simple picture of bath effects and allows for a reduced description via the Stochastic Liouville

Equations (SLE) [15, 25, 37].

In the off-resonant regime the field-matter interaction Hamiltonian is the product of field
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intensity and a molecular polarizibility, while in the resonant regime it is the dot product of

field amplitude and molecular transition dipole. The off-resonant signals are explored first

and expressions for each of the three detection protocols for signals linear and quadratic in

the field intensity are derived. We then present plots of these signals for a simple model

system and discuss the properties of each signal and what information it reveals. This

analysis is then repeated for the resonant signals using the same model. We conclude with

a comparison of off-resonant versus resonant signals and a general discussion of the utility

of this signal classification scheme.

II. DETECTION PROTOCOLS FOR OFF-RESONANT RAMAN SIGNALS

a 
c 
d 

x 
y 

FIG. 1: Level scheme for the broadband X-ray Raman experiment. a, c, d are

low-frequency, valence electronic excitations and x, y are high-frequency core excitations.

We will investigate stimulated X-ray Raman signals from a molecular model system with

a band of valence states a, c, d, etc. and a core excited state band x, y as shown in Fig. 1

(though, as mentioned in the introduction, the formalism applies as well for other different

energy regimes e.g. x, y valence excitations and a, c, d vibrations). We assume that the

system is prepared at time τ0 in a superposition of valence states ψi and is monitored by

interaction with a broadband probe pulse centered around time t0. This is depicted diagra-

matically in Fig 2 for both linear and quadratic signals. Note that, although off-resonant

diagrams can be deduced from the corresponding resonant diagrams, they represent pros-
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FIG. 2: (Color online) Loop diagrams representing the off-resonant linear (a) and

quadratic (b) signals as well as the resonant linear (c) and quadratic (d) signals. In all

diagrams, the system is assumed to be prepared from the ground state by some unspecified

process (depicted by the grey rectangles). The preparation process terminates at time τ0

after which the system evolves freely until it begins interacting with the probe which is

taken to be centered at time t0. The delay parameter T = t0 − τ0 is therefore shown next

to the diagrams. Note that in the off-resonant case, no core-valence coherences are created

while these are created for certain times in the resonant case. For the linear processes ((a)

and (c)), ωca > 0 implies a red (Stokes) contribution while the reverse condition implies a

blue (anti-Stokes) contribution. For quadratic signals, this analysis holds only for one of

the two relevant diagrams and so the quadratic signals are more difficult to interpret (since

it depends on the state d). Details of the loop diagrams are given in [38].
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esses governed by different interaction Hamiltonians (Eq. (1) versus Eq. (26) for resonant

interaction). We therefore include both sets of diagrams for completeness. A brief summary

of different detection protocols for linear and quadratic signals and their most striking fea-

tures in the off-resonant case are shown in Table I. The field-matter interaction Hamiltonian

for an off-resonant Raman process in the interaction picture is given by

H ′(t) = α(0)(t)|E(t)|2, (1)

where α(0) represents the off-resonant polarizability, which is a Hermitian operator in the

valence space (α(0) = α†+α is real). In the following, we assume that the electric field consists

of short pulses which are temporally well-separated from the preparation process and Fourier

transformable E(t) =
∫∞
−∞

dω
2π
E(ω)e−iωt. This simplifies the analysis while retaining all the

essential physics. The frequency-dispersed transmission of the probe pulse (heterodyne-

detected, frequency-dispersed photon-number change) is given by

S(fd)(ω, t0, τ0) =
2

~
I
∫ ∞
−∞

dteiω(t−t0)E∗(ω)E(t− t0)〈〈I|α(0)
L (t)e−

i
~
∫
H′−(τ)dτ |ρi(τ0)〉〉, (2)

where ρi = |ψi〉〈ψi| is the initial density matrix (immediately following the end of the state

preparation process), double brackets denote Hilbert space operators that are vectors in

Liouville space, 〈〈I| represents the trace operator in Liouville space, and I(R) denotes

the imaginary (real) part. We adopt a superoperator notation that provides a convenient

bookkeeping of time-ordered Green’s functions. With any ordinary operator A we associate

two superoperators defined by their action on an ordinary operator X as AL ≡ AX (action

from the left) and AR ≡ XA (action from the right). We further define the symmetric and

antisymmetric combinations A+ = 1
2
(AL + AR), A− = 1

2
(AL − AR). The H ′− exponential

represents evolution of the matter with the probe field (since the preparatory processes

have ceased) until the final interaction with the probe. We can then expand the signal

perturbatively in H ′− to obtain signals with the desired field-scaling (linear or quadratic in

intensity are considered in this paper).

Alternatively one can detect the total change in the photon number which is given by

the zeroth spectral moment of S(fd)

S(N)(t0, τ0) =

∫ ∞
−∞

dω

2π
S(fd)(ω, t0, τ0). (3)
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Summary of Off-Resonant Stimulated Raman Techniques.

Signal S(fd) S(E)

SLB Eq. (10): Oscillatory gain/loss pattern

shows Stokes/anti-Stokes oscillations in

T .

Eq. (12): No spectral resolution due

to ω integration. May visualize weak

transitions due to weighting ωac.

SLH Eq. (13): High spectral resolution com-

pare to SLB. Each peak oscillates at it’s

frequency ωac and with phase φρac.

Eq. (15): Does not carry new informa-

tion compared to S(fd).

SQB Eq. (22): Always Stokes due to domi-

nance of populations (which do not con-

tribute to linear signals).

Eq. (23): Transition spectra can be

achieved by Fourier transform over T .

SQH Eq. (24): spectral and temporal resolu-

tions are higher than SLH (not conju-

gated) but retrieval of frequencies and

phases is more complicated.

Eq. (25): with Fourier transform over

T can visualize weak transitions.

TABLE I: Summary of off-resonant Stimulated Raman Techniques. Note, that signals S(N)

vanish for both linear and quadratic detection protocols, so it has been omitted.

This gives

S(N)(t0, τ0) =
2

~
I
∫ ∞
−∞

dt|E(t− t0)|2〈〈I|α(0)
L (t)e−

i
~
∫
H′−(τ)dτ |ρi(τ0)〉〉. (4)

A third type of signal is given by the total change in the energy of the transmitted pulse

which is the first spectral moment of S(fd)

S(E)(t0, τ0) =

∫ ∞
−∞

dω

2π
~ωS(fd)(ω, t0, τ0), (5)

also given by

S(E)(t0, τ0) = −2R
∫ ∞
−∞

dtĖ∗(t− t0)E(t− t0)〈〈I|α(0)
L (t)e−

i
~
∫
H′−(τ)dτ |ρi(τ0)〉〉. (6)

S(fd) is the most detailed measurement whereas S(N) and S(E) are its zeroth and first spectral

moments. The latter two techniques are simpler to implement experimentally since they do
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not require frequency-selective detectors or spectrometers. In the following we calculate the

three signals (2) - (6) for a model system probed by different choices of pulse shapes and

parameters.

