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We study Majorana fermions (MFs) in quasi-one dimensional (quasi-1D) and higher-dimensional
fermionic optical lattices with a strictly 1D spin-orbit coupling (SOC) which has already been real-
ized in cold atom experiments. We show that when the superfluid order parameters are homogeneous
and are enforced to be identical along different chains, there are multiple MFs at each end with or
without an experimentally tunable in-plane Zeeman field Vy. For Vy = 0 the multiple MFs are
topologically protected by a chiral symmetry, however for Vy 6= 0 the existence of multiple MFs
is related to the peculiar spectrum properties of the system despite the broken chiral symmetry.
In the generalization to higher dimensions, the multiple MFs form a zero-energy flat band. Fur-
thermore, when the superfluid order parameters are solved self-consistently, the multiple MFs are
usually destroyed because of the inhomogeneous order parameters of either BCS (Vy = 0) type or
Fulde-Ferrell (FF) (Vy 6= 0) type. Our results are useful to guide the experimentalists on searching
for MFs in ultracold spin-orbit coupled fermionic superfluids.

PACS numbers: 03.75.Ss, 67.85.-d, 74.20.Fg

I. INTRODUCTION

Majorana Fermions (MFs), quantum particles which
are their own anti-particles, have attracted a lot of atten-
tion because of their topological properties and the po-
tential applications in fault-tolerant topological quantum
computation [1–3]. Many solid state materials have been
predicted to be candidates for the realization of MFs [4–
16]. Even though experimental progress in the solid state
systems has been made in the past two years and pos-
sible signatures of MFs have been observed [17–25], a
“smoking gun” signature of MFs is still lacking due to
many factors influencing the measurement results in solid
state materials [26–30]. On the other hand, ultracold
atoms provide an ideal playground for the quantum sim-
ulations of many condensed matter systems because they
are clean and highly controllable in the system parame-
ters. The recent realization of spin-orbit coupling (SOC)
in Bose-Einstein condensate (BEC) [31–34] and Fermi
gases [35, 36] paves a way for the observation of MFs in
cold atoms [37–41]. In this context, many schemes for
the creation and observation of MFs in a 1D cold atom
quantum wire have been studied [42–45].
The realistic experiments in ultracold atoms are not

on strictly one dimensional (1D) systems, which moti-
vates our present study on the existence of MFs in quasi-
1D and higher dimensional ultracold atom systems [46].
The necessity of studying the physics beyond 1D sys-
tems also arises from the failure of mean field theory in
1D where there is no long-range ordering due to Mermin-
Wagner theorem. The inclusion of a weak tunneling in
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the transverse directions in a quasi-1D system could ef-
fectively suppress the quantum fluctuations and stabi-
lize the long-range superfluid order, which is essential for
MFs [47]. However, the presence of such transverse tun-
neling terms, even if treated as a perturbation, may pair-
wise couple the MFs and create a gap in the low energy
spectrum. It follows that, unless the number of chains in
the transverse directions is odd (which is difficult to con-
trol experimentally), the system of coupled chains may
not support any MFs at all. Because of this, whether
or not MFs exist in weakly coupled quasi-1D (with finite
number of chains), two- and three dimensional (2D, 3D)
cold atom systems with artificial SOC and Zeeman fields
has remained an important open question both theoreti-
cally and experimentally.

In this paper we study the existence of MFs in quasi-
1D and higher dimensional optical lattices. In contrast
to the previous studies, we have considered here strictly
1D SOC that has been realized in ultracold Fermi gases
recently [35, 36]. The rest of the paper is organized
as follows. In Sec. II, we present the model Hamilto-
nian of the quasi-1D system. In Sec. III, we show that
when the superfluid order parameters are homogeneous
along different chains, there are multiple MFs at each
end of the system no matter an experimentally tunable
in-plane Zeeman field Vy is present or not. When Vy = 0,
the multiple MFs are topologically protected by a chiral
symmetry [48–51], while when Vy 6= 0 the existence of
multiple MFs are related to the peculiar spectrum prop-
erties of the system. In the generalization to higher
dimensions, the multiple MFs form a zero energy flat
band. In Sec. IV, we find that when the order param-
eters are solved self-consistently, the multiple MFs are
usually destroyed because of the inhomogeneous order
parameters of either BCS (Vy = 0) type or Fulde-Ferrell
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(FF) (Vy 6= 0) type [52, 53].

