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Laser interferometric gravitational-wave detectors implement Fabry-Perot cavities to increase their peak sen-
sitivity. However, this is at the cost of reducing their detection bandwidth, which originates from the propagation
phase delay of the light. The “white-light-cavity” idea, first proposed by Wicht et al. [Optics Communications
34, 431 (1997)], is to circumvent this limitation by introducing anomalous dispersion, using a double-pumped
gain medium, to compensate for such a phase delay. In this article, starting from the Hamiltonian of the atom-
light interaction, we apply an input-output formalism to evaluate the quantum noise of the system. We find that
apart from the additional noise associated with the parametric amplification process noted by others, the stabil-
ity condition for the entire system poses an additional constraint. By surveying the parameter regimes where
the gain medium remains stable (not lasing) and stationary, we find that there is no net enhancement of the
shot–noise–limited sensitivity. Therefore, other gain media or different parameter regimes should be explored
for realizing the white light cavity.

PACS numbers:

I. INTRODUCTION

Second generation large-scale interferometric gravitational
wave detectors, such as advanced LIGO [1], advanced
VIRGO [2], and KAGRA [3], are designed to operate at bet-
ter sensitivity than the first generation detectors. This im-
provement in sensitivity comes from an increase in the op-
tical power and the introduction of a signal recycling mirror
(SRM) to the initial configuration [4]. The SRM at the dark
port forms a signal recycling cavity with the input test mass
mirror (ITM). The position of the SRM determines the prop-
agation phase of the signal light inside the signal recycling
cavity, and control of the SRM parameters allows for adjust-
ments to the frequency response of the interferometer [5, 6].
Two typical operational modes are the signal recycling mode
and the resonant sideband extraction mode. The signal re-
cycling mode enhances the sideband field which carries the
gravitational wave signal inside the cavity, while the resonant
sideband extraction mode increases the detection bandwidth
which is the effective bandwidth of the combined signal recy-
cling cavity and arm cavity [7].

However, broadening the detection bandwidth in the res-
onant sideband extraction mode comes at a loss of the peak
sensitivity; while enhancing the peak value of the sensitivity
in the signal recycling cavity results in a narrower detection
bandwidth. This trade-off is represented by the integrated sen-
sitivity [7]: ∫

ωFSR

0

1
Shh(Ω)

dΩ =
2πLarmPcωp

h̄c
, (1)

which only depends on the intra-cavity power Pc and the cav-
ity length Larm, and is independent of the properties of the sig-
nal recycling cavity. The Shh(Ω) is the quantum shot–noise–
limited sensitivity spectrum [8] and the ωp, c and Ω here are
the laser frequency, the speed of light and the sideband fre-
quency of the light field, respectively. The angular frequency
ωFSR = πc/Larm, which is the free spectral range of the arm
cavity of the interferometer. Here, we only consider the shot–

noise–limited strain sensitivity since radiation pressure noise
can in principle be evaded using frequency-dependent readout
or sufficiently heavy test masses. Such a trade-off between
bandwidth and peak sensitivity is due to the relative phase
shift between the sideband field and the carrier light propa-
gating inside the arm cavity. There are several proposals in
the literature that try to achieve the resonant amplification of
the signal without decreasing the bandwidth, by using the idea
of the white light cavity. Among these, Wicht et al. were the
first to suggest placing an atomic gain medium with anoma-
lous dispersion inside the signal recycling cavity to cancel the
propagation phase [9, 10]. This idea was then followed by Pati
and Yum et al. with different types of active media [11–13].

The anomalous dispersion phenomenon and the interest-
ing “superluminal” physics of the propagation of a light pulse
in these active media have been theoretically discussed [14]
and experimentally demonstrated [15, 16]. In these experi-
ments, the anomalous dispersion is usually realized by using
a double-pumped gain medium in which the anomalous dis-
persion lies in between the two gain peaks. The gain medium
with anomalous dispersion is subject to an additional quan-
tum noise that accompanies the amplification process. The
effect of this additional quantum noise on the observability of
“superluminal” pulse propagation effect has been discussed
in [17–20]. In particular, Refs. [17, 20] gave a general discus-
sion of this noise using Caves’ theory of the amplifier [21],
which based on the general requirement that the field opera-
tor should satisfy bosonic commutation relation, without pro-
viding a complete analysis of the dynamical origin of this
noise. Ref. [19] discussed a more concrete example of the
field propagation inside a medium consisting of pumped two-
level atoms. However, the effect of this additional noise on
the sensitivity of of the gravitational wave detector designs
proposed in [9–13] was not analyzed before. Moreover, to
study the detector designs containing the double gain medium,
Caves’ method can not be directly applied the since the addi-
tional noise has two frequency channels, as we shall show in
Section III of this paper.
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FIG. 1: (Color online)(a) the typical dual recycled interferometer
configuration for an advanced gravitational wave detector, with an
atomic gain medium (blue block) embedded inside the signal recy-
cling cavity to compensate for the phase delay of the arm cavity. The
ĉ, d̂, ê, ĵ, k̂ represent the various light fields in and around the signal
recycling cavity. An internal SRM (iSRM) with the same transmis-
sivity as the ITM is introduced to ensure impedance matching so that
we can effectively view the compound mirror (consisting of ITM and
iSRM) as transparent to the sideband field [13]; (b) the energy lev-
els of the gain medium atoms. Two far-detuned strong control laser
beams with frequencies ωa and ωb couple the energy levels |3〉 and
|1〉. The probe field which carries the gravitational wave signal inter-
acts with |2〉 and |3〉.

Besides the effect of the additional noise, placing a gain
medium inside a resonant cavity could cause lasing instability.
The effect of this instability to the gravitational wave detector
designs has not been discussed in the previous literatures. As
we shall see in this paper, the stability requirements put a very
strong constraint on the choice of the system parameters.