A. Off-Resonant Signals Linear in the Probe

This technique is essentially a stimulated Raman pump-probe and is the off-resonant

analogue of transient absorption. Here, the photons undergo a redistribution among field

modes rather than being absorbed. Expanding Eq (2) to linear order in the field, we obtain

S
(fd)
L (ω, t0, τ0) = I2i

∫ ∞
−∞

dteiω(t−t0)E∗(ω)E(t− t0)〈〈I|α(0)
L G(t− τ0)|ρi〉〉, (7)

where G(t) = (−i/~)θ(t)e−
i
~H0−t is the Liouville space Green’s function of the molecule. In

some applications, it is necessary to carry out an exact numerical propagation of the wave

function rather than using the density matrix. We can then set

〈〈I|α(0)
L G(t− τ0)|ρi〉〉 = −i~〈ψi|G†(t− τ0)α(0)G(t− τ0)|ψi〉, (8)

where G(t) = (−i/~)θ(t)e−
i
~H0t is a Hilbert space Green’s function. This result can be

further recast in the Heisenberg picture as

〈〈I|α(0)
L G(t− τ0)|ρi〉〉 = −i~〈ψi|α(0)(t− τ0)|ψi〉. (9)

1. Linear Broadband (LB) Probe

We now expand the signals (9), (3), and (5) in molecular eigenstates . Using Fig. 2(a),

we obtain

S
(fd)
LB (ω, T ) = −2

~
∑
a,c

|E(ω)||E(ω − ωac)|α(0)
ca |ρac| sinφac(T ), (10)

S
(N)
LB (T ) = 0, (11)

S
(E)
LB (T ) = −1

~
∑
a,c

∫ ∞
−∞

dω

2π
|E(ω)||E(ω − ωac)|α(0)

ca |ρac|~ωac sinφac(T ). (12)
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Here, ρac = |ρac|eiφ
ρ
ac is the initial density matrix, the phase is given by φac(T ) = ωacT −φρac,

and we neglect the linewidth for the valence states. In Eq. (10), terms in which ωac > 0 (ωac <

0) lead to broad peaks below (above) the central pulse frequency. We denote these as“red”

and “blue” peaks respectively. Each pair of states therefore generates a complementary pair

of red and blue contributions. The two oscillate in T with a π phase shift (as sine is an odd

function of its argument). The frequency-dispersed signal therefore oscillates between Stokes

(positive red contributions and negative blue) and anti-Stokes (negative red contributions

and positive blue) processes as shown in Fig. 3(a1).

Equation (12) is plotted in Fig. 3(b1) but, aside from indicating that some nontriv-

ial phase is involved (since the signal doesn’t vanish for T → 0), not much information

is directly apparent from the time-domain measurement. Taking the Fourier transform∫
dTeiΩTS(T ) = S(Ω) (Fig. 3(c1)) reveals peaks at each transition energy ωac whose heights

are given by the factor ωacαca|ρac|. The ratios of these peak heights thus give information

on the polarizabilities or the magnitudes of the initial coherences. Finally, it is worth noting

that φaa(T ) = 0,∀T so that populations do not contribute to the off-resonant linear broad-

band signal. These signals therefore provide a background-free detection of the electronic

coherences.

2. Linear hybrid (LH) probe

A hybrid probe is a shaped pulse consisting of a broadband attosecond pulse E(ω) =

|E0(ω)|eiφ0 and a narrowband femtosecond pulse E1(t) = |E1|e−iω1t+iφ1 centered at frequency

ω1. In this case, Eq. (7) yields

S
(fd)
LH (ω − ω1, ω1, T ) = −4π

~
|E0(ω)||E1|

∑
a,c

α(0)
ca |ρac| sinφ1

ac(T )δ(ω − ω1 − ωac), (13)

where φ1
ac(T ) = ωacT − φρac + φ0 − φ1. Note that if the broadband and the narrowband

components have the same phase, φ0 = φ1, then φ1
ac(T ) = φac(T ). Due to the dependence

on the relative phase of the pulses φ0 − φ1, observation of the linear hybrid signals requires

phase-control (averaging over random φ0, φ1 causes the signal to vanish). Eq. (13) yields

clearly resolved Raman resonances unlike the LB case where the red (ωac > 0) and blue

(ωac < 0) components only enter through the pulse envelope. This signal is depicted for

ω1 = ω0 in Fig. 4(a1), shows sharp peaks at each transition frequency ωac. Of particular

9



significance is the ability to extract the phase φρac from the oscillations of the separate peaks.

This information is not available in the LB signal.

The photon number signal is slightly more complex: because the hybrid pulse contains

both broad and narrowband components we need to take into account the contribution to

the signal where the last interaction is with narrowband component. The total change in

photon number vanishes, as in the broadband case,

S
(N)
LH (ω1, T ) = 0. (14)

The transmitted energy change of the shaped pulse similarly contains both narrowband and

broadband components and the total energy change of the shaped pulse is given by

S
(E)
LH (ω1, T ) = −4π

~
∑
a,c

|E1||E0(ω1 − ωac)|α(0)
ca |ρac|~ωac sinφ1

ac(T ). (15)

Note the similarity between this and Eq. (10) (they only differ by the factor ωacE(ω)). The ω

integration erodes the sharp resolution afforded by the narrowband pulse, leaving virtually

the same result as the S
(fd)
LB signal (Eq. 10). The S

(E)
LH signal is shown in Fig. 4(b1). Note

that the presence of the ωac factor which reverses the sign under a→ c relative to Eq. (10)

rendering both red and blue contributions the same sign for a given T . The sign of S
(E)
LH (T )

then indicates whether the process is Stokes (S(E)(T ) < 0) or anti-Stokes (S(E)(T ) > 0).

Energy conservation implies that the pulse energy change and the molecular energy change

must have equal magnitude and opposite sign. In particular, the diagram in Fig. 2(a)

assumes that, after preparation, the molecule is in the superposition of states a and c and

the final state of the molecule after interacting with transmitted pulse is a population cc.

Similarly using the permutation a↔ c one can end up in the final state aa. If the energy of

state a is higher (lower) than that of c this is a Stokes (anti-Stokes) process. The molecular

energy change is given by

S(E)(t0, τ0) = −
∑
a,c

~ωac(ρaa(t0, τ0)− ρcc(t0, τ0)). (16)

This result holds for an arbitrarily prepared molecular state prior to the probe.