II. MODEL HAMILTONIAN

We first consider quasi-1D optical lattices aligned along
x̂ direction. The tight-binding Hamiltonian in the mean

field level can be written as,

Htb = −t
∑

xσ

(c†
x,σcx+êx,σ +H.c.)− µ

∑

x,σ

c†
x,σcx,σ +

α

2

∑

x

(c†
x−êx,↓

cx↑ − c†
x+êx,↓

cx↑ +H.c.)− Vz

∑

x

(c†
x↑cx↑ − c†

x↓cx↓)

+ iVy

∑

x

(c†
x↑cx↓ − c†

x↓cx↑)− ty
∑

xσ

(c†
x,σcx+ê⊥,σ +H.c.) +

∑

x

(∆xc
†
x↑c

†
x↓ +H.c.),

where t is the hopping amplitude along x̂ direction (we
take t = 1 as the energy unit in this paper) with c†

x,σ be-
ing the fermionic operator creating a particle with spin
σ in the site x = (x, y, z). µ is the chemical potential,
α is the 1D SOC strength along x̂ direction, and Vz and
Vy are the out-of-plane and in-plane Zeeman fields in
the ẑ and ŷ directions, respectively. Here we consider
MFs in a bunch of coupled 1D chains, ty represents the
inter-chain coupling strength and ê⊥ = êy(z) is the trans-
verse unit vector. ∆x = −U〈cx↓cx↑〉 is order parameter,
with U > 0 the corresponding attractive Hubbard in-
teraction strength. The 1D SOC has been realized by
the stimulated Raman transitions of two hyperfine states
(which can be treated as a spin 1/2 system) of the cold
atoms [31–36], so the above model is readily accessible us-
ing state-of-the-art experimental setups. Moreover, the
interaction strength U between the atoms could be tuned
using a Feshbach resonance, which has been observed in
recent experiment for spin-orbit coupled Fermi gases [54].
For a single chain, the presence of the in-plane Zee-

man field Vy and SOC breaks the spatial inversion sym-
metry of the Fermi surface, leading to an FF super-
fluid with a finite momentum for the Cooper pairing
∆i = ∆0e

iQxxi [55, 56]. In an appropriate parameter
regime, the system could be driven to a topological FF
superfluid phase which also supports MFs [57–61]. In
reality, the finite momentum Qx and the order parame-
ter ∆0 is usually determined self-consistently [62]. How-
ever, homogeneous superfluid order parameters can also
be induced by loading ultracold fermionic atoms in a 3D
molecular BEC cloud with Feshbach resonance [43], sim-
ilar as the proximity-induced superconductivity in solid
state materials. For simplicity, in the following analysis
we first assume ∆x = ∆0 and then consider the self-
consistent solutions in Sec. IV.

III. HOMOGENEOUS ORDER PARAMETERS

To illustrate the basic physical picture of MFs in 2D
and 3D optical lattices, we first consider the quasi-1D

optical lattices with a finite number Ny of chains in the
transverse ŷ direction. After the Fourier transformation,
the multi-chain Bogoliubov-de Gennes (BdG) equation
in momentum space can be written as

HBdG(kx) = h0(kx)τz − Vyσy −∆0σyτy − tyτzρx (1)

where h0(kx) = −2t cos(kxd) − µ − Vzσz + α sin(kxd)σy

and d is the lattice spacing. The Pauli matrices σj , τj
act on the spin and particle-hole spaces, respectively. The
Ny × Ny matrix ρx act on the chain space and it is de-
fined as (ρ̃x)jk = 1 for |j − k| = 1 and 0 otherwise. The
above BdG Hamiltonian preserves a particle-hole sym-
metry ΞH(kx)Ξ

−1 = −H(−kx), where Ξ = τxK and K
is the complex conjugate.

