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University of Illinois at Urbana-Champaign, Dept. of Physics, 1110 W Green St, Urbana, IL 61801

Anderson localization has been observed for a variety of media, including ultracold atomic gases
with speckle disorder in one and three dimensions. However, observation of Anderson localization
in a two-dimensional geometry for ultracold gases has been elusive. We show that a cause of
this difficulty is the relatively high percolation threshold of a speckle potential in two dimensions,
resulting in strong classical localization. We propose a realistic point-like disorder potential that
circumvents this percolation limit with localization lengths that are experimentally observable. The
percolation threshold is evaluated for experimentally realistic parameters, and a regime of negligible
classical trapping is identified. Localization lengths are determined via scaling theory, using both
exact scattering cross sections and the Born approximation, and by direct simulation of the time-
dependent Schrödinger equation. We show that the Born approximation can underestimate the
localization length by four orders of magnitude at low energies, while exact cross sections and scaling
theory provide an upper bound. Achievable experimental parameters for observing localization in
this system are proposed.

I. INTRODUCTION

Anderson localization (AL) [1, 2]—the preclusion
of wave propagation in a disordered medium by
interference—has been observed in many settings,
including, e.g., for light and sound [3, 4]. Recent ex-
periments observing AL for ultracold atomic gases
expanding in disordered optical speckle potentials
show promise for gaining enhanced understanding
of how microscopic disorder characteristics affect lo-
calization and the interplay with inter-particle in-
teractions. In particular, these systems allow for in-
dependent control of inter-atomic interactions and
the disorder strength and correlation length. Lo-
calization has been observed and its dependance on
these disorder parameters studied for gases confined
to one-dimensional geometries [5, 6] and in three di-
mensions [7–9]. In two-dimensional gases, however,
the classical diffusive regime [10] and the impact of
disorder on superfluids have been explored [11, 12],
but AL has not yet been observed. Studying lo-
calization in two dimensions using ultracold gases
is especially desirable given the many outstanding
questions regarding localization in two-dimensional
electronic solids [13–15].

In this paper, we discuss how classical trapping
effects complicate the observation of AL for speckle
disorder in two dimensions. We demonstrate how
point-like disorder [Fig. 1] avoids these problems.
Through a combination of analytical and numeri-
cal simulation we show that a disordered potential
of this type would enable experimental observation
of two-dimensional AL for ultracold gases. Point-
like, two-dimensional disorder and time-dependent
simulations of localization have not been considered
in previous theoretical studies of ultracold systems

[16–18]. Like previous studies, we consider an ideal
two-dimensional geometry and ignore inter-particle
interactions and quantum statistics. As our focus is
on realistic experimental conditions, we have limited
our investigation to experimentally accessible disor-
der strengths and energy scales for ultracold, spin-
polarized 40K atoms. We expect that this technique
can be straightforwardly extended to other experi-
mental configurations.

This paper is organized as follows: in Sec. II
we describe classical trapping in two-dimensional
speckle potentials using percolation theory, and we
show how point-like disorder can avoid this problem
for realistic experimental parameters. In Sec. III we
identify experimentally accessible parameters for lo-
calization in point-like disorder using scaling theory
and the Born approximation, which we show may
fail in this regime. Therefore, in Sec. IV, we calcu-
late exact differential cross sections using numerical
simulations to more accurately determine localiza-
tion lengths via scaling theory. We also use exact
time-dependent simulations of wavepacket propaga-
tion in point-like disorder to determine localization
lengths as would be observed in an experiment that
allows a gas to expand into a disordered potential.

II. PERCOLATION IN SPECKLE AND
POINT-LIKE DISORDER

In this section, we examine the classical trapping
properties of speckle and point-like disorder poten-
tials in two dimensions using percolation theory,
which is the study of the random growth of inter-
connected regions in networks. These regions grow
in size as a parameter is varied until a transition at
the percolation threshold, at which a connected re-
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FIG. 1. (Color online) Schematic representation of ex-
perimental implementation of point-like disorder. Ul-
tracold atoms are confined to a quasi two-dimensional
geometry using a sheet of far-detuned light (not shown).
The disordered potential is generated by an additional
laser beam (green shaded region) that passes through a
holographic optic (disc) and is focused on the atoms (red
spheres). The atoms experience a disorder potential con-
sisting of a random arrangement of Gaussian barriers.

gion spanning the system is formed [19, 20]. In the
context of atom transport in a two-dimensional dis-
ordered potential, the problem is easily visualized
in this way: the disorder potential forms a poten-
tial landscape that constrains the atomic motion.
Atoms with kinetic energy higher than the perco-
lation threshold will travel freely through the po-
tential, but below a critical fraction of the average
potential energy atoms will be trapped in potential
minima of finite size [21]. If this percolation thresh-
old occurs near the same energy scale as Anderson
localization, AL may not be detectable or experi-
mentally distinguishable from classical trapping.

