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We present a theoretical study of the ground state of the BCS-BEC crossover in dilute two-dimensional Fermi

gases. While the mean-field theory provides a simple and analytical equation of state, the pressure is equal to

that of a noninteracting Fermi gas in the entire BCS-BEC crossover, which is not consistent with the features

of the weakly interacting Bose condensate in the BEC limit and the weakly interacting Fermi liquid in the

BCS limit. The inadequacy of the 2D mean-field theory indicates that the quantum fluctuations are much more

pronounced than those in 3D. In this work, we show that the inclusion of the Gaussian quantum fluctuations

naturally recovers the above features in both the BEC and BCS limits. In the BEC limit, the missing logarithmic

dependence on the boson chemical potential is recovered by the quantum fluctuations. Near the quantum phase

transition from the vacuum to the BEC phase, we compare our equation of state with the known grand canonical

equation of state of 2D Bose gases and determine the ratio of the composite boson scattering length aB to the

fermion scattering length a2D. We find aB ≃ 0.56a2D , in good agreement with the exact four-body calculation.

We compare our equation of state in the BCS-BEC crossover with recent results from the quantum Monte Carlo

simulations and the experimental measurements and find good agreements.

PACS numbers: 05.30.Fk, 03.75.Ss, 67.85.Lm, 74.20.Fg

I. INTRODUCTION

The experimental realization of ultracold atomic Fermi

gases with tunable interatomic interaction has opened a new

era for the study of some longstanding theoretical proposals

in many-fermion systems. One interesting proposal is the

smooth crossover from a Bardeen-Cooper-Schrieffer (BCS)

superfluid ground state with largely overlapping Cooper pairs

to a Bose-Einstein condensate (BEC) of tightly bound bosonic

molecules – a phenomenon suggested many years ago [1–3].

A simple but important system is a dilute attractive Fermi

gas in three dimensions (3D), where the effective range of

the short-ranged interaction is much smaller than the inter-

particle distance. The system can be characterized by a di-

mensionless gas parameter 1/(kFa3D), where a3D is the s-wave

scattering length of the short-ranged interaction and kF is the

Fermi momentum in the absence of interaction. The BCS-

BEC crossover occurs when the parameter 1/(kFa3D) is tuned

from negative to positive values [4–8], and the BCS and

BEC limits correspond to the cases 1/(kFa3D) → −∞ and

1/(kFa3D)→ +∞, respectively.

The BCS-BEC crossover phenomenon in 3D dilute Fermi

gases has been experimentally demonstrated by using ultra-

cold gases of 6Li and 40K atoms [9–11], where the s-wave

scattering length and hence the gas parameter 1/(kFa3D) was

tuned by means of the Feshbach resonance [12, 13]. The equa-

tion of state and various static and dynamic properties of the

BCS-BEC crossover have become a big challenge for quan-

tum many-body theory [14–24] because the conventional per-

turbation theory is no longer valid. At the so-called unitary

point where a3D → ∞, the only length scale of the system

is the inter-particle distance. Therefore, the properties of the

system at the unitary point 1/(kFa3D) = 0 become universal,

i.e., independent of the details of the interactions. All thermo-

dynamic quantities, scaled by their counterparts for the non-

interacting Fermi gases, become universal constants. Deter-

mining these universal constants has been one of the most in-

triguing topics in the research of the cold Fermi gases [25–31].

On the other hand, it was suggested that a two-dimensional

(2D) Fermi gas with short-ranged s-wave attraction can also

undergo a BCS-BEC crossover [32–34]. Unlike 3D, two-body

bound state always exists in 2D even though the attraction is

arbitrarily weak. The BCS-BEC crossover in 2D can be real-

ized by tuning the binding energy of the bound state. Study-

ing the BCS-BEC crossover in 2D will help us understand

the physics of pseudogap and Berezinskii-Kosterlitz-Thouless

transition in fermionic systems [35]. In recent years, quasi-

2D atomic Fermi gases have been experimentally realized and

studied by a number of groups [36–45]. In cold-atom exper-

iments, a quasi-2D Fermi gas can be realized by arranging a

one-dimensional optical lattice along the axial direction and

a weak harmonic trapping potential in the radial plane, such

that fermions are strongly confined along the axial direction

and form a series of pancake-shaped quasi-2D clouds. The

strong anisotropy of the trapping potentials, namely ωz ≫ ω⊥
where ωz (ω⊥) is the axial (radial) frequency, allows us to use

an effective 2D Hamiltonian to deal with the radial degrees of

freedom. The experimental studies of quasi-2D Fermi gases

have promoted great theoretical interests in the past few years

[46–74].

It is known that in 3D, even the mean-field theory predicts

that the system is a weakly interacting Bose condensate in

the strong attraction limit [5]. The composite boson scatter-

ing length is shown to be aB = 2a3D [5]. The inclusion of

Gaussian pair fluctuations [16–18] recovers the Fermi liquid

corrections in the weak attraction limit and modifies the com-

posite boson scattering length to aB ≃ 0.55a3D which is close

to the exact result aB ≃ 0.6a3D [75]. Moreover, the equation

of state (EOS) in the BCS-BEC crossover agrees excellently

with the quantum Monte Carlo results and the experimental
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measurements if the Gaussian pair fluctuations are taken into

account [16–18]. In contrast, the mean-field theory for 2D

Fermi gases does not predict a weakly interacting 2D Bose

condensate in the strong attraction limit [33, 34]. The cou-

pling constant between the composite bosons is predicted to

be energy independent, which arises from the inadequacy of

the Born approximation for four-body scattering in 2D. As a

result, the 2D mean-field theory predicts that the pressure of a

homogeneous 2D Fermi gas is equal to that of a noninteract-

ing Fermi gas in the entire BCS-BEC crossover. However, re-

cent experimental measurements [37, 41] and quantum Monte

Carlo simulations [46–48] show that the pressure in the strong

attraction limit is vanishingly small in comparison to that of a

noninteracting Fermi gas, which is consistent with the picture

that the system is a weakly interacting 2D Bose condensate.