In this paper, based on a double-pumped three-level atomic
medium as shown in Fig. 1, we investigate how the quantum
noise and associated gain influence the detector sensitivity and
dynamics in a consistent manner. We develop an input-output
formalism for the optical field propagating through the gain
medium by analyzing the system’s Heisenberg equation of
motion. Using this formalism, we make a detailed analysis of
the quantum shot–noise–limited sensitivity for a typical grav-
itational wave detector configuration implementing the white
light cavity idea, as shown in Fig. 1. Specifically, we con-
sider: (i) the requirement for canceling the propagation phase
shift; (ii) the optical stability of the interferometer system with
the gain medium; (iii) the noise associated with the amplifica-
tion process. Taking these factors into account, we find that
the integrated shot–noise–limited sensitivity is still limited by
Eq. (1) when the gain medium itself is stable (not lasing).

II. A BRIEF SUMMARY

Before presenting the detailed analysis, we briefly summa-
rize our main results in this Section. The susceptibility of the
double-pumped gain medium χ(Ω) that we derive is given by
(the same as in Refs. [14, 16] but with slightly different nota-

FIG. 2: (Color online) An example of phase angle and amplitude gain
of the sideband field propagating through the atomic gain medium,
as functions of the normalized (by ∆0) sideband frequency. The top
figure shows the negative dispersion of the atomic gain medium. The
white light cavity bandwidth is the linear region between −∆0 and
∆0. The bottom figure shows that the gain is negligibly small, except
when Ω∼±∆0. In these frequency regions, the gain is high and this
needs to be considered in the design to prevent the possible instability
(See Section III for detailed analysis).

tion):

χ(Ω) =
4iΓopt

i(Ω+∆0)− γ12 +Γopt
+

4iΓopt

i(Ω−∆0)− γ12 +Γopt
,

(2)
where ∆0 is one half of the frequency difference between the
two control fields, and Ω is the sideband frequency of the
probe field with carrier frequency ωp. The damping rate γ12
is the effective atomic transition rate from state |2〉 to |1〉,
while Γopt, which depends on the pumping power of the con-
trol fields, is the transition rate between |1〉 to |2〉 mediated
by a virtual excitation of |3〉. In terms of χ , the ingoing and
outgoing fields âin, âout are related by (temporarily ignoring
an additional noise term that will be mentioned later):

âout(Ω) = [1+ iχ(Ω)/2]âin(Ω). (3)

Under the weak-coupling approximation: |χ(Ω)/2| � 1, the
input-output relation Eq. (3) for an unidirectional sideband
field passing through the gain medium can be approximated
by âout(Ω)≈ eiχr(Ω)/2e−χi(Ω)/2âin(Ω). Here, χr(Ω) and χi(Ω)
are the real and imaginary parts of the susceptibility χ(Ω) of
the medium, which describe, respectively, the phase accumu-
lation and the amplitude change of the sideband field after
passing through the medium. An example is shown in Fig.
2.

In order to compensate for the round-trip propagation
phase delay inside the arm cavity, which broadens the band-
width of the optical cavity, the susceptibility should satisfy
dχr(0)/dΩ≈−2Larm/c (negative dispersion), which leads to:

2Γopt[(γ12−Γopt)
2−∆2

0]

[(γ12−Γopt)2 +∆2
0]

2 =−Larm

c
. (4)

Once we fix the parameters Γopt and γ12, we will have a pair
of roots for ∆2

0. For the positiveness of these ∆2
0, the following
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condition has to be satisfied (see Appendix B for a detailed
derivation):

(γ12−Γopt)
2 < Γoptc/(4Larm). (5)

Under these two conditions in Eq. (4) and (5), we explore
the relevant parameter regime for studying the dynamical be-
havior of the gain medium. Firstly, as we analyze in detail
in Sections III and IV(A), the system has two different types
of instability (i.e lasing): 1) if γ12 < 2Γopt, there will be a
population inversion between levels |1〉 and |2〉, and the gain
medium starts lasing by itself, which we name “atomic in-
stability”; 2) if the photon loss rate for each round trip in-
side the cavity is less than the photon increasing rate through
the amplification by the gain medium, the cavity-medium sys-
tem starts lasing, which we name “optical instability”. In
Fig. 3, we plot the phase diagram for the stability of the sys-
tem. This Figure gives a constraint on the possible parame-
ter region for γ12 and Γopt of the atomic gain medium (with
fixed SRM reflectivity rs), if lasing were to be avoided. Note
that we choose the re-scaled parameters (η = 2Γopt/γ12,ξ =

4(γ12 − Γopt)
2Larm/cΓopt) instead of (γ12,Γopt) and survey

them within the range 0 < η ,ξ < 1. These new parameters
help us exclude the atomic instability region (η > 1) and the
region where the phase-cancelation condition is failed (ξ > 1).

Secondly, as implied by the above input-output relation, the
gain medium is a parametric amplifier. Therefore, as first dis-
cussed by Caves [21], there must be an additional noise term
in the input-output relation of the probe field to ensure that
the commutation relation for âout is still [âout(t), â

†
out(t

′)] =
δ (t − t ′). As we will show, this additional noise is due to
quantum fluctuations that cause spontaneous transitions be-
tween |1〉 and |2〉, thus degrading the signal–to–noise ratio.
From the Hamiltonian, we can derive the noise terms from the
Heisenberg equations of motion. Their effect on the integrated
shot–noise–limited sensitivity improvement factor (defined in
Eq. (36)) is given in Fig. 4 (with tunable parameters of the gain
medium, and fixed SRM reflectivity).

From these two Figures, it is clear that: 1) the stability con-
dition and the phase cancelation condition put a strong con-
straint on the possible parameter region; 2) there is no pa-
rameter region where the shot-noise limited sensitivity is im-
proved. This indicates that placing a stable double-pumped
gain medium with anomalous dispersion inside the signal re-
cycling cavity cannot broaden the detection bandwidth while
also increasing the shot–noise–limited sensitivity. Therefore,
one should explore other types of gain media or different pa-
rameter regimes to realize the white light cavity idea.