B. Off-Resonant Signals Quadratic in the Probe

The quadratic signal (i.e., second-order in probe intensity) is obtained by expanding the

exponent in Eqs. (2)-(5) to first-order. The signal can be read off the two diagrams shown
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in Fig. 2(b), yielding

S
(fd)
Q (ω, t0, τ0) = I2i

∫ ∞
−∞

dt

∫ t

−∞
dt′eiω(t−t0)E∗(ω)E(t− t0)|E(t′ − t0)|2

× 〈〈I|α(0)
L G(t− t′)α(0)

− G(t′ − τ0)|ρi〉〉, (17)

S
(N)
Q (t0, τ0) = I2i

∫ ∞
−∞

dt

∫ t

−∞
dt′|E(t− t0)|2|E(t′ − t0)|2

× 〈〈I|α(0)
L G(t− t′)α(0)

− G(t′ − τ0)|ρi〉〉, (18)

S
(E)
Q (t0, τ0) = 2~I

∫ ∞
−∞

dt

∫ t

−∞
dt′Ė∗(t− t0)E(t− t0)|E(t′ − t0)|2

× 〈〈I|α(0)
L G(t− t′)α(0)

− G(t′ − τ0)|ρi〉〉, (19)

The corresponding Hilbert space expressions which are suitable for wavefunction-based sim-

ulations are

〈〈I|α(0)
L G(t− t′)α(0)

− G(t′ − τ0)|ρi〉〉 = −i~[〈ψi|G†(t− τ0)α(0)G(t− t′)α(0)G(t′ − τ0)|ψi〉

−〈ψi|G†(t′ − τ0)α(0)G†(t− t′)α(0)G(t− τ0)|ψi〉]
(20)

Eq. (20) may be alternatively recast in the Heisenberg representation

〈〈I|α(0)
L G(t− t′)α(0)

− G(t′ − τ0)|ρi〉〉 = −i~[〈ψi|α(0)(t− τ0)α(0)(t′ − τ0)|ψi〉

−〈ψi|α(0)(t′ − τ0)α(0)(t− τ0)|ψi〉]. (21)

1. Quadratic Broadband (QB) Probe

The frequency-dispersed quadratic signal (17) for a broadband probe expanded in eigen-

states reads

S
(fd)
QB (ω, T ) = − 2

~2

∫
dω1

2π
|E(ω)||E(ω1)|

∑
a,c,d

α
(0)
cd α

(0)
da |ρac| cosφac(T )

× [|E(ω − ωdc)|E(ω1 + ωda)| − |E(ω + ωda)||E(ω1 − ωdc)|], (22)

where the first (second) term in the square brackets corresponds to the left (right) diagrams

in Fig. 2(b). Eq. (22) has a more complex dependence on the Raman shift ωac than the
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linear signal (10). The field envelopes are now shifted by the electronic transition frequencies

ωad and ωdc which yields difference ωdc − ωda = ωac. The quadratic signal oscillates with a

phase that depends on states d other than a and c that create the resonance and involves

the phases of the polarizability α(0).

Comparing this to the corresponding linear signal (Eq. (10)) shows that a π/2 phase

change. As a result, the fact that φaa(T ) = 0 no longer eliminates contributions from

populations and they form a time-dependent background to all quadratic signals. Because

the initial density matrix is assumed to be perturbative (so that the ground state dominates

the populations) the contribution due to populations is primarily Stokes overall. Since the

contribution due to the populations is Stokes and the oscillating coherences are too weak to

overcome this, the overall process is Stokes at all times T (as illustrated in Fig. 3)(a2).

The integrated photon number vanishes S
(N)
QB (T ) = 0. The energy change signal (5) is

given by

S
(E)
QB (T ) = − 1

~2

∫
dω

2π

∫
dω1

2π
|E(ω)||E(ω1)|

∑
a,c,d

|E(ω + ωda)||E(ω1 − ωdc)|

× (~ωda + ~ωdc)|ρac|α(0)
cd α

(0)
da cosφac(T ). (23)

Since the populations contribute a static off-set, there is now a strong zero-frequency peak

in the Fourier transform of Eq. (23). Additionally, the peak heights are no longer as sim-

ply related to the αac, ρac as in the linear case. In particular, since the peak heights are

determined by a free summation over the intermediate state d, the terms in this sum can

interfere constructively or destructively leading to enhanced or suppressed peaks (note that

the ωac = 4 eV peak is suppressed in Fig. 3)(c2).

2. Quadratic Hybrid (QH) Probe

By expanding the quadratic frequency-dispersed transmission signal (17) in eigenstates

we obtain

S
(fd)
QH (ω − ω1, ω1, T ) = −4π

~2
|E0(ω)||E1|2

∑
a,c,d

α
(0)
da α

(0)
cd |ρac| cosφac(T )

× [|E0(ω1 + ωda)|δ(ω − ω1 − ωdc)− |E0(ω1 − ωdc)|δ(ω − ω1 + ωda)] . (24)

As in the linear case, the narrowband pulse allows us to clearly resolve the transition peaks.

Unlike the linear signal (13), the quadratic hybrid signal is independent of the phases of
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the narrowband and broadband pulses φ1 and φ0 and is therefore observable without phase-

controlled pulses. Just as in the broadband case, the signal is sensitive to populations which

contribute a static Stokes spectrum. In Fig. 4(a2), we plot this signal for ω1 = ω0 as well as

separate plots for the contributions due to populations and coherences.

To calculate the integrated signals we must also include contributions from diagrams

whereby the last interaction is with narrowband pulse E1. The total photon number change

then vanishes S
(N)
QH (ω1, T ) = 0. The corresponding pulse energy change which includes both

broadband and narrowband components is

S
(E)
QH(ω1, T ) = − 2

~2
|E1|2

∑
a,c,d

α
(0)
cd α

(0)
da |ρac| cosφac(T )

× [~ωdc|E0(ω1 + ωdc)||E0(ω1 + ωda)|+ ~ωda|E0(ω1 − ωda)||E0(ω1 − ωdc)|]. (25)

Note that in the quadratic case the energy flux involves also another state d in addition to

states a and c, so the different fluxes corresponding to all relevant pairs of states should be

added to get the overall energy change of the pulse.