These results indicate that the 2D mean-field theory is not ade-

quate even at the qualitative level and the quantum fluctuations

are much more important in 2D.

In analogy to the 3D case, we expect that the inclusion of

Gaussian pair fluctuations in 2D naturally recovers the feature

of the weakly interacting 2D Bose condensate in the strong

attraction limit. This has been demonstrated recently by using

the pole approximation for the Goldstone mode and the di-

mensional regularization for the untraviolet divergence, which

leads to an elegant derivation of the composite boson scat-

tering length [73]. However, the pole approximation is lim-

ited in the strong attraction limit because the use of the Bo-

goliubov dispersion for the Goldstone mode. We also notice

that the ultraviolet divergence arising from the pole approx-

imation can be naturally avoided in the full treatment of the

collective modes [16–18]. In this work, we study the influ-

ence of quantum fluctuations on the equation of state (EOS)

of 2D Fermi gases in the entire BCS-BEC crossover. With

the full EOS beyond the pole approximation, we determine

the ratio of the composite boson scattering length aB to the

fermion scattering length a2D by comparing our EOS near the

vacuum-BEC quantum phase transition with the known grand

canonical EOS of weakly interacting 2D Bose gases [76–82].

We obtain aB ≃ 0.56a2D, in good agreement with the exact

four-body calculation [49] and the pole approximation treat-

ment [73]. We also perform numerical calculations for the

canonical EOS of a homogeneous 2D Fermi gas in the BCS-

BEC crossover. In addition to recovering the weakly interact-

ing Bose condensate in the strong attraction limit, we find that

the Fermi liquid corrections [83–85] can also be recovered at

sufficiently weak attraction. We compare our EOS with the

recent results from quantum Monte Carlo simulations and ex-

perimental measurements in the entire BCS-BEC crossover

and find good agreements.

The paper is organized as follows. We set up our theoretical

framework for 2D Fermi gases beyond mean field in Sec. II.

We study the strong attraction limit and determine the com-

posite boson scattering length in Sec. III. We present our the-

oretical predictions for the EOS in the BCS-BEC crossover

and compare our results with the quantum Monte Carlo data

and experimental measurements in Sec. IV. We summarize in

Sec. V. The natural units ~ = kB = 1 will be used throughout.

II. HAMILTONIAN AND GRAND POTENTIAL

We consider a spin-1/2 (two-component) Fermi gas in two

spatial dimensions with a short-ranged s-wave attractive inter-

action between the unlike spins. In the dilute limit, the inter-

action potential can be safely modeled by a contact interac-

tion. The grand canonical Hamiltonian density of the system

is given by

H =
∑

σ=↑,↓
ψ̄σ(r)H0ψσ(r) − Uψ̄↑(r)ψ̄↓(r)ψ↓(r)ψ↑(r), (1)

where ψ↑(r) and ψ↓(r) represent the annihilation field opera-

tors for the two spin states of fermions,H0 = −∇2/(2m)−µ is

the free single-particle Hamiltonian with m being the fermion

mass and µ being the chemical potential, and U > 0 de-

notes the s-wave attractive interaction occurring between un-

like spins.

The contact coupling U is convenient for us to perform the-

oretical derivations. However, it should be renormalized by

using some physical quantities so that we can obtain finite re-

sults in the many-body calculations. With the contact interac-

tion U, the Lippmann-Schwinger equation for the two-body T

matrix reads

T−1
2B(E) = −U−1 − Π(E), (2)

where E = k2/m is the scattering energy in the center-of-mass

frame and the two-particle bubble function Π(E) is given by

Π(E) =
∑

k

1

E + iǫ − 2εk

. (3)

Here ǫ = 0+ and εk = k2/(2m). We use the notation
∑

k ≡
∫

d2k/(2π)2 throughout. The cost of the use of the

contact interaction is that the integral over k suffers from ul-

traviolet (UV) divergence. We regularize the UV divergence

by introducing a hard cutoff Λ for |k|. For large Λ we obtain

Π(E) = − m

4π
ln
Λ

2

m
+

m

4π
ln (−E − iǫ) . (4)

Next we match the scattering amplitude f (k) = (4π/m)T2B(E)

to the known 2D s-wave scattering amplitude in the zero-

range limit, which is given by f (k) = 1/[ln(εB/E) + iπ] [33,

34]. Here εB is the binding energy of the two-body bound state

which characterizes the attraction strength. Thus we obtain

1

U(Λ)
=

m

4π
ln
Λ

2

mεB

=

∑

|k|<Λ

1

2εk + εB

. (5)

The above results should be understood in the large Λ limit.

After the renormalization of the bare coupling U through the

physical binding energy εB, the UV divergence in the many-

body calculations can be eliminated and we can set Λ→ ∞ to

obtain the final finite results.