A. Chiral symmetry protected MFs for Vy = 0.

When Vy = 0, Eq.1 can be written as H = Hsτz +
i∆τy which preserves an additional chiral symmetry
SH(kx)S

−1 = −H(kx), where Hs = h0(kx) − tyρx,
∆ = i∆0σy, and S = τx. With an auxiliary pseudo-
time reversal symmetry operator defined as Θ = K such
that Θ · Ξ = S, the system belongs to the BDI topo-
logical class characterized by an integer Z topological in-
variant [63, 64]. The presence of the chiral symmetry
S allows the definition of a winding number W which is
equal to the number of MFs in a quasi-1D system [48, 49]:

W = −
i

π

∫ kx=π/d

kx=0

dz(kx)

z(kx)
= −

i

π
(ln(z(π))− ln(z(0))),

(2)
where z(kx) = Det(A(kx))/|Det(A(kx))| and A(kx) =
Hs + ∆. As along as W is non-zero, the multiple MFs
at the ends of the chains, even if coupled by the trans-
verse coupling, are topologically protected by the chiral
symmetry S. Such a chiral symmetry cannot be broken
by disorder (either site- or bond-disorder), nearest- or
next-nearest-neighbor hopping (which only influences h0

in Eq. 1) and Zeeman fields (or magnetic impurities) in
x̂ or ẑ directions.
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FIG. 1. (Color online) BdG band structure of two coupled
chains with increasing the transverse tunneling for µ = −2t:
(a) ty = 0.3t, (b) tcy = 0.6245t, (c) ty = 0.9t. For ty < tcy , the
system is in a topological state with the presence of two MFs,
the winding number W = 2 as shown in (d); For ty > tcy,
the system is in a non-topological state, the winding number
W = 0 as shown in (f). (e) is the phase-diagram of the system
indicating the number of MFs. Other parameters: α = 1.0t,
∆0 = 0.5t, Vz = 0.8t.

As a concrete example, we consider a two-chain sys-
tem with weak transverse tunneling ty which is the sim-
plest quasi-1D system. The winding number is shown
in Fig. 1 which agrees very well with the band structure
of the BdG Hamiltonian. We have chosen the chemical
potential to lie in the middle of the Zeeman splitting of
the two uncoupled chains µ = −2t. Thus, for uncoupled
chains (ty = 0) both lattices are in the topological phase
when Vz > ∆0, supporting a total of two pairs of MFs.
Increasing the transverse tunneling ty, we see that the
winding number changes from W = 2 to W = 0 at the
some critical tunneling tcy =

√

V 2
z −∆2

0 = 0.6245t where
the band gap closes(Fig. 1(b)). The band gap closes at
kx = 0 at ty = tcy signalling a topological phase transi-
tion and the disappearance of the MFs. In Fig. 1(e), we
show the phase diagram of a two-chain system indicating
the number of MFs for different parameters. The num-
ber of MFs could be any value no more than the number

of chains in the transverse direction Ny. As increasing
ty, W can change from 2 → 1 → 0 for |µ| 6= 2t. We
emphasize that this result is quite general for a quasi-
1D system: the number of MFs can be controlled by the
inter-chain coupling.