C. Discussion of Off-Resonant Signals

In the previous section we considered a variety of heterodyne-detected signals in the off-

resonant regime. Here, we present these signals calculated for a simple model consisting of

a ground state and two valence excitations at εa(c) ∈ {0, 2.7, 6.8} (eV). The polarizabilities

αac are symmetric but otherwise random numbers of O(.1− 1) and the ρac are random but

taken from a pure perturbative state (i.e., a state |ψ〉 in which the ground state amplitude

is near unity in magnitude).

Figure 3 shows the linear and quadratic off-resonant broadband signals side-by-side. We

do not plot S(N) since it vanishes in the off-resonant regime. For the frequency-dispersed

signal (Eqs. (10), (13), (22), and (24)), the broadband detection makes discerning individual

transitions impossible but nicely illustrates the Stokes/anti-Stokes oscillations in time. In

the linear case, the red contributions are positive and the blue are negative at T = 0 so

the process is Stokes at this time and oscillates with T . The quadratic detection is always

Stokes due to the effect of populations. The time-domain energy signal (Eqs. (12), (15),

(23), and (25)) reveals again that the quadratic process is always Stokes while the linear

process oscillates between Stokes and anti-Stokes. Transforming these signals reveals the
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FIG. 3: (Color online) (a1) and (a2): Off-resonant linear and quadratic

frequency-dispersed signals (Eqs. (10) and (22)) at various times T after state preparation

(T advances in units of ∼60 attoseconds as the dashes lengthen). (b1) and (b2):

Off-resonant linear and quadratic broadband energy signal as a function delay time T

(Eqs. (12) and (23)). Note that the linear signal oscillates about zero but the quadratic

signal has a static offset corresponding to the contribution from populations. (c1) and (c2):

Fourier transforms of (b1) and (b2). In the linear case, peaks corresponding to all ωca

coherences are visible. In the quadratic case, there is a large central peak at zero

corresponding to the populations. In the quadratic signal, the states c− a are coupled

indirectly through a third state d and the summation over intermediate states can suppress

or enhance the Raman peak magnitudes relative to their linear proportions.
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FIG. 4: (Color online) (a1) and (a2):Off-resonant linear and quadratic hybrid

frequency-dispersed signals (Eqs. (13) and (24)) at various times T after state preparation

(T advances in units of ∼60 attoseconds as one goes up the vertical axis). The quadratic

signal is split into the static contribution due to populations (a2 top spectrum) and the

time-dependent contribution due to coherences (a2 lower spectra). In contrast to the

broadband signals, the narrowband pulse allows us to resolve the individual transition

peaks. (b1) and (b2): Off-resonant linear and quadratic hybrid energy signals (Eqs. (15)

and (25)) as a function of narrowband frequency ω1 and delay time T (T advances in units

of ∼60 attoseconds as the dashes lengthen). The broadband detection renders individual

transition peaks unobservable and the result is similar to the broadband case (Eq. (23))

but symmetric (rather than anti-symmetric) about ω = ω0. Note that S
(E)
QH(T ) < 0

revealing that the quadratic process is always Stokes while the linear process oscillates

between Stokes and anti-Stokes.
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ωca transitions (though the quadratic possesses a large Ω = 0 peak due to populations that

is of course missing from the linear signal).

For comparison, the linear and quadratic hybrid signals are shown in figure 4. The

spectral resolution of the narrowband pulse gives sharp peaks at the ω − ω1 = ωac. In the

linear case, each ωac peak is due to a term that oscillates with this same frequency. However,

in the quadratic case, each oscillating term contains peaks at all different ωda, ωdc (as per

Eq. (24)) and the phases of the peak oscillations do not as directly reveal the phases φρac.

Note that the free summation in the quadratic signal implies that peaks will be visible even

for states not initially occupied (i.e. for which ρac = 0) while the peaks observable in the

linear signal are restricted to those initially occupied.

In summary, S(fd) shows an oscillatory pattern of gain and loss features in the red and

blue regimes that depend on the initial phase of ρac. This information is integrated out

in S(E) where the entire probe pulse envelope exhibits Stokes (loss) or anti-Stokes (gain)

shifts periodically [39]. The broadband signals alone do not possess a sufficient resolution

to directly observe the transition spectra and only allow us to access it through the Fourier

transforms of the energy signals S(E)(T ). Utilizing a hybrid broad-narrow pulse combined

with frequency-dispersed detection allows high spectral and temporal resolution thus permit-

ting spectral snapshots to be taken that clearly resolve all transitions and therefore permit

extraction of the phases from the oscillation patterns. In the linear case, this requires control

of the relative pulse phases (the phases cancel in the quadratic case). The quadratic and

linear signals generally carry the same information about coherences but this is accessed

without the background due to populations in the case of linear signals. One important

caveat to this is that the magnitudes of the various transition peaks can be enhanced or

suppressed by the interference of different pathways (characterized by the intermediate state

d). Since each oscillation term contributes to multiple peaks through this intermediate state,

a given peak ωac will not oscillate at the corresponding phase φρac, making retrieval of the

wavepacket’s phase more difficult in the quadratic case.

Equations (9) and (20) can be used for the numerical simulation of signals from systems

undergoing complex dynamics. The Liouville space form can describe the reduced density

matrix by using the SLE. The Hilbert space form is suitable for direct numerical simulation

of the wavefunction that includes all degrees of freedom. It can apply e.g. to nonadiabatic

dynamics at conical intersections. The eigenstate expansions (Eqs. (10)-(15) and (22)-(25))
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may be used when the probe is impulsive so that the eigenstates do not vary during the

probing process. Appendix A extends this treatment of off-resonant signals to a two-pulse

time-domain experiment and considers the preparation by an actinic pulse.

III. RESONANT STIMULATED RAMAN TECHNIQUES

The off-resonant techniques considered in section II conserve the number of probe pho-

tons. Photon energy gets redistributed among the broadband modes: S(N) vanishes while

S(E) is finite. When the X-ray pulses are resonant with core transitions, true photon ab-

sorption can take place. This renders S(N) finite as well revealing new matter information.

Below we discuss both linear and quadratic resonant signals.

A. Linear Probe

The signal linear in the probe intensity is given by the diagram shown in Fig. 2(c). Due

to resonant excitation, the field-matter interaction Hamiltonian may no longer be recast

using a frequency-independent, off-resonant polarizability but should rather be described by

a dipole interaction Hamiltonian in the rotating wave approximation (RWA)

H ′−(t) = V (t)E†(t) + V †(t)E(t). (26)

The frequency-dispersed signal can be read off the diagram

S
(fd)
L (ω, t0, τ0) = 2IiE∗(ω)

∫ ∞
−∞

dteiω(t−t0)

∫ t

−∞
dt′E(t′ − t0)〈〈I|VLG(t− t′)V †LG(t′ − τ0)|ρi〉〉.