Because of their ease of creation and simple sta-
tistical properties, optical speckle fields [22] have
been used to generate disorder in virtually all ultra-
cold atom experiments exploring disorder-induced
effects, see, e.g., Refs. 5, 7, 8, 10–12, 23, 24. A
notable exception is disorder generated by impurity
atoms [25]. Optical speckle is produced by focusing a
laser beam that has passed through a diffuser. The
atoms experience a potential energy shift propor-
tional to the optical intensity of this light. Speckle

disorder has an exponential distribution of poten-
tial energies and a spatial autocorrelation that is
approximately Gaussian. While in three dimensions
the percolation threshold for a blue-detuned speckle
field is negligible [26, 27], potential minima appear
in one and two dimensions that can classically trap
the atoms. As a result, the percolation characteris-
tics of a speckle potential become a significant con-
straint on attempts to observe Anderson localization
in reduced dimensions.

This limitation is in part due to scaling symme-
tries unique to speckle disorder. A distinctive fea-
ture of a speckle field it that it has only one ad-
justable length scale, the correlation length ζ. This
characteristic leads to a simple scaling symmetry
of the field: any change in scale of the system is
equivalent to a suitable change in ζ. The percola-
tion threshold is necessarily scale invariant, and as
a result it must be independent of ζ. Thus, the crit-
ical energy for a percolation transition in a speckle
field is always at a fixed fraction of the average
potential energy ∆, which simulation shows to be
roughly 52% in two dimensions [27–29]. This de-
pendence complicates observing AL in two dimen-
sions using ultracold atoms. In infinitely sized two-
dimensional system, infinitesimal disorder will local-
ize atoms with any kinetic energy [30]. The local-
ization length grows exponentially with the particle
energy [31], and thus relatively strong disorder is
required to localize atoms on experimentally acces-
sible length scales. This leads to classical trapping
of a wide range of particle energies, which may be
difficult to separate from AL.

In light of this high, fixed percolation threshold,
an alternative form of disorder that does not cause
classical trapping is desirable. The point-like dis-
order we investigate consists of individual Gaussian
potential barriers with randomly distributed loca-
tions ~xi:

V (~x) =
∑
i

V0e
−|~x−~xi|2/w2

, (1)

where V0 is the peak disorder energy, i indexes the
individual Gaussian potentials, and w/

√
2 is the rms

width of an individual barrier. This type of dis-
ordered potential was chosen for its simplicity and
straightforward experimental realization in a cold
atom experiment using holographic techniques [32–
34]. As shown in Fig. 1, a random array of blue-
detuned focused Gaussian laser beams can produce
potential barriers as in Eq. 1. The advantage of
point-like disorder over a speckle potential is that
the freedom to tune the density n of potential barri-
ers introduces a second length scale n−1/2, and vary-
ing the ratio of w and the average distance between
scattering sites n−1/2 allows the percolation thresh-
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old to be tuned.
The impact of this tunability is shown visually in

Fig. 2. Potential landscapes are displayed for speckle
and point-like disorder with the same average poten-
tial energy. While the percolation threshold for this
finite-sized realization of speckle disorder is 0.39∆,
the point-like disorder parameters were chosen to set
the percolation threshold for the realization shown
in Fig. 2b to approximately 0.06∆. Thus, particles
with small kinetic energies compared with the dis-
order energy are free to propagate in the point-like
disorder, while particles with relatively high kinetic
energies are classically trapped by the speckle disor-
der.

FIG. 2. (Color online) Comparison of percolation in a
speckle potential (a) and a sparse point-like disordered
potential (b). Here, images of disorder potentials are
shown in a scale-free fashion. The disorder potential en-
ergy is shown in false color. The colorbar shows the
potential energy in units of ∆. Regions in grayscale cor-
respond to energies less than 30% the average disorder
energy. A classical particle with this energy would be
trapped in a finite-sized region in the speckle potential,
but is able to propagate indefinitely for the point-like
disorder case.