In the imaginary-time functional path integral formalism,

the partition function at temperature T is

Z =
∫

[dψ][dψ̄] exp
{−S[ψ, ψ̄]

}

(6)
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where the action

S[ψ, ψ̄] =

∫

dx
[

ψ̄∂τψ + H(ψ, ψ̄)
]

. (7)

Here x = (τ, r) with τ being the imaginary time and
∫

dx =
∫ β

0
dτ

∫

d2r with β = 1/T . To decouple the interaction term,

we introduce an auxiliary pairing field Φ(x) and apply the

Hubbard-Stratonovich transformation. Then the the partition

function can be expressed as

Z =
∫

[dψ][dψ̄][dΦ][dΦ∗] exp
{

− S[ψ, ψ̄,Φ,Φ∗]
}

, (8)

where the action reads

S =
∫

dx
|Φ(x)|2

U
−

∫

dx

∫

dx′ψ̄(x)G−1(x, x′)ψ(x′). (9)

Here the Nambu-Gor’kov spinor ψ(x) = [ψ↑(x), ψ̄↓(x)]T is

employed and the inverse Green’s function G−1(x, x′) in the

Nambu-Gor’kov representation is given by

G−1(x, x′) =

(

−∂τ −H0 Φ(x)

Φ
∗(x) −∂τ +H0

)

δ(x − x′). (10)

Integrating out the fermion fields, we obtain

Z =
∫

[dΦ][dΦ∗] exp
{

− Seff[Φ,Φ∗]
}

(11)

where the effective action reads

Seff[Φ,Φ∗] =
1

U

∫

dx |Φ(x)|2 − Trln[G−1(x, x′)]. (12)

The partition function cannot be evaluated analytically

since the path integral over Φ and Φ∗ cannot be carried out.

At T = 0, the pairing field Φ(x) acquires a nonzero and uni-

form expectation value 〈Φ(x)〉 = ∆, which serves as the or-

der parameter of superfluidity. Due to the U(1) symmetry, we

can set ∆ to be real and positive without loss of generality.

Then we write Φ(x) = ∆ + φ(x), where φ(x) is the fluctuation

around the mean field. The effective action Seff[Φ,Φ
∗] can be

expanded in powers of the fluctuation φ(x); that is,

Seff[Φ,Φ
∗] = SMF + SGF[φ, φ∗] + · · · , (13)

where SMF ≡ Seff[∆,∆] is the saddle-point or mean-field

effective action and SGF[φ, φ∗] is the contribution from the

Gaussian fluctuations (GF). The higher-order contributions

from non-Gaussian fluctuations are not shown. Accordingly,

the grand potential can be expressed as

Ω = ΩMF + ΩGF + · · · , (14)

where ΩMF = SMF/(βV) with V being the volume and ΩGF is

contribution from the Gaussian fluctuations.

A. Mean-field approximation

In the mean-field approximation, the effective action is ap-

proximated as Seff[Φ,Φ
∗] ≃ SMF. The quantum fluctuations

are completely neglected. At T = 0, the mean-field grand

potential can be evaluated as

ΩMF =
∆

2

U
+

∑

k

(ξk − Ek) , (15)

where ξk = εk − µ and Ek =

√

ξ2
k
+ ∆2. The UV divergence

can be eliminated by using Eq. (5). We obtain

ΩMF = ∆
2
∑

k

(

1

2εk + εB

− 1

Ek + ξk

)

. (16)

The order parameter ∆ should be determined as a function of

µ by using the extreme condition ∂ΩMF/∂∆ = 0. We obtain

the gap equation

1

U
=

∑

k

1

2Ek

(17)

or explicitly

∑

k

(

1

2εk + εB

− 1

2Ek

)

= 0. (18)

It is very fortunate that in 2D the integral over k can be

carried out. The grand potential reads

ΩMF =
m∆2

4π















ln

√

µ2 + ∆2 − µ
εB

− µ
√

µ2 + ∆2 − µ
− 1

2















. (19)

Using the extreme condition ∂ΩMF/∂∆ = 0, we obtain

∆MF(µ) =
√

εB(2µ + εB) Θ(2µ + εB), (20)

which determines analytically the order parameter∆ as a func-

tion of the chemical potential µ. Substituting this result into

ΩMF, we obtain the mean-field grand canonical EOS

ΩMF(µ) = − m

8π
(2µ + εB)2

Θ(2µ + εB). (21)

The mean-field contribution to the particle density is given by

nMF(µ) =
m

2π
(2µ + εB)Θ(2µ + εB). (22)

The above mean-field results show that the system undergoes

a second-order quantum phase transition from the vacuum to a

matter phase with nonvanishing density. The critical chemical

potential is given by

µc = −
εB

2
. (23)
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B. Gaussian pair fluctuation theory

Now let us include the quantum fluctuations. We shall in-

clude the Gaussian fluctuations only and approximate the ef-

fective action as Seff[Φ,Φ
∗] ≃ SMF + SGF[φ, φ∗]. The advan-

tage of this Gaussian approximation is that the path integral

over φ and φ∗ can be carried out analytically. To evaluate the

quadratic term SGF[φ, φ∗], we make the Fourier transforma-

tion

φ(x) =
√

βV
∑

Q

φ(Q)e−iqlτ+iq·r, (24)

where Q = (iql, q) with ql = 2lπT (l ∈ Z) being the boson

Matsubara frequency. We use the notation
∑

Q = T
∑

l

∑

q

throughout. After some manipulations, SGF[φ, φ∗] can be ex-

pressed in a compact form

SGF[φ, φ∗] =
βV

2

∑

Q

(

φ∗(Q) φ(−Q)
)