III. INPUT-OUTPUT RELATION OF DOUBLE GAIN
ATOMIC MEDIUM

After summarizing the main results, we now start a detailed
discussion by first developing an input-output formalism for
light propagating through the double-pumped gain medium in
the Heisenberg picture. The obtained input-output relation is
later combined with that of the main interferometer for evalu-
ating the sensitivity (see Section IV).
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FIG. 3: (Color online) Stability region of the full interferometer
scheme with double-pumped gain medium (optical stability only).
The SRM power reflectivity r2

s = 0.5,0.8,0.9 are chosen from the
top to the bottom panels, while we survey the parameter region for
Γopt,γ12. The horizontal and vertical axes are η = 2Γopt/γ12 and
ξ = 4(γ12−Γopt)

2Larm/cΓopt. We survey η ,ξ between 0 and 1 so
that atomic instability is excluded and the phase cancellation condi-
tion can be satisfied. For each rs, the left and right panels correspond
to the two roots of ∆2

0 in Eq. (4), respectively. The purple region is the
only stable region. In the green region (“optical instability region”),
the gain medium is stable by itself but the dynamics of the full in-
terferometer system is unstable (see Section IV for details). With
increasing of the SRM reflectivity, the stable region shrinks due to
the enhancement of the optical instability effect.

As we have briefly mentioned in the Introduction, our gain
medium consists of three-level atoms schematically shown in
Fig. 1, with two red (blue)-detuned (with respect to the fre-
quency difference between |3〉 and |1〉) control lasers. The
polarizations of the control and probe fields are orthogonal
to each other, and are only sensitive to the atomic transitions
between |1〉 ↔ |3〉 and |2〉 ↔ |3〉, respectively. In modeling
the gain medium, we treat the atoms as non-interacting distin-
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FIG. 4: (Color online) Integrated shot–noise–limited sensitivity im-
provement factor (defined in Eq. (36)) of the full interferometer
scheme with double-pumped gain medium, taking into account the
effect of additional noise. The specifications for the parameters is
identical to those for Fig. 3. The left and right panels correspond to
the two roots of Eq. (4). The dashed line is the boundary of the stable
region shown in Fig. 3. It is clear from this Figure that there is no
parameter region where the integrated shot–noise–limited sensitivity
improvement factor is larger than 1, when the double-pumped gain
medium itself is stable.

guishable particles. Nevertheless, all the atoms have the same
energy level structures. In this Section, we first derive the
atomic dynamics for a single three-level atom, and then ex-
tend this result to the many-atoms case under the approxima-
tion that the length of the gain medium is much smaller than
the spatial scale 2πc/Ω of the optical sideband field, where Ω

is the gravitational wave frequency.

A. Single-atom dynamics

The above physical modeling leads to the following system
Hamiltonian for a single atom:

Ĥ = Ĥatom + Ĥ f + Ĥint + Ĥγ . (6)

The Ĥatom is the free Hamiltonian for a three-level atom in the
form of:

Ĥatom = ∑
a=1,2,3

h̄ωaσ̂aa, (7)

where ωa is the Bohr frequency of energy level a and σ̂aa is
the atomic population operator.

The Ĥ f is the free Hamiltonian for the sideband probe fields
propagating in the main gravitational wave detector. Since
we are only interested in the optical modes that are around
the central frequency of the probe field ωp, these modes have
frequency ωp±Ω where Ω denotes the frequency sideband
that we are focusing on. Then we have the Hamiltonian Ĥ f
as:

Ĥ f = h̄c
∫

∞

−kp

dk′(kp + k′)â†
−kp−k′ â−kp−k′

≈ h̄c
∫

∞

−∞

dk′(kp + k′)â†
−kp−k′ â−kp−k′ ,

(8)

where we have assumed that the probe field propagates
uni-directionally (along the negative x−direction) and kp =
ωp/c,k′ = Ω/c. We have also used the narrow band approx-
imation k′/kp = Ω/ωp � 1 so that we can extend the inte-
gral range to [−∞,∞]. By Fourier transforming the optical
creation/annihilation operators to the coordinate domain as:
âx =

∫
∞

−∞
dk′â−kp−k′e−ik′x, the above Hamiltonian can be writ-

ten as (for details, see [24, 25] or Appendix A):

Ĥ f =
ih̄c
2

∫
∞

−∞

[
∂ â†

x

∂x
âx− â†

x
∂ âx

∂x

]
dx. (9)

Note that the âx is a slowly varying amplitude operator (both
spatially and temporally) with respect to e−iωpx/c−iωpt , and it
is related to the electric field operator Êp(t) as: Êp(t,x) =
âx(t)e−iωpx/c−iωpt + h.c. The probe field encounters and in-
teracts with the atom at position x0. This interaction is given
by a Jaynes-Cumming type of Hamiltonian under the rotating
wave approximation [22]:

Ĥint =−
h̄
2

µ23â†
x0

eiωpt
σ̂23−

h̄
2

µ13E∗c σ̂13 +h.c., (10)

where the first term describes the atomic transition between
|2〉 and |3〉 under the driving of probe fields with transition
operator σ̂23 and the second term describes the atomic transi-
tion between |1〉 and |3〉 under the pumping of control fields
with the transition operator σ̂13. Here Ec =Eaeiωat +Ebeiωbt is
the sum of the two classical amplitudes of control fields with
frequencies ωa,b, and the µmn(m,n = 1,2,3) are the dipole
moments of the atom. We introduce the ladder operator σ̂mn
describing the atomic state transition from energy level |n〉 to
|m〉, which satisfies the following algebra:

σ̂mnσ̂kl = σ̂mlδnk ; (σ̂mn)
† = σ̂nm. (11)

The coupling between an atom with other bath sources at
position x0 is introduced phenomenologically by:

Ĥγ =ih̄
√

2γ12n̂†
12eiω21t

σ̂12−
h̄
2

µ13â†
ceiω0t

σ̂13 +h.c. (12)
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Here ω0 is defined as ω0 = (ωa +ωb)/2. The âc is the quan-
tum fluctuation associated with the control field. In our 1-D
model, the quantum fluctuation associated with the probe field
has been included in the âx0 field of Eq. (10). The n̂12 is the
noise bath operator which couples to the atomic transition op-
erator between |1〉 and |2〉. This noise bath can be attributed
to mutual collisions of atoms or to the stimulation of the exter-
nal electromagnetic vacuum bath. Here, to study the minimal
additional noise, we consider an effectively zero-temperature
external bath.