We used a standard technique to calculate the de-
pendance of the percolation threshold on the point-
like disorder parameters. Disorder potentials were
numerically simulated, and the percolation thresh-
old was determined by detecting the formation of
a connected region spanning the simulation space
by points below a threshold potential energy. The
percolation threshold Eth was determined by aver-
aging over independent realizations of the disorder
potential. While only approximating the percolation
threshold, which is defined in limit of an infinite sys-
tem, this method gives excellent agreement with the
known value for speckle disorder [Fig. 3]. In our
simulation, a fixed system size L is used and the
number of Gaussian potential barriers and w were
independently varied.

As shown in Fig. 3, the percolation threshold was
found to be a function of only the dimensionless com-
bination nw2, as expected from simple space-filling
considerations [35]. For sufficiently dilute disorder

(i.e., low nw2), the percolation threshold is arbitrar-
ily close to zero, and it monotonically increases with
nw2 towards the limit of the average disorder energy.
Our interest is in the regime where the percolation
threshold is lower than that of a speckle potential
and ideally negligible, while maintaining sufficient
density of scattering sites such that the particles are
scattered many times within the system size.

FIG. 3. (Color online) Percolation threshold for point-
like (blue squares) and speckle (red circles) disorder
potentials. The dashed line is the known percolation
threshold for speckle disorder, and the points are results
of our simulation. For point-like disorder, n and w are
independently varied, and for speckle disorder the corre-
lation length was changed. The inset shows the onset of
significant percolation for point-like disorder. The min-
imum detectable threshold level is 5 × 10−5 in our sim-
ulation. The error bars show the standard error of the
mean for the average taken over 50 disorder realizations
at each point-like disorder point and 8 realizations for
each speckle disorder case.

We choose to concentrate on nw2 ≤ 0.03, which
fulfills both criteria. Under this condition, the per-
colation threshold is less than 2.5× 10−4∆, which is
smaller than the percolation threshold for 3D speckle
[27]. The system size and w are limited by exper-
imental constraints such as optical power, imaging
signal-to-noise ratio, and numerical aperture. For
the rest of this paper, we choose to use an experimen-
tally feasible disorder size w = 400 nm. When dis-
cussing proposed experiments, we assume that the
disorder potential and the light used to create it are
limited to a 100×100 µm2 area in order to estimate
the requisite laser power. We use n = 0.2 µm−2

(corresponding to nw2 = 0.03) for comparing the lo-
calization lengths predicted by scaling theory using
either the first Born approximation or the exact scat-
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tering differential cross section and for predicting a
thermally averaged density profile. In these cases,
we choose the highest possible n that avoids signifi-
cant classical trapping in order to make AL effects as
robust as possible. For comparing the results of scal-
ing theory and a simulation of the time-dependent
Schrödinger equation, we use n = 0.08 µm−2 (cor-
responding to nw2 = 0.013), which is the largest n
compatible with our computational resources. For
n = 0.2 µm−2 and n = 0.08 µm−2, there are
2000 and 800 disorder peaks within the proposed
100× 100 µm2 area, respectively.

While we have shown that point-like disorder can
avoid classical trapping, it must also lead to observ-
able localization lengths to be a viable experimen-
tal option. In principle, atoms in an infinite two-
dimensional system are localized by infinitesimal dis-
order [31], but only localization lengths smaller than
the system size are physically meaningful and ob-
servable. Therefore, the rest of this paper is con-
cerned with estimation of the localization length for
point-like disorder and its dependance on the disor-
der properties and particle energy.

III. LOCALIZATION LENGTHS: THE
BORN APPROXIMATION

In this section we determine analytic expressions
for the localization length in the limit where the scat-
tered wavefunction amplitude is small. Although
we will show that this approach is inaccurate in the
regime of interest, it is useful for developing physi-
cal insight. Analysis of point-like disorder is partic-
ularly simple in this regime, because the differential
cross section for scattering from a single disorder
barrier can be determined using the first-order Born
approximation. This differential cross section can be
used to determine transport properties in a poten-
tial consisting of many Gaussian potentials, provided
that there little spatial overlap. Our procedure has
three steps: we first find the Born approximation
for the differential scattering cross section dσ/dθ of
a single potential barrier. We use dσ/dθ to deter-
mine the Boltzmann transport mean free path lB ,
which characterizes the diffusive properties for par-
ticle transport in the disordered potential. Finally,
we use scaling theory to estimate the localization
length ξ from lB .