M(Q)

(

φ(Q)

φ∗(−Q)

)

.(25)

The inverse boson propagator M(Q) is a 2 × 2 matrix. At

T = 0, its elements are analytically given by

M11(Q) =M22(−Q)

=
1

U
+

∑

k















u2
k
u2

k+q

iql − Ek − Ek+q

−
υ2

k
υ2

k+q

iql + Ek + Ek+q















,

M12(Q) =M21(Q)

=

∑

k

(

ukυkuk+qυk+q

iql + Ek + Ek+q

−
ukυkuk+qυk+q

iql − Ek − Ek+q

)

. (26)

Here the BCS distribution functions are defined as υ2
k
= (1 −

ξk/Ek)/2 and u2
k
= 1− υ2

k
. Note that Eq. (5) should be used to

eliminate the UV divergence.

Considering the Gaussian fluctuations only, the partition

function is approximated as

Z ≃ exp (−SMF)

∫

[dφ][dφ∗] exp
{

− SGF[φ, φ∗]
}

. (27)

Carrying out the path integral over φ and φ∗, we obtain the

grand potential Ω = ΩMF + ΩGF, where the contribution from

the Gaussian fluctuations can be formally expressed as

ΩGF =
1

2

∑

Q

ln det M(Q). (28)

However, this formal expression is divergent because the con-

vergent factors are not appropriately considered. Considering

the convergent factors leads to a finite result [16, 17]

ΩGF =
1

2

∑

Q

ln

[

M11(Q)

M22(Q)
det M(Q)

]

eiql0
+

. (29)

The Matsubara frequency sum can be converted to a standard

contour integral. At T = 0, we have

ΩGF =
1

2

∑

q

∫ 0

−∞

dω

π

[

δM(ω, q) + δ11(ω, q) − δ22(ω, q)
]

,(30)

where the phase shifts are defined as δM(ω, q) =

−Im ln det M(ω + iǫ, q), δ11(ω, q) = −Im ln M11(ω + iǫ, q),

and δ22(ω, q) = −Im ln M22(ω + iǫ, q).

A crucial element of the Gaussian pair fluctuation (GPF)

theory is that the order parameter ∆ should be determined by

the extreme of the mean-field grand potential ΩMF rather than

the full grand potential Ω = ΩMF + ΩGF [16, 17]. Therefore,

we still use the mean field gap equation or the analytical result

(21). The advantages of the use of the mean-field gap equa-

tion can be summarized as follows:

(1) The mean-field solution for the order parameter (21) guar-

antees the Goldstone’s theorem. The dispersion of the Gold-

stone mode can be obtained by solving the equation

det M(ω, q) = 0 (31)

for ω smaller than the two-particle continuum. The use of the

mean-field solution (21) for the order parameter ensures that

det M(0, 0) = 0. Therefore, the lightest collective mode is

gapless and has a linear dispersion at small momentum q. We

expect that the most important contribution from the quantum

fluctuations is the Goldstone mode fluctuation. The use of the

mean-field gap equation ensures that the Goldstone mode is

gapless and hence enables us to take into account correctly

the contribution from the Goldstone mode.

(2) The use of the mean-field solution (21) keeps the famous

Silver Blaze property [86, 87] even if we consider the con-

tributions from the quantum fluctuations. Even though the

critical chemical potential µc = −εB/2 for the vacuum-matter

transition is obtained from the mean-field approximation, we

expect that it is exact because the minimal chemical potential

to create a bound state is exactly 2µc = −εB. For µ < µc and

at T = 0, the system stays in the vacuum phase with vanish-

ing pressure and density. This is known as the Silver Blaze

problem [86, 87]. Obviously, the mean-field equation of state

satisfies this property. Now we show that the Gaussian contri-

bution ΩGF also satisfies this property. For µ < µc, we have

∆ = 0 and hence ΩGF is given by

ΩGF =

∑

Q

ln M0(iql, q)eiql0
+

, (32)

where the pair susceptibility M0(iql, q) in the vacuum phase

is analytically given by

M0(iql, q) =
∑

k

(

1

iql − ξk+q/2 − ξk−q/2

+
1

2εk + εB

)

=
m

4π
ln

















−iql +
q2

4m
− 2µ

εB

















. (33)

At T = 0, we obtain

ΩGF =

∑

q

∫ 0

−∞

dω

π
δ0(ω, q), (34)

where δ0(ω, q) = −Im ln M0(ω + iǫ, q). It is easy to show that

δ0(ω, q) = 0 forω < 0 in the vacuum phase µ < µc. Therefore,

we have exactlyΩGF = 0 for µ < µc. Accordingly, the particle

density also vanishes in the vacuum.
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C. Imaginary frequency integration formalism

For the Gaussian contribution ΩGF, it is convenient to em-

ploy an alternative formalism which automatically satisfies

the Silver Blaze property and also leads to faster convergence

for numerical calculations. To this end, we define two func-

tions MC
11

(z, q) and MC
22

(z, q) [17], which are given by

MC
11(z, q) =MC

22(−z, q) =
1

U
+

∑

k

u2
k
u2

k+q

z − Ek − Ek+q

. (35)

Using the gap equation (17) and the fact u2
k
< 1, we can

show that MC
11

(z, q) has no singularities and zeros in the

left half plane (Rez < 0). Therefore, the Matsubara sum

∑

ql
ln MC

11
(iql, q) vanishes at T = 0 since ln MC

11
(z, q) has no

singularities in the left-half plane. Therefore, the Gaussian

contribution at T = 0 can be expressed as [17]