With the full system Hamiltonian, we can now analyze the
dynamics of the gain medium. The Heisenberg equation of
motion for the probe field derived from Eq. (9) can be written
as:

∂ âx

∂ t
− c

∂ âx

∂x
=

i
2

µ23σ̂23e−iωpt
δ (x− x0), (13)

which reflects the fact that the probe field propagates from
right to left (unidirectional) and interacts with atoms at x0.

We can integrate the above equation around x0 and obtain:

− âx0++ âx0− =
i
2

µ23σ̂23, (14)

in which the âx0+ and âx0− are the incoming and outgoing
sideband fields (respectively) defined in the vicinity of the in-
teraction point x0 (in the following, we will use âin and âout to
represent them, respectively). The probe field at x0 in Eq. (10)
and the following Eq. (16) is connected with these vicinity
fields through the junction condition:

âx0 =
1
2
(âin + âout). (15)

The Heisenberg equations of motion for the atomic transi-
tion operators of a single atom in this gain medium are given
by:

˙̂σ13 +(iω31 + γ13)σ̂13 = i
√

2γ13(σ̂11− σ̂33)âcine−iω0t

+
i
2

µ13(σ̂11− σ̂33)Ec +
i
2

µ23σ̂12âx0e−iωpt , (16a)

˙̂σ23 +(iω32 + γ23)σ̂23 =
i
2

µ13σ̂21(Ec + âce−iω0t)

+ i
√

2γ23(σ̂22− σ̂33)âine−iωpt , (16b)
˙̂σ12 +(iω21 + γ12)σ̂12 =−

√
2γ12(σ̂11− σ̂22)n̂12ine−iω21t

+
i
2

µ23σ̂13â†
x0

eiωpt − i
2

µ13σ̂32(Ec + âce−iω0t).

(16c)

Note that the n̂12in, âin and âcin are the incoming noise fields,
whose relations with the n̂12, â, âc of Eq. (12) are given in the
way of Eq. (14) and (15). The γ13 = µ2

13/8,γ23 = µ2
23/8 can be

derived from Eq. (12). Also, the condition that the majority of
atoms are initially prepared at |1〉 is set as an assumption. In
a real experiment, this population preparation can be achieved
through various methods such as introducing an additional op-
tical pumping field [16].

It is clear that the above equations of motion are generally
nonlinear. However, the system dynamics can be simplified

by exploring the linear regime where the scheme is proposed
to operate. The simplification can be done using a perturbative
method by noting that: 1) the control fields have large detun-
ing with respect to ω31, and therefore the population of atoms
on |3〉 remains small compared to that on |1〉; 2) the transi-
tion between |1〉 − |3〉 is much stronger than the transitions
between |1〉− |2〉 and |2〉− |3〉 since it is induced by strong
control beams; 3) the probe field is very weak compared to
the control field since it is around the quantum level.

There are two dimensionless expansion parameters in this
system of equations of motion: ε ∼ µmnEc/∆0,α ∼ µmnâ/∆0
and α� ε� 1 (note that the denominator could also be other
frequency scales such as ω31−ωa,b; we choose the smallest
one here for briefness). Writing the σ̂13, σ̂23, σ̂12 in the rotat-
ing frames of ω0, ωp and ω0−ωp, respectively, the leading
order (∼ ε) of σ̂13 dynamics can be derived as:

˙̂σ13− i(ω0−ω31 + iγ13)σ̂13 =
i
2

µ13σ̄11(Eae−i∆0t +Ebei∆0t),

(17)
in which we can approximate the collective population opera-
tor on |1〉 as σ̄11 ≈ 1 and σ̄mn is the ensemble average of the
quantum expectation value of σ̂mn. The solution of Eq. (17)
is:

σ̄13 ≈
1
2

µ13Eae−i∆0t

ω31−ωa
+

1
2

µ13Ebei∆0t

ω31−ωb
. (18)

Here, we have neglected γ13 which is assumed to be much
smaller than the detuning: γ13/|ωa,b−ω31| � ε . In the same
rotating frame, the leading order of the σ̂23 (∼ ε2α) and σ̂12
(∼ εα) dynamics can be written as:

˙̂σ23− i(ωp−ω32 + iγ23)σ̂23 =
i
2

µ13σ̂21Ẽc, (19a)

˙̂σ12 + γ12σ̂12 =
i
2

µ23â†
x0

σ̄13−
i
2

µ13σ̂32Ẽc−
√

2γ12n̂12in,

(19b)

where Ẽc = Eae−i∆0t +Ebei∆0t is the pumping field strength
in the rotating frame of ω0, and we have used the fact that
ω0 = ωp +ω21 (See Fig. 1). We also make use of the fact that
σ̄11 ≈ 1. In deriving Eq. (19), we also assume that the system
parameters satisfy: γ23/|ωp−ω32| � ε2α .

The dynamics of σ̂32 can be adiabatically eliminated by
solving Eq. (19a):

σ̂32 =
µ13

2
Ẽ∗c

ω32−ωp
σ̂12. (20)

In deriving this equation, we assume that γ23� ω32−ωp and
make use of the fact that σ12 is a slowly varying amplitude, so
that ˙̂σ32 ≈ 0 in Eq. (19). Substituting the solution Eq. (20) and
Eq. (15) into Eq. (19b) and Eq. (14), we can obtain a closed
equation set for the system dynamics:

â†
out = â†

in− i(
√

2γoptaei∆0t +
√

2γoptbe−i∆0t)σ̂12, (21a)
˙̂σ12 +(γ12− γopta− γ optb)σ̂12 = (γ2∆0 − iωopt)σ̂12

+ i
(√

2γoptbe−i∆0t +
√

2γoptaei∆0t
)

â†
in−

√
2γ12n̂12in. (21b)
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This equation set describes the coupling between the compos-
ite system (consisting of the atom and the pumping fields)
and the probe field. The tiny Stark frequency shift ωopt =

µ2
13|Ec(t)|2/(4(ω32 −ωp)) � ∆0 on the right hand side of

Eq.(21b) can be neglected.
The second term on the right-hand-side of Eq. (21b) is the

sum of an anti-damping term γoptσ̂12:

γopta(b) =
µ2

23µ2
13

32
|Ea(b)|2

(ω31−ωa(b))2 , (22)

and a highly-oscillating term γ2∆0 σ̂12:

γ2∆0 =
µ2

23µ2
13

32

[
EaE∗b e2i∆0t

(ω31−ωa)2 +
EbE∗a e−2i∆0t

(ω31−ωb)2

]
. (23)

In the symmetric pumping case when Ea = Eb = E0, and
considering the approximation ∆0 � ω31 − ωa,b,ω32 − ωp
(These are good approximations to the situation in the pro-
posed experiments [11, 14, 16]), we have γopta≈ γoptb≈ γopt≈
µ2

23µ2
13E2

0/[32(ω31−ωa)
2]. When γopta + γoptb ≈ 2γopt > γ12,

we have the population inversion between energy levels |1〉
and |2〉, i.e., the atomic instability mentioned earlier.

Solving the Eqs. (21a) and (21b) in the frequency domain,
we can obtain the input-output relation for the probe field:

âout(Ω) =M (Ω)âin(Ω)+N+(Ω)n̂†
12in(∆0−Ω)

+N−(Ω)n̂†
12in(−∆0−Ω),

(24)

with M (Ω) and N±(Ω) given by:

M (Ω) = 1−
2γopt

i(Ω+∆0)− γ12 + γopt
−

2γopt

i(Ω−∆0)− γ12 + γopt

(25a)

N±(Ω) =
2√γ12γopt

±i∆0− iΩ+ γ12− γopt
. (25b)

Note that: 1) N ∗
± (−Ω) = N∓(Ω); 2) hereafter, for simplic-

ity, we will only consider the symmetric pumping case where
Ea = Eb, because non-symmetric pumping will only induce
an additional rotation in the quadrature plane, which does not
affect our main results.

The above input-output relation describes a phase-
insensitive parametric amplification process. Therefore, there
is an additional noise given by the n̂†

12in terms in Eq. (24). This
noise comes from the stochastic dynamics of σ̂12 driven by
the noise bath as shown in the last term on the right hand side
of Eq. (21b). Note that the additional noise term in Eq.(24)
has two frequency channels, which can not be figured out by
directly using Caves’ theory. The formalism presented here
based on solving the dynamics from the full system Hamilto-
nian allow us to pin down the source of the additional noise,
and thus give the correct formula for evaluating the noise con-
tribution.

B. Extension to many-atom case

In the above subsection, we discussed the input-output re-
lation for the probe field interacting with a single atom. In

this subsection, we extend the above results to the many-atom
case.

Since the size of the gain medium (centimeter scale) is
much smaller than the spatial scale of the slowly varying am-
plitude of the probe field (kilometer scale), the slowly chang-
ing amplitude of the probe field interacts with all the atoms
together. In this case, the anti-damping rate will be enhanced
by a factor of N, where N is the number of atoms [26–28].
The M coefficients in the above input-output relation can be
written as:

M (Ω) = 1−
2Γopt

i(Ω+∆0)− γ12 +Γopt
−

2Γopt

i(Ω−∆0)− γ12 +Γopt
,

(26a)

where Γopt = Nγopt.
The formulation of the additional noise field n̂12in in the

input-output relation for the many-atoms case has some sub-
tleties, which depend on the specific modeling of the interac-
tion between the noise field and the atoms.
• Noise interacts with atoms locally—in this case, each

atom is associated with its own noise bath. The noise term N̂±
will be represented by:

N̂±(Ω) = ∑
±

N

∑
j=1

N±(Ω)n̂ j†
12in(±∆0−Ω), (27)

where

N±(Ω) =
2√γ12γopt

±i∆0− iΩ+ γ12−Γopt
. (28)

•Noise interacts with atoms collectively— in some cases,
the noise is introduced through processes where the electro-
magnetic field amplitude interacts with all the atoms collec-
tively as does the slowly-varying amplitude of the probe field.
For example, the γ12 is induced by applying an additional
pumping laser such as in the experiment done in [11]. In this
situation, the noise term N̂(c)

± will be represented by:

N̂(c)
± (Ω) = ∑

±
N c
± (Ω)n̂†

12in(±∆0−Ω), (29)

where

N c
± (Ω) =

2
√

γ12Γopt

±i∆0− iΩ+ γ12−Γopt
. (30)

The γ12 here (also accordingly in M (Ω)) should be under-
stood as N times the transition rate from |2〉 to |1〉 for one
single atom, which is proportional to the intensity of the addi-
tional pumping laser in the experiment in [11].

Note that: 1) the input-output relations based on both of
these noise models approximately satisfies the bosonic com-
mutation relation [âout(Ω), âout(Ω

′)] = δ (Ω−Ω′) under the
weak coupling approximation. For the single-pumping case
where ∆0 = 0, the bosonic commutation relation will be ex-
actly satisfied; 2) more importantly, as we shall see later, the
subtleties of the noise model do not affect the sensitivity of
the gravitational wave detector.
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C. Some physical discussion

After deriving the system dynamics and input-output rela-
tion, we here give some intuitive discussion of the system dy-
namics and the additional noise.

Firstly, the “anti-damping” dynamics of σ̂12 can be under-
stood in the following way: a small number of atoms initially
populated on |1〉 can be pumped to |3〉 by the detuned con-
trol fields, and then jump to |2〉 due to their interactions with
the probe field. During this indirect transition between |1〉
and |2〉 mediated by |3〉, the population of atoms on |2〉 will
increase indefinitely if the decay rate from |2〉 to |1〉 is not suf-
ficiently large–a “population inversion process”. Physically,
this process could cause lasing (“atomic instability” in Sec-
tion II ) and our approximation will fail as the population on
|2〉 becomes larger than the population on |1〉. One may argue
that this instability will not happen in real experiments with
the atom population being prepared using additional pumping
fields. However, the thermal collision relaxation rate can be
tuned to be small if we decrease the gas temperature, increase
the pumping beam waist and fill in the “buffer” gas [14, 23].
In this case, a small transition rate contributed by the optical
pumping beam could be sufficient for the population prepara-
tion. Therefore, in principle, the lasing could still happen, as
long as the control fields are strong enough and 2Γopt > γ12.