In two dimensions, we write the (unnormalized)
scattered wavefunction ψ(~x) as

ψ(~x) = ei
~k·~x + f (θ)

eikr√
r
, (2)

where ~r is the radial coordinate, ~k is the incoming
wavevector, f (θ) is the scattering amplitude, and θ

is the scattering angle. We assume a free-particle
dispersion so that k =

√
2mεk/~, where m is the

mass of the particle, εk is the kinetic energy of the
atom, and h = 2π~ is Planck’s constant. Given the
scattering amplitude in the Born approximation

f (θ) = − mei
π
4

~2
√

2πk

∫
ei(kr̂−

~k)·~xV (~x) d2~x (3)

(r̂ is a unit vector that points in the scattered direc-
tion), the differential cross section for a single Gaus-

sian potential V (~x) = V0e
−r2/w2

is

dσ

dθ
= |f (θ)|2

=
π

8k

(
2m

~2

)2

w4V 2
0 e
−2w2k2 sin2 θ

2 , (4)

where θ is the scattering angle. We calculate the
Boltzmann mean free path lB , the distance over
which the direction of momentum remains correlated
[16], using Eq. 4 for the differential cross section and
the density of scattering sites n:

lB = ls

[
1−

∫ 2π

0

cos θ

(
1

σ

dσ

dθ

)
dθ

]−1
, (5)

where the elastic mean free path is ls = (nσ)−1,

and the total cross section is σ =
∫ 2π

0
(dσ/dθ) dθ.

Combining equations 4 and 5, we find

lB =
1√
2π3

1

nw

(
~2k2

2m

1

V0

)2

(6)

for the Boltzmann mean free path.
The connection between lB and the localization

length ξ is given in the (klB)−1 � 1, L → ∞ limit
by scaling theory [31] as

ξ = lBe
π
2 klB . (7)

Thus, given the properties of the disorder and atoms,
we may calculate a localization length valid in these
limits using the Born approximation. We choose to
focus on an experimentally realistic situation. In
an experiment in which the disorder is generated
by the dipole force from a far-detuned laser, limited
laser power constrains the maximum average poten-
tial energy, rather than the value of V0 for individual
potential barriers. Therefore, we investigate the case
in which ∆ is fixed, but the density of disorder sites
n and V0 vary inversely.

To get a concrete sense of these predictions, for
disorder generated by a 2 W, 532 nm laser fo-
cused to a Gaussian envelope with a 170 µm waist
(which has been employed in experiments on 3D AL
[7]), realistic disorder parameters are w = 400 nm
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and average disorder strength ∆ = kB × 1000 nK.
The peak potential V0 is determined by the relation
V0 = ∆/πnw2. The resulting localization lengths, as
a function of particle energy εk and n, are shown in
Fig. 4 along with the percolation threshold. For the
contour lines shown in Fig. 4, the value of klB varies
from 0.05–0.3. A localization length of 100 µm,
which would result in high imaging signal-to-noise
ratio and minimal effects from the disorder enve-
lope, can be well-separated from classical trapping
when there is less than approximately one potential
barrier per square micron. Furthermore, a regime
exists for n < 0.25µm−2 in which classical trapping
is irrelevant and small localization lengths exist for
experimentally accessible particle energies.

0.0 0.5 1.0 1.5 2.0 2.5
0

200

400

600

800

1000

1200

n (µm-2)

ε k
(

×  n
K

k B
)

ξ=100 µm
ξ=1 µm

ξ=10 µm

FIG. 4. (Color online) Localization lengths according
to scaling theory within the Born approximation. Con-
tour lines for three localization lengths are displayed us-
ing the experimental parameters described in the main
text. The percolation threshold in terms of εk is shown
using solid circles. If εk > Eth, then AL will not be
observable and the atoms will be classically trapped.
Because the average disorder potential energy is fixed
at kB × 1000 nK, V0 varies according to V0 = kB ×(
1989/n[µm−2]

)
nK.