(27)

The integrated photon number is given by

S
(N)
L (t0, τ0) = 2~I

∫ ∞
−∞

dt

∫ t

−∞
dt′E∗(t− t0)E(t′ − t0)〈〈I|VLG(t− t′)V †LG(t′ − τ0)|ρi〉〉. (28)

The pulse energy change is given by

S
(E)
L (t0, τ0) = 2~2R

∫ ∞
−∞

dt

∫ t

−∞
dt′
dE∗(t− t0)

dt0
E(t′ − t0)〈〈I|VLG(t− t′)V †LG(t′ − τ0)|ρi〉〉.

(29)
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The signals (27) - (29) can be alternatively recast in the Hilbert space form suitable for

numerical propagation by setting

〈〈I|VLG(t− t′)V †LG(t′ − τ0)|ρi〉〉 = −i~〈ψi|G†(t− τ0)V G(t− t′)V †G(t′ − τ0)|ψi〉 (30)

These signals are often referred to as “transient absorption”.

1. Linear Broadband (LB) probe

Expanding the frequency-dispersed transmission (27) as a sum over states and evaluating

time integrals we obtain

S
(fd)
LB (ω, T ) = − 2

~2

∑
a,c

|ρac|
(
α(EE)′

ca (ω) sinφac(T )− α(EE)′′

ca (ω) cosφac(T )
)
, (31)

where Φac(T ) = ωacT − φρac, α′ and α′′ represent the real and imaginary parts of the polar-

izability

α(jk)
ca (ω) =

∑
x

Ẽ∗j (ω)Ẽk(ω + ωj − ωk + ωca)(ek · Vcx)(ej · Vxc)
ω + ωj − ωxa + iΓx

, (32)

where ωm, m = j, k is the central frequency of the pulse given by Em(t) =
∫∞
−∞

dω
2π
Ẽm(ω)ei(ω+ωm)t,

where we redefined the frequency domain amplitude Ẽα(ω) to be centered at zero frequency

(for a Gaussian pulse with bandwidth σm, Ẽm(ω) = 1√
2πσm

e
− ω2

2σ2m ), Γe is the inverse excited

state lifetime, which is assumed to be shorter than states a and c. Thus, the polarizabil-

ity implicitly depends on the pulse parameters, such as its central frequency. For j = k,

Eq. (32) reduces to the commonly used polarizability (see Eq. (5) of [27]). Note that in the

off-resonant case the polarizability matrix elements are real and the second term in Eq. (31)

vanishes and the Stokes and anti-Stokes components oscillate with opposite phase as seen

in Section II. The integrated photon number (28) is

S
(N)
LB (T ) =

2

~2

∑
a,c

|ρac|α(EE)′′

ca cosφac(T ), (33)

where the integrated polarizability is given by

α(jk)
ca =

∫ ∞
−∞

dω

2π
α(jk)
ca (ω) (34)

and we used the symmetry α
(EE)
αβ = α

(EE)
βα . We first note that the signal is given by the

imaginary part of the polarizability. Therefore, when the polarizability is real (as in the
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off-resonant case) the signal vanishes, which is consistent with our earlier result of Eq. (11).

Again the Stokes (ωac > 0) and anti-Stokes (ωac < 0) components oscillate with an opposite

phase. The energy change of the pulse signal (29) is given by

S
(E)
LB (T ) = − 1

~2

∑
a,c

|ρac|
[
~ωacα(EE)′

ca sinφac(T )− (β(EE)′′

ca + β(EE)′′

ac ) cosφac(T )
]
, (35)

where the tensor β represents the first moment of the polarizability:

β(jk)
ca =

∫ ∞
−∞

dω

2π
~(ω + ωj)α

(jk)
ca (ω). (36)

Unlike the photon number signal (33), the energy change (35) involves both the real part of

the polarizability tensor and the imaginary part of its first moment. Eq. (35) reduces to Eq.

(12) in the off-resonant case, where the polarizability is real and the second term vanishes.

2. Linear Hybrid (LH) probe

The frequency-dispersed transmission of the broadband pulse E(ω) (27) in the presence

of the narrowband pulse E1 (hybrid probe) is given by

S
(fd)
LH (ω − ω1, ω1, T ) = − 2

~2

∑
a,c

|ρac|
(
α(01)′

ca (ω) sinφac(T )− α(01)′′

ca (ω) cosφac(T )
)
, (37)

where the ω1 dependence is now implicitly included in α
(01)
ca by setting Ẽ1(ω) = Ẽ1δ(ω). The

integrated photon number (28) for a shaped pulse has to be calculated differently than the

broadband case. In particular, one has to take into account the photon number change in

both the broadband and narrowband pulses. This yields

S
(N)
LH (ω1, T ) = − 2

~2

∑
a,c

|ρac|
(

[α(01)′

ca + α(10)′

ca ] sinφac(T )− [α(01)′′

ca + α(10)′′

ca ] cosφac(T )
)
, (38)

where the first (second) terms in each square bracket represents the last interaction with

the broadband (narrowband) pulse. For the hybrid pulse, both α′ and α′′ contribute to the

signal, thus providing additional molecular information than the simple broadband pulse.

Furthermore, the form of the anti-Stokes and Stokes polarizabilities suggests that the signal

depends exclusively on the phase difference between both broadband and narrowband fields

φ0 − φ1 which provides an additional control knob. Note, that in general the hybrid polar-

izabilities α
(10)
xy are not symmetric under permutation of their indices. However in the limit

19



when φ0 = φ1, we have α
(10)
xy = α

(01)
yx and Eq. (38) yields

S
(N)
LH (ω1, T ) =

2

~2

∑
a,c

|ρac|[α(01)′′

ca + α(10)′′

ca ] cosφac(T ). (39)

Finally, the total pulse energy change (narrowband and broadband components) can be

obtained from Eqs. (38)

S
(E)
LH (ω1, T ) = − 2

~2

∑
a,c

|ρac|
(

[β(01)′

ca + β(10)′

ca ] sinφac(T )− [β(01)′′

ca + β(10)′′

ac ] cosφac(T )
)
. (40)

B. Quadratic Probe

The diagrams for the quadratic signal are depicted in Fig. 2(d). We read the signal

from the diagrams in Hilbert space (corresponding Liouville space expressions can be easily

derived by expanding the loop diagram in the set of ladder diagrams) and obtain

S
(fd)
Q (ω, t0, τ0) = 2~I

∫ ∞
−∞

dt

∫ t

−∞
dt′
∫ ∞
−∞

dt1

∫ t1

−∞
dt′1Ẽ∗(ω)E(t′ − t0)ei(ω+ω0)(t−t0)

×[E∗(t1 − t0)E(t′1 − t0)〈ψi|G†(t− τ0)V G(t− t′)V †G(t′ − t1)V G(t1 − t′1)V †G(t′1 − τ0)|ψi〉

+〈E(t1 − t0)E∗(t′1 − t0)ψi|G†(t′1 − τ0)V G†(t1 − t′1)V †G†(t− t1)V G(t− t′)V †G(t′ − τ0)|ψi〉],
(41)

where the first (second) term in Eq. (41) represents the left (right) diagram in Fig. 2(d).