ΩGF =
1

2

∑

Q

ln













M11(iql, q)M22(iql, q) −M2
12

(iql, q)

MC
11

(iql, q)MC
22

(iql, q)













. (36)

At T = 0, we replace the discrete Matsubara frequency sum

with a continuous integral over an imaginary frequency; i.e.,

T

∞
∑

l=−∞
X(iql)→

∫ ∞

−∞

dω

2π
X(iω). (37)

After some manipulations, we obtain

ΩGF(µ) =
∑

q

∫ ∞

0

dω

2π
ln

[

1 − 2∆4(µ)
A(ω, q)C(ω, q) + ω2B(ω, q)D(ω, q) + 2F2(ω, q)

A2(ω, q) + ω2B2(ω, q)
+ ∆

8(µ)
C2(ω, q) + ω2D2(ω, q)

A2(ω, q) + ω2B2(ω, q)

]

, (38)

where we have used the fact that the integrand is real and even in ω. The functions A, B,C,D, and F are defined as

A(ω, q) =
∑

k

[

1

2εk + εB

− 1

4

(

1

Ek+q/2

+
1

Ek−q/2

)

(Ek+q/2 + ξk+q/2)(Ek−q/2 + ξk−q/2)

(Ek+q/2 + Ek−q/2)2 + ω2

]

,

B(ω, q) =
∑

k

1

4Ek+q/2Ek−q/2

(Ek+q/2 + ξk+q/2)(Ek−q/2 + ξk−q/2)

(Ek+q/2 + Ek−q/2)2 + ω2
,

C(ω, q) =
∑

k

1

4

(

1

Ek+q/2

+
1

Ek−q/2

)

1

(Ek+q/2 + ξk+q/2)(Ek−q/2 + ξk−q/2)

1

(Ek+q/2 + Ek−q/2)2 + ω2
,

D(ω, q) =
∑

k

1

4Ek+q/2Ek−q/2(Ek+q/2 + ξk+q/2)(Ek−q/2 + ξk−q/2)

1

(Ek+q/2 + Ek−q/2)2 + ω2
,

F(ω, q) =
∑

k

1

4

(

1

Ek+q/2

+
1

Ek−q/2

)

1

(Ek+q/2 + Ek−q/2)2 + ω2
. (39)

Note that ∆(µ) is given by the mean-field solution (21). The

BCS-type dispersions Ek±q/2 in (39) are hence analytically

given by

Ek±q/2 =

√

(εk±q/2 − µ)2 + εB(2µ + εB)Θ(2µ + εB). (40)

The integrand in (38) vanishes in the vacuum µ < µc and

hence the Silver Blaze property is automatically satisfied.

Moreover, because we use the mean-field gap equation (21),

we can replace 1/(2εk+ εB) with 1/(2Ek) in the expression of

the function A(ω, q). Then we find that the integrand in (38)

diverges near (ω, q) = (0, 0), which indicates that the most im-

portant contribution is from the low-energy Goldstone mode.

In summary, the grand canonical EOS in the GPF theory is

given by

Ω(µ) = ΩMF(µ) + ΩGF(µ). (41)

The particle density n(µ) reads

n(µ) = nMF(µ) + nGF(µ), (42)

where the GF contribution is formally given by

nGF(µ) = −dΩGF(µ)

dµ
. (43)

Here d/dµ represents the full derivative with respect to µ; i.e.,

dΩGF(µ)

dµ
=
∂ΩGF

∂µ
+
∂ΩGF

∂∆

d∆

dµ
. (44)

In 3D, it was shown that the second term is crucial to produce

in the BEC limit the composite boson scattering length aB =

0.55a3D [16, 17], which is very close to the result aB = 0.6a3D

from the exact four-body calculation [75]. It has been shown

that in 2D the second term is much more important than in

3D. Without this contribution, the fluctuation contribution to

the particle density, nGF(µ), is divergent [64, 88]. The full

derivative leads to a convergent particle density and hence an

appropriate description of the BCS-BEC crossover.
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III. STRONG COUPLING LIMIT: WEAKLY

INTERACTING 2D BOSE CONDENSATE

While the mean-field theory predicts a simple and analyti-

cal EOS in the entire BCS-BEC crossover, it does not capture

correctly the interaction between the composite bosons in the

strong coupling (BEC) limit. At µ = µc, the system undergoes

a second-order quantum phase transition from the vacuum to

the dilute BEC of bound states. In the grand canonical ensem-

ble, the BEC limit corresponds to the regime µ = µc+0+ where

the particle density n is vanishingly small. Alternatively, the

chemical potential for composite bosons is given by

µB = 2µ + εB. (45)

The BEC limit corresponds to µB → 0, or more explicitly

µB/εB → 0.