While this standard approach to determining lo-
calization lengths suggests that two-dimensional lo-
calization may be observable using ultracold atoms
and point-like disorder, it is unclear that the Born
approximation will be valid in an experiment. Given
the parameters explored in Fig. 4, accessible local-
ization lengths necessarily involve V0 > εk, and thus
the Born approximation is suspect. The precise lim-
its of the Born approximation are not always obvious

[36]. Unlike the three-dimensional case, the Born
approximation is never valid in two dimensions as
k → 0. In two dimensions and for kw � 1, a simple
analysis suggests that the Born approximation may
be valid for

g =
4mw

~2
V0
k
� 1. (8)

The smallest value for g ≈ 7.5 occurs in the up-
per right hand corner of Fig. 4, and thus the Born
approximation is not satisfied for this range of pa-
rameters. Similar considerations hold for the high
energy (i.e., kw � 1) regime. Thus, while the Born
approximation can supply physical insight, the lo-
calization lengths computed in this section may not
be accurate.

Using the Born approximation will generally un-
derestimate the localization length. The differential
cross section in the Born approximation [Eq. (4)]
depends quadratically on the strength V0 of a scat-
tering site, which accounts for the sharp decrease
in localization length in Fig. 4 near n = 0, where
the disorder potential is concentrated in few, very
strongly scattering sites. However, once V0 is much
greater than the particle kinetic energy, further in-
creasing V0 must have diminishing effects on scat-
tering. Underestimating the localization length is
a critical problem because large localization lengths
may not be observable in an experiment. We deter-
mine the precise deviation from the Born approxi-
mation behavior using numerical simulation. As we
will show in the next section, the Born approxima-
tion and scaling theory as applied here can under-
estimate the localization length by more than three
orders of magnitude in the regime we propose to ex-
plore experimentally.

IV. BEYOND THE BORN
APPROXIMATION

In this section we implement numerical simula-
tions of scattering and localization, and use them
to determine improved estimates of localization
lengths. We rely on two complementary approaches.
The first, simplest approach is a single scattering
simulation: we numerically determine the exact dif-
ferential cross-section for a single scattering event,
and then use this in place of the analytic result
(Eq. 4) to compute lB and ξ as in Sec. III. While
the values obtained using this method remain valid
only for klB � 1, they have two important advan-
tages over the analytic solutions. First, the error
is much less severe at low energy in practice. Sec-
ond, the assumptions that entered into the scaling
theory derivation are such that it provides an upper
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bound on the localization length [31]. The (dimen-
sionless) Ohmic conductance assumed at the micro-
scopic cutoff length scale lB in scaling theory is an
upper bound, since weak localization effects are ig-
nored. The length scale at which the conductance
vanishes in scaling theory, which is taken as the lo-
calization length, is therefore also an upper bound.

To apply this method, we numerically extract
dσ/dθ by a straightforward application of scatter-
ing theory (Fig. 5). We first simulate, via the split-
step Fourier method [37], a plane wave scattering
from a single potential barrier (see Appendix A).
A wavefunction ψ(~x, t = 0) = eiky/L with energy
εk = ~2k2/2m and wavevector kŷ is prepared at ini-
tial time t = 0 in the simulation space, which has
sides of length L. The wavefunction is propagated
forward in timesteps δt according to

ψ(~x, t+ δt) = e−i
δt
2 V (~x,t) ·

F−1
{
e−iδt

~2k2

2m F
{
e−i

δt
2 V (~x,t)ψ(~x, t)

}}
, (9)

where F represents a Fourier transform. The
timestep δt is chosen to minimize numerical instabil-
ity and such that δt · V/~� 1 and δt · ~k2/2m� 1.

While propagating the wavefunction forward
in time, the Gaussian potential V (~x, t) =

V0e
−r2/w2 (

1− e−t/0.2τ
)

is slowly ramped on. We
determined that the time over which the barrier was
turned on did not significantly change the simula-
tion results. After a total propagation time from
τ = 1–7 ms (depending on the group velocity), a
wavefunction distorted by scattering from the po-
tential barrier is produced, as shown in Fig. 5a. For
the V0 and εk chosen in Fig. 5, the simulated wave
is highly distorted, signaling a violation of the Born
approximation.