The corresponding photon number and energy change signals are given by Eqs. (3) and (5)

respectively.

1. Quadratic Broadband (QB probe)

For a broadband pulse we expand the signal (41) in eigenstates which yields a compact

formula

S
(fd)
QB (ω, T ) = −I 2i

~4

∑
a,c,d

[α
(EE)
cd (ω)α

(EE)
da − α

(EE)
da (ω)α

(EE)∗
dc ]ρac(T ), (42)

where ρac(T ) = |ρac|e−iφac(T ). In the off-resonant case α′′ = 0 and Eq. (42) reduces to

Eq. (22). The integrated photon number signal (3) reads

S
(N)
QB (T ) = − 4

~4

∑
a,c,d

|ρac|α(EE)′′

cd [α
(EE)′

da sinφac(T )− α(EE)′′

da cosφac(T )], (43)
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which clearly vanishes in the off-resonant case when α′′ = 0. The total energy change of the

pulse (5) is given by

S
(E)
QB (T ) = −I 2i

~4

∑
a,c,d

[β
(EE)
cd α

(EE)
da − β

(EE)
da α

(EE)∗
dc ]ρac(T ). (44)

2. Quadratic Hybid (QH) probe

The frequency-dispersed transmission of the broadband component of a hybrid broad-

narrow probe (Eq. (41)) reads

S
(fd)
QH (ω − ω1, ω1, T ) = −I 2i

~4

∑
a,c,d

[α
(01)
cd (ω)α

(10)
da − α

(01)
da (ω)α

(01)∗
dc ]ρac(T ), (45)

which is similar to Eqs. (9)-(10) of [28] for the model with zero linewidth of electronic states.

The integrated photon number signal (3) which includes the change in both broadband and

narrowband fields is

S
(N)
QH (ω1, T ) = −I 2i

~4

∑
a,c,d

[α
(01)
cd α

(10)
da + α

(10)
cd α

(01)
da − α

(01)
da α

(01)∗
dc − α(10)

da α
(10)∗
dc ]ρac(T ) (46)

and the energy change of the pulse (Eq. (5)) is given by

S
(E)
QH(ω1, T ) = −I 2i

~4

∑
a,c,d

[β
(01)
cd α

(10)
da + β

(10)
cd α

(01)
da − β

(01)
da α

(01)∗
dc − β(10)

da α
(10)∗
dc ]ρac(T ). (47)

C. Discussion of Resonant Signals

For the simulations of the resonant signals, we extended the model used in the off-

resonant case to include core states with energies εx(y) ∈ {136, 141.5, 149.5} (eV). Figure 5

shows the resonant linear and quadratic broadband signals. The frequency-dispersed signals

(a/b) contain the valence-core resonances but not the Raman (this is due to the lack of

field resolution). However, the Raman transitions ωac are in the same region as the shifted

valence-core transitions ωxa−ω0 so they appear similar. Since the ωxa peaks can arise from

any a, c pair in the summation, the phases φρac are not directly accessible as the phases of

peak oscillations. Taking Fourier transform of the energy of photon number signals (c) and

(d) gives peaks corresponding to the Raman transitions only since these are the oscillation

frequencies. As in the off-resonant case, the linear and quadratic signals have different

relative peak intensities controlled by the different forms of the coupling.
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Figure 6 shows 2D spectra of the resonant linear (left column) and quadratic (right col-

umn) hybrid frequency-dispersed signals for populations only (top panels) and populations

and coherences together at different times (remaining panels). As ω1 − ω0 varies, peaks

corresponding to Raman transitions (ωca) move along diagonals forming resonant streaks.

In contrast, the core transitions ωxa do not vary with ω1 and therefore, each transition forms

a series of repeated vertical peaks where the ωxa transition intersects the diagonal streaks.

The magnitude of these peaks then reveals the strength of the coupling between the core

and Raman transitions. Note that the population contribution makes only a single diagonal

streak in the linear case but results in all streaks in the quadratic case (this is due to the

summation over the intermediate state d). For the linear signal, we can therefore identify

each linear streak with a particular a, c pair in the summation and each streak will un-

dergo Stokes/anti-Stokes oscillations at the respective phase Φac(T ), therefore allowing the

retrieval of the phases φρac.

Figure 7 displays linear and quadratic hybrid energy and photon number signals. In both

cases, the contribution due to populations is stronger than that from coherences. This is

due to the resonant nature of the signal since the population contribution vanishes for linear

off-resonant signals. Unlike in the off-resonant case, the signal contains sharp peaks due to

the valence-core transitions but the same lack of field resolution prevents direct identification

of the Raman transitions. These can however be obtained via the Fourier transform. Figure

8 shows the Fourier transform (magnitude) with respect to delay time T of the linear and

quadratic photon number and energy signals. The quadratic is notably weaker but all four

signals show the same basic pattern of ωxa − ω0 resonances along the y-axis and Ω = ωac

resonances along the x-axis. In Appendix C, we consider the resonant signals in the context

of a nonstationary state prepared by an actinic pulse.

IV. CONCLUSIONS

We presented a systematic classification scheme applicable to spectroscopic techniques

in which a nonstationary state’s creation is well-seperated from it’s detection (pump-probe

style spectroscopies). In this scheme, a particular spectroscopic technique is specified by

the choice of state preparation and detection procedures. We consider various detection

procedures and examine what sort of information one may obtain and in what ways the