First, we show that the mean-field theory leads to a constant

coupling between the composite bosons [89]. To this end, we

derive the Gross-Pitaevskii free energy functional in the BEC

limit [87, 90]. Since the order parameter becomes vanishingly

small for µ = µc + 0+, we can obtain a Ginzburg-Landau free

energy functional of the order parameter field ∆(x),

ΩGL[∆] =

∫

dx

[

∆
∗
(

a
∂

∂τ
− b
∇

2

4m
− c

)

∆ +
d

2
|∆|4

]

. (46)

The coefficients a, b and c can be determined by the normal-

state pair susceptibility M0(iql, q) which is given by (33). For

ql, q
2/(4m)≪ εB and µB → 0+, we have

M0(iql, q) ≃ m

4πεB

(

−iql +
q2

4m
− µB

)

. (47)

Therefore, we obtain

a = b =
m

4πεB

, c =
mµB

4πεB

. (48)

The coefficient d contains the information of the interaction

between the composite bosons. In the mean-field theory, it

can be obtained by making the Taylor expansion of ΩMF near

∆ = 0. We obtain

d =
m

4πε2
B

(49)

Therefore, if we define a new condensate wave function

ϕ(x) =

√

m

4πεB

∆(x), (50)

the Ginzgurg-Landau free energy reduces to the Gross-

Pitaevskii free energy of a dilute Bose gas,

ΩGP[ϕ] =

∫

dx

[

ϕ∗
(

∂

∂τ
− ∇

2

2mB

− µB

)

ϕ +
gB

2
|ϕ|4

]

. (51)

Here mB = 2m is the mass of the composite bosons. In the

mean-field theory, the boson-boson coupling gB is a constant,

gB =
4π

m
. (52)

This result is consistent with the previous calculation above

the superfluid transition temperature [89]. However, it has

been shown that for 2D bosons, the coupling gB is energy

(chemical potential) dependent [49, 91], that is,

1

gB

=
mB

4π
ln













4

µBmBa2
B

e2γ













, (53)

where aB is the boson-boson scattering length and γ ≃ 0.577...

is the Euler constant. The constant coupling (52) indicates

that the BEC limit of the 2D mean-field theory corresponds to

the Born approximation for four-body scattering in 2D [92].

This is also true for 3D. However, in 3D, the Born approxi-

mation already predicts a weak coupling gB = 4πaB/mB with

aB = 2a3D and hence the 3D mean-field theory is qualitatively

correct.

Second, the incorrect boson-boson interaction can also be

seen from the EOS. In the mean-field theory, the grand canon-

ical EOS in the BEC limit can be expressed as

ΩMF(µB) = − mB

16π
µ2

B. (54)

However, it is known that the grand canonical EOS of weakly

interacting 2D Bose gases in the Bogoliubov theory is given

by [81]

Ω(µB) = −
mBµ

2
B

8π













ln













4

µBmBa2
B

e2γ+1













+
1

2













. (55)

It was shown that the corrections beyond the Bogoliubov

theory can be expanded in powers of the small parameter

1/ ln[4/(µBmBa2
B

e2γ+1)]. The leading-order correction was

presented in [81]. In the BEC limit µB → 0, the beyond-

Bogoliubov corrections are vanishingly small in comparison

to the Bogoliubov contribution. We expect that the Bogoli-

ubov EOS (55) can be recovered in the BEC limit µB/εB → 0

if we include the contribution from the Gaussian quantum

fluctuations. If so, this allows us to determine the compos-

ite boson scattering length by comparing our EOS with the

Bogoliubov EOS (55) in the limit µB/εB → 0.

In the GPF theory, the grand canonical equation of state is

given by

Ω(µB) = −
mBµ

2
B

8π

[

f (ζ) +
1

2

]

, (56)

where ζ = µB/εB and the function f (ζ) is given by
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f (ζ) = − 2

πζ2

∫ ∞

0

dx

∫ ∞

0

dy ln

[

1 − 2ζ2A(x, y)C(x, y) + y2B(x, y)D(x, y) + 2F 2(x, y)

A2(x, y) + y2B2(x, y)
+ ζ4 C2(x, y) + y2D2(x, y)

A2(x, y) + y2B2(x, y)

]

. (57)

Here the dimensionless functionsA,B,C,D, and F are given by

A(x, y) =

∫ 2π

0

dθ

2π

∫ ∞

0

dz

[

1

z + 1
− 1

4

(

1

E+
+

1

E−

)

(E+ + ξ+)(E− + ξ−)

(E+ + E−)2 + y2

]

,

B(x, y) =

∫ 2π

0

dθ

2π

∫ ∞

0

dz
1

4E+E−

(E+ + ξ+)(E− + ξ−)

(E+ + E−)2 + y2
,

C(x, y) =

∫ 2π

0

dθ

2π

∫ ∞

0

dz
1

4

(

1

E+
+

1

E−

)

1

(E+ + ξ+)(E− + ξ−)

1

(E+ + E−)2 + y2
,

D(x, y) =

∫ 2π

0

dθ

2π

∫ ∞

0

dz
1

4E+E−(E+ + ξ+)(E− + ξ−)

1

(E+ + E−)2 + y2
,

F (x, y) =

∫ 2π

0

dθ

2π

∫ ∞

0

dz
1

4

(

1

E+
+

1

E−

)

1

(E+ + E−)2 + y2
, (58)

where the dimensionless variables x, y, and z are defined as x = q2/(4mεB), y = ω/εB, and z = k2/(mεB) and the notations ξ±
and E± are given by

ξ± =
1

2

(

z + x ± 2
√

xz cos θ + 1 − ζ
)

, E± =
√

(ξ±)2 + ζ. (59)

We can show that f (ζ) is divergent at ζ = 0. To this end, we

evaluate the functionsA,B,C,D, and F at ζ = 0, which will

be denoted by the subscript 0. We have

A0(x, y) =
1

2
ln

[

(1 + x)2
+ y2

]