The scattered wave ψsc = ψ(~x, t) − ψ′(~x, t) is re-
covered using the unscattered wave ψ′(~x, t), which
is determined by repeating the simulation with
V (~x, t) = 0. The scattering amplitude fr(θ) at ra-
dius r is computing according to Eq. 2 as fr(θ) =
e−ikr

√
rψsc(~x). As shown in Fig. 5, fr(θ) is sam-

pled in a circular annulus centered on the origin.
The outer and inner radii of this annulus were set to
minimize boundary effects and to achieve the asymp-
totic scattering regime. The differential cross section
dσ/dθ—calculated by averaging |fr(θ)|2 across all r
within the annulus at fixed θ—is numerically inte-
grated to produce the cross section σ.

A comparison between the total cross section σ
determined using the exact dσ/dθ and using dσ/dθ
from the Born approximation is shown in Fig. 6. The
two approaches agree at high kinetic energy. At low
energies, however, the Born approximation fails and
underestimates the cross section.

FIG. 5. (Color online) Process of extracting scattering
properties from a simulating propagation of a plane wave
for the time-dependent Schrödinger equation. The ini-

tial wavevector ~k is in the y direction. (a) Real part
of the wavefunction ψ(~x, τ) shown in false color. For
all of the data shown in this figure, εk = kB × 240 nK,
V0 = kB × 1000 nK, and w = 400 nm. Violation of the
Born approximation is evident as significant distortion of
the initial plane wave by the potential barrier at the ori-
gin (not pictured). (b) Real part of the scattered wave-
function ψsc(~x) obtained by subtracting a plane wave
propagated in free space from the data shown in (a). The
color bar applies to the simulated wavefunctions shown
in (a) and (b). (c) The scattered probability density
|ψsc(~x)|2 is shown as a density plot. The cross-hatched
region is sampled to determine that differential cross sec-
tion. (d) Differential cross section obtained from the
data in (c). Points are shown at fixed θ and different r
within the circular annulus.

An improved scaling theory prediction for the lo-
calization length ξ using the exact differential cross
section is shown in Fig. 7. We fix n = 0.2 µm−2,
which corresponds to a vertical slice in Fig. 4. The
localization length predicted using the exact differ-
ential cross section exceeds the Born-approximation
prediction by more than three orders of magnitudes
at all particle energies. Furthermore, the localiza-
tion length is always larger than the characteristic
length scales of the disorder, while the Born ap-
proximation predicts unphysical localization lengths
much smaller than w and 1/

√
n ≈ 2 µm. For the dis-

order parameters explored here and a 100 µm system
size, localization with be visible for point-like disor-
der for particles with energies less than kB × 20 nK.
While for a speckle potential with the same ∆ the
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FIG. 6. Ratio of total collision cross section determined
from the Born approximation σ(Bn) to σ calculated using
the exact differential cross section for w = 400 nm and
V0 = kB × 50 nK. The error bars show the spread in
values determined across the inner and outer radii of the
annulus displayed in Fig. 5c and include the effects of
numerical errors and deviation from the far-field limit.

percolation threshold is kB × 500 nK, the percola-
tion threshold for this point-like disorder potential
is approximately kB × 0.25 nK, and thus AL will be
the dominant influence on transport.

As a second approach to determining localiza-
tion lengths, we performed complete time-dependent
simulations of a wavepacket propagating through a
point-like disorder potential (see Appendix B). This
approach is inspired by the method used to observe
AL in 1D [5, 6] and 3D [7–9] ultracold gases: atoms
initially confined in a small region of space by a
trap are allowed to expand into a disordered po-
tential. The atoms propagate through the disor-
der potential, and, through scattering, eventually
adopt a localized profile. We numerically simulate
independent realizations of a potential according to
Eq. 1, with a disorder-free, circular region of radius
R centered on the origin (see Fig. 8a). As an ini-
tial condition, a Gaussian wavepacket ψ(~x, t = 0) ∝
exp

(
ikr − r2/2(R/2.2)2

)
with kR � 1 is prepared

in the disorder-free region. The wavenumber k is
varied from 0.07–0.4 µm−1, which corresponds to a
kinetic energy from kB× 3–100 nK. The shift in the
average kinetic energy of the wavepacket resulting
from the gaussian envelope is less than 2% of εk.