Secondly, for the additional noise, the stochastic dynam-
ics driven by n̂12in can be attributable to: 1) the collision of
atoms due to Van-der-Waals mutual interactions or thermal
collisions [14]; 2) the transition between |2〉− |1〉 induced by
environmental black-body radiation; 3) the contribution of the
quantum noise associated with the additional optical pumping
process as in [11]. In Eq. (24) and Eqs. (26)-(29), the âout field
contains terms related to the additional noise n̂12in in such a
way that the stochastic fluctuations of the populations on |1〉
and |2〉 will cause fluctuations of the transitions between |2〉
and |3〉, since σ̂23 is slaved by σ̂12.

In this Section, we have derived the input-output relation
for the sideband probe field propagating through the double
gain medium from the full Hamiltonian. We also discussed the
opto-atomic dynamics and the origin of the additional noise.
In the next Section, we will apply these results to the inter-
ferometer configuration shown in Fig. 1 and analyze its strain
sensitivity.

IV. INTERFEROMETER WITH GAIN MEDIUM

The propagation of sideband fields inside the interferome-
ter shown in Fig. 1 can be schematically described by the flow
chart shown in Fig. 5. Here, we only study the differential
mode of this interferometer, which carries the gravitational
wave signal and can be mapped into a signal cavity contain-
ing a gain medium. In this scheme, an internal signal recy-
cling mirror (iSRM as marked in Fig. 1) is used to effectively
remove the frequency response of the arm cavities so that the
sideband fields see an input-output relation in the following
form (we ignore the optomechanical back-action term by as-

FIG. 5: (Color online) A flow chart showing the propagation of fields
in the full system. The i.f.o represents the interferometer modes. The
optical stability of the system is determined by the part inside the
blue dashed box, whose gain function is given by Eqs. (33) and (34).
The test mass (end mirror) m is driven by gravitational waves while
the double gain medium is affected by the additional noise n̂12in.

suming infinitely heavy test masses) [29];

ê(Ω) = e2iΩτ d̂(Ω)+ i
√

K (Ω)eiΩτ h(Ω), (31)

with K (Ω) = Pcω0L2
arm/(h̄c2), τ = Larm/c and h(Ω) is the

strain of the gravitational waves.
The input-output relation for the phase and amplitude

quadrature of the light field propagating through the gain
medium is (cf. Eq. (26)-(29)):

d̂(Ω) = M (Ω)ĉ(Ω)+ N̂(c)
+ (Ω)+ N̂(c)

− (Ω), (32)

where the forms of the additional noise term N̂(c)
± depend on

the specific noise modeling, c.f. Eqs. (27)— (30).
The combined effect of the gain medium and the main

interferometer can be obtained by substituting Eq. (32) into
Eq. (31). Then the final input-output relation for the sideband
field is given by:

ĵ(Ω) = ĵn(Ω)+ ĵs(Ω), (33a)

ĵn(Ω) = [−rs + t2
s Gc(Ω)e2iΩτM (Ω)]k̂(Ω)

+ tse2iΩτ Gc(Ω)[N̂(c)
+ (Ω)+ N̂(c)

− (Ω)], (33b)

ĵs(Ω) = itseiΩτ Gc(Ω)
√

K (Ω)h(Ω), , (33c)

where ĵn and ĵs are the noise and signal parts of the ĵ field,
respectively. In the above equations, the close-loop gain func-
tion

Gc(Ω) =
1

1− rse2iΩτM (Ω)
, (34)

comes from the feedback process due to the reflection of SRM
which is shown in the dashed box of Fig. 5, with rs and ts be-
ing the amplitude reflectivity and transmissivity of the SRM.
This feedback process will bring in another potential lasing
(the “optical instability” mentioned in Section II ) even if
γ12 > 2Γopt, as discussed in the following subsection A. The
k̂(Ω) and ĵ(Ω) are the input and output fields of the entire
configuration, as shown in Fig. 1 and Fig. 5. The first term
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in Eq. (33b) is the quantum noise contributed by the vacuum
injection from the outside of the SRM, the second term is
the contribution of additional noise introduced by the gain
medium.

The output ĵ field will be measured by a homodyne detec-
tion scheme. In our calculation, we choose the phase quadra-
ture of the output field ĵ2(Ω) = [ ĵ(Ω)− ĵ†(−Ω)]/(

√
2i)to be

measured. Then the shot noise spectrum of the measurement
result Ssh

n (Ω) is given by [8]:

πδ (Ω−Ω
′)Ssh

n (Ω) =〈in| ĵn2(Ω)[ ĵn2(Ω
′)]†|in〉sym, (35)

in which the subscript “sym” means replace Â(Ω)B̂†(Ω′) by
Â(Ω)B̂†(Ω′) + B̂†(Ω′)Â(Ω), and the |in〉 means the direct
product of the vacuum state of the k̂ field and the n̂12in field.
It is technically important to note that both the local noise
model and the collective noise model lead to the same sensi-
tivity plots as shown in Fig. 4 and 7 and since we survey all
the possible parameter regions of γ12 and Γopt.

Finally, the shot–noise–limited strain sensitivity Sa
hh(Ω) of

the interferometer containing the gain medium is the above
noise spectrum Eq. (35) normalized by the signal response.
We will discuss the numerical result of this shot-noise limited
strain sensitivity in the following subsection B.

A. Stability Criterion

As we have briefly mentioned previously, besides the
atomic instability due to the “population-inversion process”
when γ12 < 2Γopt, it is important to note that the dynamics of
the interferometer with the gain medium may still be unstable
(i.e. start lasing) even if γ12 > 2Γopt.

This instability is related to the feedback process discussed
below Eq. (33) due to the reflection of the SRM. Intuitively,
when the reflectivity rs of the SRM becomes high (or equiva-
lently, ts decreases), the photon loss rate through the transmis-
sion for each round trip can be less than the photon increasing
rate through amplification by the gain medium, correspond-
ing to the “optical instability”. The criterion for this insta-
bility is determined by the analytical behavior of the closed-
loop transfer function Eq. (34). The stability of the full sys-
tem is determined by the poles of the denominator, which can
be obtained by solving the equation 1− rsGo(Ω) = 0, where
Go(Ω) = e2iΩτM (Ω) is the open-loop gain function.