22



- 20 - 10 10 20

- 20 - 10 10 20

- 10

- 20 - 10 10 20

0.01

- 20 - 10 10 20

- 20 - 10 10 20

1

- 20 - 10 10 20

1

- 20 - 10 10 20

0.4

- 20 - 10 10 20

0.4

FIG. 5: (Color online) (a): Resonant linear broadband frequency-dispersed signal for the

populations (time-independent) and coherences at T = 0 (left) and time evolution of

coherences (right). (b): Resonant quadratic broadband frequency-dispersed signal for the

populations (time-independent) and coherences at T = 0 (left) and time evolution of

coherences (right). For coherences in both (a) and (b), T advances in units of ∼60

attoseconds as one goes up the vertical axis. (c1) and (c2): Resonant linear (c1) and

quadratic (c2) broadband energy signal Fourier transformed. (d1) and (d2): Resonant

linear (d1) and quadratic (d2) broadband photon number signal Fourier transformed.
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FIG. 6: (Color online) Resonant linear (left column) and quadratic (right column) hybrid

frequency-dispersed signals. The top of each column is the time-independent contribution

due to populations. The second panel from the top is the total signal at T = 0 and the

remaining two panels per column are for T = 240(as) and T = 480(as). This form of the

signal allows one to disentangle valence-core (ωxa) transitions from Raman (ωca)

transitions.
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FIG. 7: (Color online) (a): Resonant linear hybrid energy signal for coherences at multiple

times T (top) and comparison of populations with initial coherences (bottom). (b):

Resonant linear hybrid photon number signal for coherences at multiple times T (top) and

comparison of populations with initial coherences (bottom). For time-dependence of

coherences, T advances in units of ∼60 attoseconds as one goes up the vertical axis.

signals considered differ. We demonstrated the various signals for a model consisting of a

few valence and a few core states and calculated the frequency-dispersed, photon number,

and energy change signals for both linear or quadratic field intensity scaling and broad or

hybrid spectral field shapes.

There are two mechanisms whereby the photon modes can change their occupation num-

bers. A photon can either redistribute amongst the modes, swapping from one frequency to

another as in Raman interactions or, alternatively, it can be absorbed or emitted by matter.

The former process is governed by the real parts of the polarizabilities α (and β) while the

latter is governed by the imaginary parts. In the off-resonant regime, only the redistributive

mechanism is operative. In the resonant regime, both contribute and oscillate with different

phases in delay time T (the redistributive being a Sine funcion and the absorbtive/emittive
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FIG. 8: (Color online) (Resonant linear (left column) and quadratic (right column) hybrid

photon number (top) and energy change (bottom) signals. These signals show Ω

resonances at the Raman transitions ωac allowing their separation from the valence-core

transitions ωxa.

being a Cosine).

The spectrum of the nonstationary state (the energy levels of the occupied states), can be

obtained by taking the Fourier transform of any of the time-dependent signals, resonant or

off-resonant. The relative magnitude of the various peaks in these signals varies depending

on the coupling constants for each signal. In the simpler, linear signals, the relative peak

magnitudes are directly indicative of the product of the coherence ρac and the polarizabil-

ity αac, while in the quadratic case, there is an additional α and a free summation over

the intermediate state. Using broadband pulses, we had to sacrifice the time resolution to
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obtain frequency resolution of the ωac transitions. This limitation was surpassed by using

a shaped, hybrid pulse consisting of broad and narrowband components. The resultant

frequency-dispersed signals naturally show the peaks at the ωac transitions which oscillate

in time. In the linear case, each peak oscillates with its own phase ωacT + φρac, thus allow-

ing determination of the phase induced by the state preparation process. This technique

therefore exploits the simultaneous resolution of narrowband and detected frequencies com-

bined with the time-resolution granted by the broadband pulse to obtain the phases of the

electronic wavepacket. Without frequency-dispersed detection, one is left with the photon

number and energy change signals. Even though they contain less information than the

frequency dispersed hybrid signals, the resolution granted by the narrowband pulse allows

one to access essentially the same information as the frequency dispersed broadband signal.

Finally, we note that the present formalism also applies to optical signals. X-ray signals

allow one to probe valence excitations rather than vibrations. Furthermore, both the initial

preparation and/or the preparation process can then be the product of an X-ray scattering,

photoionization, or Auger process (as recently discussed in [24, 40]) in addition to an X-ray

Raman process. The signals obtained by a Raman probe then detect both the amplitude and

phase of the coherent superpositions of singly or doubly ionized states. These are signatures

of many- body effects in the photoionization and the Auger processes.

Compared to our previous work, here we present the most general systematic description

of series of X-ray Raman signals. Using abbreviations of the signals of the present paper in

our earlier work [15] we presented S
(fd)
QH , S

(N)
Q12, and partially S

(N)
QH signals. Using the present

terminology, the signals studied in [25] are S
(fd)
QH and S

(fd)
LH . Finally, in the most recent work

[26], we investigated S
(N)
QH signal.

Appendix A: Multidimensional Off-Resonant Signals Initiated by an Impulsive Ra-

man Process

1. Two-pulse Time-Domain Experiment

We now turn to a more elaborate experiment that probes the same material quantity

described by Eqs. (22) but involves two broadband pulses separated in time by delay T2.

At time τ0 the system is prepared in ρac. Following the delay T1 = t1 − τ0 the first probe
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pulse E1 centered at t1 interacts with the system and after another delay T2 = t2 − t1 the

second pulse E2 centered at t2 yields the two-dimensional spectra as a function of the two

time delays. The corresponding diagrams are given in Fig. 2(b). The difference is in the

detection as well as the fact that the signal is linear in intensity of E1 as well as E2. The

frequency dispersed transmission is a 3D signal

S
(fd)
Q12 (ω, T1, T2) =

2

~2

∫
dω1

2π
|E2(ω)||E1(ω)|

∑
a,c,d

|ρac|α(0)
cd α

(0)
da

× [|E2(ω − ωad)||E1(ω1 − ωdc)| cos(ωadT2 + φac(T1))

− |E2(ω − ωdc)||E1(ω1 − ωad)| cos(ωdcT2 + φac(T1))], (A1)

the number photon signal S
(N)
Q12(T1, T2) = 0 vanishes, and the energy change signal reads

S
(E)
Q12(T1, T2) = − 2

~2

∫
dω

2π

∫
dω1

2π
|E2(ω)||E1(ω)|

∑
a,c,d

|ρac|α(0)
cd α

(0)
da

× [~ωda|E2(ω − ωad)||E1(ω1 − ωdc)| cos(ωadT2 + φac(T1))

+ ~ωdc|E2(ω − ωdc)||E1(ω1 − ωad)| cos(ωdcT2 + φac(T1))]. (A2)

This is a sum of two fluxes a → d and c → d. Note, that compared to the signal (23), the

two-pulse signal (A2) carries information about the phase and dynamics of the system after

interacting with the probe E1 during the delay T2. This is not accessible by the QB signal.