,

B0(x, y) =
1

y
arctan

y

1 + x
,

C0(x, y) =

∫ ∞

0

dz
L2 − 2xz

L2(L2 + y2)
(

L2 − 4xz
)3/2

,

D0(x, y) =

∫ ∞

0

dz
L2 − 2xz

L3(L2 + y2)
(

L2 − 4xz
)3/2

,

F0(x, y) =

∫ ∞

0

dz
1

(L2 + y2)
√

L2 − 4xz
. (60)

Here we define L ≡ z + 1 + x for convenience. In the infrared

limit, x → 0 and y→ 0, the above functions behave as

A0(x, y) ≃ x, B0(x, y) ≃ 1,

C0(x, y) ≃ 1

4
, D0(x, y) ≃ 1

5
,

F0(x, y) ≃ 1

2
. (61)

For further analysis it is convenient to employ the polar co-

ordinates x = ρ cosϕ and y = ρ sin ϕ. By making use of the

Taylor expansion for the logarithm in (57) (see Appendix A),

we find that at precisely ζ = 0, the function f (ζ) is divergent

because of the infrared behavior A2
0
+ y2B2

0
≃ ρ2. We note

that such kind of divergence does not exist in 3D. In 3D, the

mean-field theory already predicts a weakly interacting Bose

condensate in the strong coupling limit with a composite bo-

son scattering length aB = 2a3D [5]. The inclusion of the

Gaussian contribution in the BEC limit leads to a modification

of the composite boson scattering length from the mean-field

value 2a3D to 0.55a3D [16, 17].

The divergence of the function f (ζ) at ζ → 0 is not sur-

prising. It is actually consistent with the Bogoliubov EOS

(55) where the logarithmic term in the bracket diverges when

µB → 0. Therefore, we expect that for ζ → 0, the function

f (ζ) diverges as − ln ζ = ln(εB/µB). To show this logarith-

mic divergence, we separate the function f (ζ) into a divergent

piece and a finite piece. The details are presented in Appendix

A. The divergent piece is given by

fd(ζ) =
8

π

∫ ∞

0

dx

∫ ∞

0

dy
F 2

A2 + y2B2
. (62)

To capture the asymptotic behavior of this divergent piece for

ζ → 0, we find that it is sufficient to expand the denominator

A2
+ y2B2 to the order O(ζ2) and approximate it as

A2
+ y2B2 ≃ J(x, y) = A2

0 + y2B2
0 + 2ζA0A1 + ζ

2A2
1. (63)

The explicit form of the function A1(x, y) is shown in Ap-

pendix A. In the infrared limit ρ → 0, we have A1 ≃ 1. The

neglected terms in the above ζ-expansion lead to vanishing

contributions for ζ → 0. Therefore, the infrared divergence in

the limit ζ → 0 behaves as

8

π

∫ π/2

0

dϕ

∫ ǫ

0

ρdρ
1/4

ρ2 + 2ζρ cosϕ + ζ2
∼ ln

εB

µB

. (64)
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Thus we have shown that in the BEC limit µB → 0, the Gaus-

sian contribution ΩGF behaves exactly as the the logarithmic

term in the Bogoliubov EOS (55).

To obtain the composite boson scattering length aB, we

need to determine the finite piece λ which can be defined as

λ = lim
ζ→0

[

f (ζ) + ln ζ
]

. (65)

Using the definition of the fermion scattering length a2D,

εB =
4

ma2
2D

e2γ
, (66)

we obtain the composite boson scattering length

aB = κa2D, κ =

√

1

2e1+λ
. (67)

A careful numerical analysis (see Appendix A) shows that λ ≃
−0.54. Therefore, we obtain

κ ≃ 0.56. (68)

This result is in good agreement with κ ≃ 0.56 from the exact

four-body calculation [49] and κ ≃ 0.55(4) from the EOS pre-

dicted by the diffusion Monte Carlo simulation [46]. We also

notice that the pole approximation of the Gaussian quantum

fluctuations with a dimensional regularization of the ultravio-

let divergence in the BEC limit predicted an analytical result

λ = −1/2 and hence κ = 1/(21/2e1/4) ≃ 0.55 [73].

IV. BCS-BEC CROSSOVER

In this section, we study numerically the EOS in the en-

tire BCS-BEC crossover. The determination of the grand

canonical EOS is simple. The grand potential Ω(µ) can be

obtained by performing the numerical integration in (38) for

−εB/2 < µ < +∞. The BEC and BCS limits corresponds to

µ → −εB/2 and µ → +∞, respectively. In this work, we are

interested in the canonical EOS for a homogeneous 2D fermi

gas with fixed density n. This enables us to compare our re-

sults with recent quantum Monte Carlo calculations of the en-

ergy density [46, 47] and the experimental measurements of

the local pressure [37, 41]. For convenience, we define the

Fermi momentum kF and the Fermi energy εF for a noninter-

acting 2D Fermi gas with the same density n. They are given

by kF =
√

2πn and εF = πn/m. The BCS-BEC crossover is

controlled by the dimensionless ratio α = εB/εF or the gas

parameter

η = ln(kFa2D). (69)

The BCS and BEC limits correspond to η → +∞ and η →
−∞, respectively.

In the mean-field approximation, we have n ≃ nMF(µ),

which gives rise to the mean-field results of the chemical po-

tential and the pairing gap [33, 34],

µMF(n) = εF −
εB

2
, ∆MF(n) =

√

2εBεF. (70)

The energy density and pressure in the mean-field theory are

given by

EMF(n) = ΩMF(µMF) + µMFn = EFG −
1

2
nεB,

PMF(n) = −ΩMF(µMF) = PFG, (71)

where EFG = nεF/2 and PFG = nεF/2 are the energy den-

sity and pressure of a noninteracting 2D Fermi gas with den-

sity n, respectively. We see clearly from the pressure that the

mean-field theory does not recover a weakly interacting Bose

condensate in the strong attraction limit.