B. Effect of a transverse SOC.

To compare with the spin-independent inter-chain
coupling, we here consider instead a weak SOC be-
tween the chains in the transverse direction, H⊥

so =

αy/2
∑

x
(ic†

x−êy,↓
cx↑ − ic†

x+êy,↓
cx↑) + H.c, which forms

essentially a 2D Rashba SOC but with a difference in the
tunneling magnitudes between the longitudinal and the
transverse directions. We find that the effect of αy is
dramatically different from the effect of ty in the above
analysis. The chiral symmetry is no longer preserved
and the system belongs to the D topological class: for
even number of chains, the system is in the topologically
trivial phase and for odd number of chains it is in the
non-trivial Z2 phase with one MF at each end. This can
also be understood from the following analysis.
The multi-chain system is of the form HBdG(kx) =

H(Vy)ρ0 − αyσxρy where we have assumed that there’s
no transverse tunneling ty. Here ρy is an Ny × Ny

matrix which act on the chain space. It is defined as
(ρy)jk = −i for k − j = 1, (ρy)jk = i for k − j = −1
and 0 otherwise. We note that the eigenvalues of ρy
are of the form (±λ1,±λ2,±λ3, · · · ) for Ny = even and
(0,±λ1,±λ2,±λ3, · · · ) for Ny = odd which form the di-
agonal matrix ρz. So the above BdG Hamiltonian (Eq. 1)
can be rotated with a unitary transformation in the chain
space to

UHBdG(kx)U
† = H(Vy)ρ0 − αyσxρz, (3)

where UρyU
−1 = ρz.

Explicitly, for a system with a number of chains Ny in
the y direction, the Hamiltonian after the rotation is of
the form

HBdG =

















H − αy(ρz)11σx 0
... 0

0 H − αy(ρz)22σx

... 0

. . . · · ·
. . . · · ·

0 0
... H − αy(ρz)NyNy

σx

















For the whole system, the particle-hole symmetry pre-
serves with the presence of the transverse SOC. How-
ever, after the rotation, the transverse SOC term is now
Hαy

= −αy(ρz)jjσx for each transformed chain. We find

that ΞHαy
Ξ−1 6= −Hαy

, thus the particle-hole Z2 sym-
metry is broken for each transformed chain and thus the
original multiple MFs for αy = 0 disappear because of
the finite transverse SOC. An exception occurs for an
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FIG. 2. (Color online) The BdG quasi-particle excitation en-
ergies as a function of ky for a 2D strip confined in the x

direction with (a) a weak transverse tunneling ty = 0.1t or
(b) a weak transverse SOC αy = 0.2t. Other parameters are:
α = 1.0t, Vz = 0.8t, ∆0 = 0.5t, Vy = 0.0.
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FIG. 3. (Color online) The lowest three or four quasi-particle
excitation energies of weakly coupled chains for (a) Ny = 2
and (b) Ny = 3 as a function of the in-plane Zeeman field Vy.
The number N in the shaded box represents the number of
zero modes. The other parameters are α = 1.0t, ty = 0.3t,
µ = −2t, ∆0 = 0.5t, Vz = 0.8t.

odd number of chains where the chain spin matrix ρy
has a λ = 0 eigenvalue, i.e (ρz)Ny

2

Ny

2

= 0 if the diagonal

elements are arranged in an ascending order. For this
specific transformed chain, the particle-hole symmetry is
intact and thus it still has a Z2 symmetry which supports
one MF at each end [46].

To compare the different effects of weak transverse tun-
neling ty and αy, we plot the edge states of a 2D strip
(confined in the x direction and infinite in the y direction)
in these cases. With only a weak SOC in the transverse

direction αy = 0.2t, there exist chiral MFs, with the edge
state energy spectrum plotted in Fig. 2(b), in contrast to
the energy spectrum with only a weak transverse tunnel-
ing ty in Fig. 2(a). We see αy induces a spin dependent
splitting, and its effect vanishes at ky = 0,±π. While for
a nonzero ty, the zero energies preserve the spin degen-
eracies and thus form a flat band in the full parameter
regime of ky as long as ty is small.

C. Multiple MFs without chiral symmetry for

Vy 6= 0.