The wavefunction is propagated according to Eq. 9
for total time τ = 146 ms using timesteps δt =
14.6µs in order to resolve the effects of the dis-

FIG. 7. Localization lengths predicted using scaling the-
ory and the exact differential cross section (circles) and
the Born approximation (solid line). The density for the
disorder potential is n = 0.2 µm−2, the average disorder
potential energy ∆ = kB × 1000 nK, and the Gaussian
barrier height V0 = kB × 9950 nK. The error bars are
determined using the spread in the differential cross sec-
tion determined across the inner and outer radii of the
annulus displayed in Fig. 5c.

order potential energy on the wavefunction. Dur-
ing propagation, the wavepacket disperses into the
disorder potential, eventually forming a localized
state (Fig. 8b). We perform an angular average of

|ψ(~x, τ)|2 at fixed radius r, which is then averaged
over multiple realizations of the disorder potential
to produce the disorder-averaged radial probability
density Pτ (r). Sample Pτ (r) for fixed disorder pa-
rameters V0 = kB × 1000 nK, w = 400 nm, and
n = 0.08 µm−2 and kinetic energy εk = kB×100 nK
are shown in Fig. 9a. An exponential distribution
at large r is rapidly achieved, which then expands
and relaxes at long times to a static, localized state.
We fit Pτ (r) to an exponential decay for r = 43–
50 µm for εk ≤ kB×10 nK and r = 57–68 µm for
εk > kB×10 nK at each τ in order to determine
the characteristic size ξτ of the propagated wave-
function. The asymptotic localization length ξ (that
would be observed in an experiment probing atoms
expanding through a disordered potential) is deter-
mined by fitting ξτ to an exponential function, dis-
carding points at short times.
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FIG. 8. (Color online) Simulated probability density dis-
tributions shown in false color from a time-dependent
simulation of localization. A Gaussian wavepacket ini-
tialized at t = 0 in the disorder-free region marked by
the white dashed line is shown in (a). The wavefunction
propagated forward in time for 146 ms is shown in (b).
The potential barriers that constitute the disorder poten-
tial are magnified and marked in black for clarity. For
these simulations, εk = kB × 25 nK, V0 = kB × 1000 nK,
w = 400 nm, and n = 0.08µm−2.

These numerical simulations enable us to bench-
mark the individual scattering technique against a
calculation without any inherent approximations. A
comparison is shown in Fig. 10. At the lowest ener-
gies, the single scattering approximation predicts lo-
calization lengths smaller than the de Broglie wave-
length 2π/k of the particle, which occurs because

nσ < 2π/k and the approximation that ls = (nσ)
−1

is violated. In contrast, the results of the time-
dependent simulation always produce localization
lengths greater than the de Broglie wavelength. For
the regime in which ls = (nσ)

−1
is a good approxi-

mation, the single scattering approximation provides
an upper bound on the numerically determined lo-

FIG. 9. (Color online) Procedure to determine ξ from
the time-dependent simulations of localization. (a) Sam-
ple radial probability density showing the approach to a
steady-state profile. The propagation times are τ = 3 ms
(solid black line), 15 ms (red dashed line), 30 ms (blue
dotted-dashed line), 90 ms (green dashed-dotted-dotted)
line, 120 ms (short dashed line), and 150 ms (pur-
ple dotted line). For the data shown in this figure,
εk = kB × 100 nK, V0 = kB × 1000nK, w = 400 nm, and
n = 0.08 µm−2. (b) Fitted exponential decay lengths ξτ
from data such as those in (a) for εk = kB×100 nK (red
triangles), 35 nK (blue circles), and 3 nK (black squares).
Only a fifth of the points generated for each value of εk
are shown. The uncertainty in the points is too small to
be visible. Fits of these data to an exponential function
(lines) are used to extract the asymptotic value of the
localization length ξ.

calization length, as expected. At low energies, the
single scattering approximation and results of the
time-dependent simulations agree within an order of
magnitude. The Born approximation, however, is
four orders of magnitude smaller than the numeri-
cally simulated ξ at low energies.