However, the time-elapsed factor e2iΩτ in the gain func-
tion makes it difficult to find the root of the above mentioned
equation. The Nyquist criterion provides us another way
to understand the stability through the analytical behavior of
Go(Ω) [32] (see Appendix C) instead of Gc(Ω). Specifically,
in our system, the Nyquist stability criterion can be stated in
such a way that the Nyquist contour of rsGo(Ω) should not
encircle the point (1,0) in the (Re[rsGo], Im[rsGo]) plane at
all. This criterion is equivalent to the lasing condition that the
round-trip gain is smaller than one when the phase is an inte-
ger multiple of 2π . For illustrative purposes, several examples
of the Nyquist contour of rsGo(Ω) are shown in Fig. 6, given
typical parameters of γ12 and ∆0. This plot demonstrates that

0.7 0.8 0.9 1.0 1.1 1.2

- 0.10

0.00

0.10

FIG. 6: (Color online) Nyquist contours of rsGo(Ω) for
the full system with fixed parameters of the gain medium
η = 0.1,ξ = 0.4, while varying the SRM amplitude re-
flectivity rs. The dashed (magenta), solid (red), dotdashed
(black), dotted (blue) curves are the Nyquist contours when
r2

s = 0.9,0.8,0.7 (unstable cases), and 0.5 (stable cases), respec-
tively. The upper plot shows a magnified view of the contours
around (1,0) (the red spot). It is clear here that when the SRM
reflectivity increases, the instability develops and the stable region
in Fig. 3 shrinks.

increasing the SRM reflectivity can lead to system instabil-
ity. We further search the parameter region 0 < η ,ξ < 1 and
give the plot in Fig. 3, from which we can see that the stabil-
ity criterion imposes a very strong constraint on the possible
parameter region.

B. Integrated shot-noise-limited sensitivity improvement
factor

To quantitatively describe the improvement of the interfer-
ometer sensitivity, we define the integrated shot-noise-limited
sensitivity improvement factor (iSNS improvement factor) ρr
in the following way:

ρr =
∫

ωFSR

0

1
Sa

hh(Ω)
dΩ/

∫
ωFSR

0

1
Shh(Ω)

dΩ, (36)
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FIG. 7: (Color online) Integrated shot-noise-limited sensitivity im-
provement factor ρr (defined in Eq. (36)) of the full interferometer
scheme with double gain medium, without the effect of additional
noise. The specifications for the parameters are identical to those
for Fig. 3 and Fig. 4. The left and right panels correspond to the
larger and smaller roots of Eq. (4), respectively. The dashed line is
the boundary of the stable region shown in Fig. 3. In this figure, when
the detuning takes the larger solution, there are some regions where
ρr > 1 and the system is stable at the same time. However, as we
can see from Fig. 4, these regions will disappear when we take into
account the effect of the additional noise.

where Sa
hh and Shh (see Eq. (1)) are the shot-noise-limited

gravitational wave strain sensitivities of the laser interferom-
eter with a double-pumped gain medium calculated using the
method introduced from Eq. (31) to Eq. (35) and that without
the gain medium, respectively. In the case ρr > 1, the system
with a double gain medium will improve the signal-to-noise
ratio by breaking the trade-off between the detection band-

width and peak sensitivity. However, we need to be cautious
about the stability of the system and the effect of the additional
noise at the same time.

We can calculate the strain sensitivity and hence the iSNS
improvement factor. By fixing the SRM power reflectivity
to be r2

s = 0.5,0.8,0.9, we calculate the iSNS improvement
factor by searching the parameter region for (η ,ξ ) within the
range (0,1), constrained by the phase cancelation condition.
For illustrative purposes, we first calculate the ρr by ignoring
the effect of additional noise introduced by the atom system,
and give the resulting plot in Fig. 7. This figure shows that
those region where ρr > 1 is unstable.

However, taking into account the additional noise, the re-
sults change in the way that the ρr− contours are significantly
distorted due to the additional noise, as we can see from Fig. 4.
Still, there is no region where the system is stable and ρr > 1.
According to our numerical tests, this conclusion does not
change with variation of the SRM reflectivity.

V. CONCLUSION

In this paper, we applied the input-output formalism devel-
oped from the Hamiltonian of light-atom interactions to study
the quantum noise of a white light cavity using a double gain
medium. We find that not only does the additional noise as-
sociated with the parametric amplification process affect the
system, but that the requirement for the system stability also
introduces an additional issue to take into account for its im-
plementation. We conclude that the net sensitivity cannot be
enhanced by using the anomalous dispersive behavior of the
stable double gain medium when the system is stable. For
further study, we will consider the situation that the system is
unstable but being controlled by an external feedback loop in
an accompanying paper.
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Appendix A: Slowly-varying amplitude Hamiltonian of the
electromagnetic field

In the main text, the Hamiltonian of the electromagnetic
field is given in Eq. (9). Unlike the usual free-field Hamil-
tonian written in k−space, this Hamiltonian is written in
x−space, and the âx is the slowly varying amplitude of the
optical field. In this Appendix, we give a derivation of this
form of the Hamiltonian.

In k−space, the free-field Hamiltonian for an unidirectional
propagating field can be written as:

Ĥ f = h̄c
∫

∞

−kp

dk′(kp + k′)â†
−kp−k′ â−kp−k′ . (A1)

Since we are interested in the case |k′| � |kp|, we can approx-

imate the above formula as:

Ĥ f ≈ h̄c
∫

∞

−∞

dk′(kp + k′)â†
−kp−k′ â−kp−k′ . (A2)

This is called the narrow band approximation.
Then we can define the optical field operator in x−space by

Fourier transformation:

âx ≡
∫

∞

−∞

â−kp−k′e
−ik′xdk′. (A3)

Substituting the above definition into Eq. (A2), we obtain:

Ĥ f = h̄ckp

∫
∞

−∞

dxâ†
x âx +

ih̄c
2

∫
∞

−∞

dx
[

∂ â†
x

∂x
âx− â†

x
∂ âx

∂x

]
.