For a nonzero in-plane Zeeman field Vy , we see that
the pseudo-time reversal symmetry Θ = K is broken and
it’s no longer possible to find a chiral symmetry operator
to be anti-commute with the full BdG Hamiltonian (see
Eq. 1). As a result, the system no longer belongs to
the BDI class [46, 48, 49]. However, we find that there
are still multiple MFs even for Vy 6= 0 in the weakly
coupled multi-chain system when the order parameters
along different chains are assumed to be identical. We
plot the lowest four quasi-particle excitation energies of
the BdG equation for Ny = 2 and Ny = 3 in Fig. 3.
We find that there are two and three zero energy modes
respectively and the system enters a gapless topologically
trivial region only for Vy > ∆0.
To understand this surprising result, we note that

the multi-chain system is now of the form HBdG(kx) =
H(Vy)ρ0−tyτzρx which can be rotated in the chain space
to

UHBdG(kx)U
† = H(Vy)ρ0 − tyτzρz, (4)

where UρxU
−1 = ρz and ρz is a diagonal matrix consist-

ing of all the eigenvalues of ρx (Eq. 1). The second term is
nothing but an effective chemical potential µ̃ = ty(ρz)jj
for each transformed “effective” chain (which preserves
the particle-hole symmetry, breaks the time-reversal sym-
metry, and thus belongs to topological class D with a Z2

invariant). After the rotation in the chain space the new
transformed “effective” chains are now independent. Ex-
plicitly, for a system with a number of chains Ny in the
y direction

HBdG =

















H − ty(ρz)11τz 0
... 0

0 H − ty(ρz)22τz
... 0

. . . · · ·
. . . · · ·

0 0
... H − ty(ρz)NyNy

τz

















As long as the transverse tunneling induced effective
chemical potentials are small, the weakly coupled multi-

chain system will thus have the same number of MFs
as that with ty = 0. Since the transformed ”effective”
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FIG. 4. (Color online) Flat band of 3D optical lattices with
weak transverse tunneling t⊥. (a) t⊥ = 0.07t where the Ma-
jorana zero energy states form a flat band. (b) t⊥ = 0.1t,
where MFs disappear when the bulk gap at BZ zone bound-
aries closes and then reopens. Only the lowest two quasi-
particle excitations are plotted to be clear. Other parameters
are: Vz = 0.8t, ∆0 = 0.5t, α = 1.0t, Vy = 0.0. The chem-
ical potential µ = −2t − 4ty which removes the transverse
tunneling induced constant energy offset.

chains are independent of each other, such a system be-

longs to the topological class Z2 ⊗ Z2 · · · ⊗ Z2 = Z
⊗Ny

2

for weak transverse tunneling.

D. Majorana flat band.

We now study the crossover of the Majorana fermion
physics from quasi-1D to a real 3D system for Vy = 0. As-
sume that the 3D lattices with strictly 1D SOC are con-
fined in the x̂ direction. With periodic boundary condi-
tions along the transverse directions, ky and kz are good
quantum numbers. Such 3D lattices are equivalent to a
quasi-1D system with a number of chains equal to the
discrete values of ky/z , and −2t⊥ cos(kyd)− 2t⊥ cos(kzd)
can be treated as a chemical potential which does not
break the symmetry of the system comparing to 1D. The
chemical potential µ is assumed to occupy the middle
of the lower bands when the transverse tunneling t⊥ is
zero. We also take a Zeeman field large enough to drive
the system to the topological regime for each value of ky
and kz . Thus, the lowest quasi-particle excitations of the
uncoupled 3D lattices shows a MFs flat band [65, 66].
The zero energy MFs flat band persists for a small trans-
verse tunneling t⊥ (Fig. 4a). With increasing t⊥, the zero
energy MFs disappear first at the Brillouin zone (BZ)
edges while the BZ center is still a zero energy flat band
(Fig. 4b). Further increasing t⊥, we see that the MFs flat
band is enclosed by the bulk quasi-particle excitations,
showing a configuration of Majorana flat plate. When
the transverse coupling is strong enough, MFs disappear
from the entire BZ, transforming the system to a trivial
superconductor. Note that the bulk excitation gap at the
center of BZ also decreases. These demonstrate that MFs
exist at the confined surface of a 3D system and the zero
energy flat band is topologically protected by an energy
gap from the bulk excitations.