Finally, we calculate a localized density profile for
a thermal gas of particles under conservative con-
ditions (i.e., n = 0.2µm−2) using the simulated lo-
calization lengths from Fig. 7, corresponding to the
single scattering approximation and exact scattering
cross section. We assume that the density profile as-
sociated with each energy in the thermal ensemble is
a radially symmetric exponential function centered
at the origin with a decay length determined by a fit
to the data in Fig. 7. The average density profile of
a localized gas of 10,000 Maxwell-Boltzmann parti-
cles at temperature T = 10 nK is shown in Fig. 11.
Dimensionality plays a helpful role, since, unlike in
three dimensions, the lowest particle energies (with
the smallest localization lengths) are the most prob-
able. Hence, most of the particles localize within a
relatively small, experimentally accessible area. For
example, at T = 10 nK, 90% of the particles are
localized within a radius of 20 µm. Furthermore,
just 2.5% of the particles have energies below the
percolation threshold and are classically trapped. A
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FIG. 10. (Color online) Comparison of localiza-
tion lengths from a numerical simulation of the time-
dependent Schrödinger equation (blue squares), from the
perturbative correction to the independent scattering
transport properties (red circles), and from the Born ap-
proximation (solid black line). For comparison, the de
Broglie wavelength 2π/k is shown as a dotted line. The
parameters used for this plot are V0 = kB × 1000 nK,
w = 400 nm, and n = 0.08µm−2. The error bars for the
circles shown the impact of the difference in differential
cross section across the inner and outer radii for the an-
nulus shown in Fig. 5c. and the standard deviation in
the energy (resulting from the Gaussian envelope of the
wavepacket) for the squares.

gas released into the disorder potential with a time-
independent profile similar to that shown in Fig. 11
is straightforward to image with high signal-to-noise
ratio and would provide a clear signature of two-
dimensional AL. Since the single scattering approxi-
mation is an upper bound on the localization length
observed in an expansion experiment, the localized
thermal density profile should be smaller in extent
than what is shown in Fig. 11.

V. CONCLUSION

We have identified an experimentally feasible ap-
proach to observation two-dimensional AL using ul-
tracold atoms using point-like disorder. Our ap-
proach requires nanoKelvin-scale temperatures in
conjunction with a dilute, strongly scattering dis-
ordered potential. Using a single scattering approx-
imation and exact numerical simulations, we predict
observable localization lengths for realistic particle
energies. This method can be extended to interact-
ing systems such as a gas composed of two spin states
of fermionic atoms, which may enable exploration of

0 10 20
0.0

2.0x103

4.0x103

N
 (µ

m
-2
)

r (µm)
FIG. 11. Thermal density profile for V0 = kB×9947 nK,
w = 400 nm, n = 0.2 mum−2, and T = 10 nK. Here, N is
the two-dimensional number density for 10,000 particles.

the analog of two-dimensional metal-insulator tran-
sitions [13–15].

Appendix A: Individual Scattering Simulation

In simulations of scattering from a single Gaus-
sian potential barrier, square grids were employed
ranging from L2 = 3600 µm2 to 10000 µm2 with
discretization sizes of 0.01 to 0.25 µm. The size of
the time steps was scaled with the shorter of the
two physical length scales in the system, the dis-
order width w and the particle de Broglie wave-
length 2π/k, according to δt=50.1 ns/µm. Approxi-
mately 16,000 time steps were taken, which allowed
the wavefunction initially at the center of the po-
tential to scatter outward through roughly L/2, in-
dependent of the group velocity. Propagation for
longer times resulted in significant errors induced by
boundary and finite-size effects, manifest as a peri-
odic modulation of the scattered wave. The scat-
tered wavefunction was sampled between radii of 3–
5 µm in order to determine the scattering amplitude.

Appendix B: Time-Dependent Simulation of
Anderson Localization

We used a 1536×1536 discretization of the system
area 349× 349 µm2 and populated the region r > R
with pointlike disorder given by

V (~x) =
∑
i

V0e
−
(
~x−~xi
w

)2

, (B1)
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where the coordinates ~xi are chosen randomly with
the constraint that ri > R = 21.8 µm. We choose
w = 400 nm, V0 = kB × 1000 nK, and n =
0.08 µm−2, which corresponds to disorder strong
enough to produce localization within the simulation
space while remaining computationally tractable.

We include an imaginary potential component
near the edges of the system grid in order to absorb
probability current approaching the periodic bound-
ary. This enables dynamical simulations to continue
for the long times necessary to observe localization.
The absorbing boundary potential is given by

V =

{
−iB r

rmax
, |x|, |y| > 304µm

0, otherwise
(B2)

with rmax = 349 µm and B = kB ×
(
5× 10−5

)
nK.
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