(A4)
Furthermore, if we work in the rotating frame of ck0: âx →
âxe−ickpt , then the above Hamiltonian will be:

Ĥ f =
ih̄c
2

∫
∞

−∞

dx
[

∂ â†
x

∂x
âx− â†

x
∂ âx

∂x

]
. (A5)

Note that the âx satisfies the commutation relation: [âx, â
†
x′ ] =

δ (x− x′). The âx here is the spatially and temporarily slowly
varying amplitude of the electromagnetic field. This fact can
be seen from the definition of the electric field under the
narrow-band approximation:

ˆ̃E(+)(x, t) = Ê(+)(x, t)eiω0t+ikpx

≈
√

2π h̄ckp

∫
∞

−∞

dk′â−kp−k′e
ik′x+ick′t =

√
2π h̄ckpâx.

(A6)

Appendix B: Phase cancelation condition

For achieving cancelation of the propagating phase inside
the arm cavity in the weak coupling limit, the condition below
must be satisfied:

2Γopt[(γ12−Γopt)
2−∆2

0]

[(γ12−Γopt)2−∆2
0]

2 =−Larm

c
. (B1)

This condition will reduce to Γopt = ∆2
0Larm/2c when |γ12−

Γopt| � ∆2
0. In our calculations, we have used the exact for-

mula Eq. (B1).
If we fix the value of γ12 and Γopt, then the phase cancela-

tion condition becomes a second order algebraic equation for
∆2

0. Supposing this equation has two roots (∆2
0)1 and (∆2

0)2,
then we then have:

(∆2
0)1(∆

2
0)2 = (γ12−Γopt)

2[(γ12−Γopt)
2 +2Γoptc/(Larm)],

(∆2
0)1 +(∆2

0)2 = 2Γoptc/Larm−2(γ12−Γopt)
2.

(B2)

Note that in the above equations, (∆2
0)1(∆

2
0)2 is always posi-

tive, thereby (∆2
0)1 +(∆2

0)2 can only be positive:

(γ12−Γopt)
2 < Γoptc/Larm. (B3)

http://arxiv.org/abs/1307.5272.
http://arxiv.org/abs/1307.5272.
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On the other hand, Eq. (B1) must have real roots, which gives:

(γ12−Γopt)
2 < Γoptc/(4Larm), (B4)

which is a more stringent condition than Eq. (B3).
In summary, considering the requirement of the phase-

cancelation condition, our parameters must satisfy Eq. (B4). It
is important to note that there are always two ∆2

0 correspond-
ing to a fixed set of (γ12,Γopt). In plotting the Fig. 4 and Fig. 7,
we should take into account both roots.

Appendix C: Nyquist stability criterion

In this Appendix, we give a brief introduction to the
Nyquist criterion [32] which we used in understanding the sta-
bility condition of the full system in Section IV.

The behavior of control systems is usually described by
gain functions. For a control system with a feedback pro-
cess, the open-loop gain function Go(Ω) is used to describe
the information transfer ignoring the feedback process, while
the closed–loop gain function Gc(Ω) includes the effect of
the feedback process. The relationship between Go(Ω) and
Gc(Ω) can be written as:

Gc(Ω) =
Go(Ω)

1+H(Ω)Go(Ω)
. (C1)

The H(Ω) is the gain function for the feedback process itself;
it is clear from Fig. 5 that in our system, this is just the reflec-
tion of the SRM: H(Ω) =−rs.

The stability of the system depends critically on the poles of
the closed-loop transfer function, i.e, it depends on the poles
of Go(Ω), and also on the zeros of 1− rsGo(Ω). However,
computing the poles and zeros of these gain functions is gen-
erally a difficult task when they are non-rational. The Nyquist
stability criterion is a graphical technique for determining the
stability of a control system, which is based on the following
Lemma: the Cauchy argument principle.

The Cauchy argument principle starts from the Nyquist
mapping, which maps the complex argument Ω–plane to the
complex F(Ω)–plane. If we have a clockwise contour in the
Ω–plane encircling a zero of F(Ω), correspondingly, the con-
tour also encircles the origin clockwise in the F(Ω)−−plane.
However, if we have a clockwise contour in the Ω–plane en-
circling a pole, then the corresponding contour will circulate
at the infinity clockwise in the F(Ω)−−plane, thereby encir-
cling the origin in an anticlockwise way. In general, if we have
a contour in the F(Ω)–plane encircling the origin N times
clockwise, that means in the Ω−−plane, the number of zeros
(Z) and the number of poles (P) satisfy:

Z = N +P. (C2)

This equality is the Cauchy argument principle.

The Fourier transformation for quantity A(t) between
the frequency and time domains is defined as: A(t) =∫

∞

−∞
A(Ω)e−iΩtdt. Therefore, if A(Ω) has poles in the upper-

half plane, we will have instabilities for a causal system
(t > 0). Now we choose the contour encircling the upper-half
Ω−−plane as the “Nyquist contour”. If the system is stable,
then the Z of 1− rsGo(Ω) (the denominator of the closed-
loop gain function) inside the Nyquist contour should be zero.
As a result, the Cauchy argument principle becomes N =−P,
which is the Nyquist stability criterion.

In our system, with Go(Ω) = χ(Ω)e2iΩτ , we have the the
poles of rsGo(Ω) which are Ω1,2 =±∆0− i(γ12−Γopt). Both
of them fall on the outside of the Nyquist contour because
γ12−Γopt > 0 for the requirement of the stability of the atomic
gain medium itself. Then we can conclude that P = 0 in-
side the Nyquist contour. In this case, the Nyquist criterion
requires N = 0 to keep the stability for the full system, i.e,
in the Nyquist diagram, the contour of 1− rsGo(Ω) should
not encircle the origin at all. In other words, the con-
tour of rsGo(Ω) should not encircle the point (1,0) in the
(Re[rsGo(Ω)], Im[rsGo(Ω)]) plane.
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