IV. EFFECT OF INHOMOGENEOUS ORDER

PARAMETER.

In the above discussions, we have assumed a uniform
order parameter ∆0. In practice, when the superfluid or-
der parameter originates from the intrinsic atomic scat-
tering interaction, the order parameter of the superfluid
needs to be obtained from the self-consistent calculations
of the BdG equation, which is naturally inhomogeneous
due to the hard wall boundary. Without an in-plane
Zeeman field Vy, the order parameters for the topologi-
cal BCS superfluid are still identical on different chains
as shown in Fig. 5(a) if the initial random order param-
eter is chosen to be real in the self-consistent calcula-
tion. The chiral symmetry guarantees the Z invariant
and multiple MFs are found at each end in a quasi-1D
system (here Ny = 2, see Fig. 5(c)) after a self-consistent
calculation. However, inhomogeneous order parameters
will appear spontaneously on the system boundaries in
the self-consistent calculation if a complex initial ran-
dom input order parameter is used [67]. In this case, the
zero-energy degeneracy of MFs are slightly lifted in the
presence of a weak transverse tunneling [67] due to the
interaction between MFs.
With a nonzero Vy , the FF superfluid order param-

eters of the system are identical along different chains
for periodic boundary conditions [62]. However, for open
boundary conditions, the order parameters are not iden-
tical on the edges for different chains due to the interplay
of the finite Qx and the boundary, or the presence of edge
states. As shown in Fig. 5(b), we see that the order pa-
rameters for the two parallel chains are identical in the
bulk but different on the boundaries. From the quasi-
particle excitation spectrum (Fig. 5d), the multiple MFs
are gapped out because of the inhomogeneity of the or-
der parameters on the boundaries. However, for an odd
number of chains (Ny = 3), even though the order pa-
rameters are still inhomogeneous on the boundaries, one
pair of MFs remains as shown in the inset of Fig. 5d.
More numerical results show that one pair of MFs sur-
vives in self-consistent calculations only when Ny and Nz

are both odd for systems with a nonzero Vy . Similar re-
sults can also arise in a realistic system with an external
trapping potential.

V. CONCLUSION.

In summary, we have studied MFs in quasi-1D, 2D, and
3D optical lattices in the presence of weak transverse tun-
nelings between the chains. The realistic experimentally
realized SOC is strictly 1D, leading to new intriguing re-
sults comparing to systems with a 2D Rashba SOC. We
find that, topologically robust MFs exist even in a cou-
pled multi-chain system as long as the transverse cou-
plings are weak. We have studied the robustness of the
MFs to in-plane Zeeman fields (that break the chiral sym-
metry) and also to spatially inhomogeneous order param-
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FIG. 5. (Color online) Effects of inhomogeneous order param-
eters from the self-consistent calculation. The order parame-
ters ∆ (in unit of t) along different chains and quasi-particle
excitation energies En (in unit of t) are plotted for a two-chain
system (Ny = 2) for (a,c) Vy = 0.0 and (b,d) Vy = 0.5t. Only
the real parts of the order parameters for the two chains are
plotted in (b). The inset of (d) shows the quasi-particle exci-
tation energies for a three-chain system (Ny = 3), indicating
one MF at each end, where the order parameter structures
are similar as (b). Other parameters are α = 2.0t, U = 4.5t,
Vz = 1.2t, µ = −2.25t.

eters resulting from the self-consistent calculations. For
the 3D optical lattices confined in the SOC direction, a
zero energy MFs flat band may exist even in the presence
of a weak transverse tunneling. The existence of MFs in
cold atom systems can be probed using radio-frequency
spectroscopy [68]. Spin-orbit coupled fermionic optical
lattices has been experimentally realized. Because of the
lack of disorder and the precisely controllable experiment
parameters, it provides a feasible platform to search for
MFs in context of cold atoms.
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