2. Multidimensional Stimulated Raman Spectroscopy with an Off-Resonant Ac-

tinic Excitation

There are multiple ways to prepare initial state ρac superposition. These include pho-

toionization, Auger process, off-resonant or resonant impulsive Raman excitation. So far

we did not specify the preparation. In the standard formulation of multidimensional spec-

troscopy, the molecule is prepared by a series of short temporally well-separated pulses Ej
at time τj, j = 1, 2, .... Followed by linear transmission of the probe (assuming no dynam-

ics between preparation time τ0 and interaction with probe at t) one can then expand the
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correlation function in Eqs. (2) - (5)

〈〈I|α(0)
L (t)e−

i
~
∫
H′−(τ)dτ |ρi(τ0)〉〉 = |E0(τ0)|2〈[α(t), α(τ0)], ρg〉

− i

~
|E0(τ0)|2|E(τ1)|2[[α(t), α(τ0)|, α(τ1)], ρg〉

+

(
− i
~

)2

|E0(τ0)|2|E(τ1)|2|E(τ2)|2[[[α(t), α(τ0)|, α(τ1)], α(τ2)], ρg〉+ ... (A3)

The same result can be obtained by neglecting the preparation (at τ0 system is in ρg) and

expanding the dynamics between preparation time τ0 and interaction with the probe pulse

at t assuming series of short pulses prior to the probe pulse.

In many X-ray spectroscopy applications, a single resonant actinic pulse EA prepares

the system in the superposition of valence states. We consider an off-resonant preparation.

We do not expand the signal in sum over states and obtain a general expression for the

initial state described by the density matrix ρi(τ0) assuming that the preparation process is

temporally well separated from the probe

|ρi(τ0)〉〉 =
−i
~

∫ ∞
−∞

dt′′|EA(t′′ − τ0)|2α(0)
− (t′′)|ρg〉〉. (A4)

The linear frequency-dispersed transmission signals (7) then reads

S
(fd)
L (ω, t0, τ0) = I−2i

~2

∫ ∞
−∞

dt

∫ ∞
−∞

dt′eiω(t−t0)E∗(ω)E(t− t0)|EA(t′ − τ0)|2〈[α(0)(t), α(0)(t′)], ρg〉,

(A5)

S
(N)
L (ω, t0, τ0) = I−2i

~2

∫ ∞
−∞

dt

∫ ∞
−∞

dt′|E(t− t0)|2|EA(t′ − τ0)|2〈[α(0)(t), α(0)(t′)], ρg〉, (A6)

S
(E)
L (ω, t0, τ0) = −I 2

~

∫ ∞
−∞

dt

∫ ∞
−∞

dt′Ė∗(t− t0)E(t− t0)|EA(t′ − τ0)|2〈[α(0)(t), α(0)(t′)], ρg〉,

(A7)

The quadratic frequency-dispersed transmission signal (17) is

S
(fd)
Q (ω, t0, τ0) = I−2

~3

∫ ∞
−∞

dt

∫ t

−∞
dt′
∫ ∞
−∞

dt′′eiω(t−t0)E∗(ω)E(t− t0)|E(t′ − t0)|2|EA(t′′ − τ0)|2

× 〈[[α(0)(t), α(0)(t′)], α(0)(t′′)]ρg〉. (A8)

S
(N)
Q (t0, τ0) = I−2

~3

∫ ∞
−∞

dt

∫ t

−∞
dt′
∫ ∞
−∞

dt′′|E(t− t0)|2|E(t′ − t0)|2|EA(t′′ − τ0)|2

× 〈[[α(0)(t), α(0)(t′)], α(0)(t′′)]ρg〉. (A9)
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S
(E)
Q (t0, τ0) = I 2i

~2

∫ ∞
−∞

dt

∫ t

−∞
dt′
∫ ∞
−∞

dt′′Ė∗(t− t0)E(t− t0)|E(t′ − t0)|2|EA(t′′ − τ0)|2

× 〈[[α(0)(t), α(0)(t′)], α(0)(t′′)]ρg〉. (A10)

These agree with original expressions obtained for homodyne detection [13]. The photon

number and energy change signals can be obtained similarly. They provide a different gating

of the same response function given by multiple commutators of the bare polarizability α(0).

Appendix B: Off-Resonant Limit of the Resonant Polarizability

We now examine the frequency-dispersed signal (31) and show that it reduces to the

off-resonant result of Eq. (10). We first note that in the off-resonant case (Eqs. (32)) we

can define the following quantity:

α(EE)
ca (ω) = E∗(ω)E(ω + ωac)α

(0)
ca , (B1)

where

α(0)
ca =

∑
x

(eE · Vax)(eE · Vxc)
−ωxa

(B2)

is the off-resonant polarizability. Choosing real basis set wave functions, the dipole moments

are real. In this case the off-resonant polarizability (B2) is real as well. Note, that techni-

cally this polarizability still contains field dependence via polarization of the probe pulse.

Similarly

α(EE)
ca (ω) = E∗(ω)E(ω − ωac)α(0)

ca . (B3)

Substituting Eqs. (B1) - (B3) into Eq. (31) we obtain (10). The other detection protocols

and pulse shapes can be calculated similarly.

Appendix C: Multidimensional stimulated Raman spectroscopy with resonant ac-

tinic excitation

If the preparation involves resonant actinic pulse the relevant excitation process is given

by two diagrams shown in Fig. 9 and the straightforward calculation yields

ρac =
2

~2
α(AA)′′

ac . (C1)

30



|ai

|ai|ci

hc|

hc| ha|

|ai hc|

FIG. 9: (Color online) Set of ladder diagrams for resonant actinic preparation

We can now substitute this matrix element into the signals and obtain a compact form in

terms of α only. For the case of broadband pulse Eqs. (31), (33) and (35) yield

S
(fd)
LB (ω, T ) = − 4

~4

∑
a,c

α(AA)′′

ac

(
α(EE)′

ca (ω) sinωacT − α(EE)′′

ca (ω) cosωacT
)
, (C2)

S
(N)
LB (T ) =

4

~4

∑
a,c

α(AA)′′

ac α(EE)′′

ca cosωacT, (C3)

S
(E)
LB (T ) = − 2

~4

∑
a,c

α(AA)′′

ac

[
~ωacα(EE)′

ca sinωacT − (β(EE)′′

ca + β(EE)′′

ac ) cosωacT
]
, (C4)
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502, 355 (2013).

[30] C. Bostedt, J. Bozek, P. Bucksbaum, R. Coffee, J. Hastings, Z. Huang, R. Lee, S. Schorb,

J. Corlett, P. Denes, et al., Journal of Physics B: Atomic, Molecular and Optical Physics 46,

164003 (2013).

[31] T. Katayama, T. Anniyev, M. Beye, R. Coffee, M. DellAngela, A. Föhlisch, J. Gladh, S. Kaya,
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