To show that the chemical potential and the energy density

suffer from the same problem, we define two dimensionless

quantities

ν =
µ + εB/2

εF

, R =
E + nεB/2

EFG

. (72)

In the mean-field theory, the solutions of ν and R are in-

dependent of the attraction strength in the entire BCS-BEC

crossover; i.e.,

νMF = 1, RMF = 1. (73)

On the other hand, the Bogoliubov theory predicts that the

canonical EOS of a 2D Bose gas is given by [76–82]

µB =
4πnB

mB

1

ln

(

1

nBa2
B

) , E = −nBεB +
2πn2

B

mB

1

ln

(

1

nBa2
B

) , (74)

where nB = n/2 is the density of tightly bound bosons. There-

fore, we expect that in the BEC limit (η → −∞) the solutions

of ν and R behave asymptotically as

ν ∼ 1

2

1

ln
(

4π
κ2

)

− 2η
, R ∼ 1

2

1

ln
(

4π
κ2

)

− 2η
, (75)

where κ ≃ 0.56 from the exact four-body calculation [49] or

from our study in Sec. III. These results indicate that ν and R

become vanishingly small in the BEC limit. We note that the

use of the Bogoliubov EOS (74) requires that the parameter

1/ ln[1/(nBa2
B

)] is sufficiently small or η → −∞. The correc-

tions beyond the Bogoliubov theory was studied in Refs. [76–

82]. On the other hand, in the BCS limit (η → +∞), the

pairing gap ∆ becomes vanishingly small and hence the GPF

theory becomes equivalent to the particle-particle ladder re-

summation [14–17]. Therefore, in the BCS limit, the GPF

theory naturally recovers the perturbative EOS of a weakly

interacting 2D Fermi gas up to the order O(1/η2). The per-

turbative EOS of a weakly interacting 2D Fermi gas is given

by [83–85]

ν = 1 − 1

η
+
γ + 1 − 2 ln 2

η2
+ O

(

1

η3

)

,

R = 1 − 1

η
+
γ + 3/4 − 2 ln 2

η2
+ O

(

1

η3

)

. (76)

Therefore, we expect that ν and R approach unity asymptoti-

cally for η→ +∞.
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In the GPF theory, the chemical potential µ is determined

by solving the full number equation

n = nMF(µ) + nGF(µ). (77)

Then we can determine the energy density E(n) = ΩMF(µ) +

ΩGF(µ) + µn and the pressure P(n) = −ΩMF(µ) −ΩGF(µ). The

Gaussian contribution nGF(µ) can be worked out analytically

but rather tedious. In practice, we start from the grand po-

tential Ω(µ) = ΩMF(µ) + ΩGF(µ). To determine the chemical

potential µ, we calculate the energy density as a function of µ;

i.e., E(µ) = Ω(µ) + µn. We search for the maximum of E(µ)

which gives rise to the solution of the chemical potential for

the given density n. Meanwhile, the energy density and the

pressure for the given density n are determined. To perform

the numerical calculation, it is convenient to use the dimen-

sionless variable ν. The mean-field contribution to the grand

potential is ΩMF(µ) = −ν2EFG. The Gaussian contribution to

the grand potential can be expressed as

Ωg(µ) = g(ν)EFG, (78)

where the function g(ν) is given by

g(ν) =
2

π

∫ ∞

0

ds

∫ ∞

0

dt ln

[

1 − 8α2ν2A(s, t)C(s, t) + t2B(s, t)D(s, t) + 2F 2(s, t)

A2(s, t) + t2B2(s, t)
+ 16α4ν4 C2(s, t) + t2D2(s, t)

A2(s, t) + t2B2(s, t)

]

. (79)

The dimensionless functionsA,B,C,D, and F are now defined as

A(s, t) =

∫ 2π

0

dθ

2π

∫ ∞

0

du

[

1

2u + α
− 1

4

(

1

E+
+

1

E−

)

(E+ + ξ+)(E− + ξ−)

(E+ + E−)2 + t2

]

,

B(s, t) =

∫ 2π

0

dθ

2π

∫ ∞

0

du
1

4E+E−

(E+ + ξ+)(E− + ξ−)

(E+ + E−)2 + t2
,

C(s, t) =

∫ 2π

0

dθ

2π

∫ ∞

0

du
1

4

(

1

E+
+

1

E−

)

1

(E+ + ξ+)(E− + ξ−)

1

(E+ + E−)2 + t2
,

D(s, t) =

∫ 2π

0

dθ

2π

∫ ∞

0

du
1

4E+E−(E+ + ξ+)(E− + ξ−)

1

(E+ + E−)2 + t2
,

F (s, t) =

∫ 2π

0

dθ

2π

∫ ∞

0

du
1

4

(

1

E+
+

1

E−

)

1

(E+ + E−)2 + t2
, (80)

where the variables s = q2/(8mεF), t = ω/εF, and u =

k2/(2mεF). Here the notations ξ± and E± are given by

ξ± = u + s ± 2
√

us cos θ − ν + α
2
,

E± =
√

(ξ±)2 + 2αν. (81)

Using the function g(ν) we have defined, we can express

the dimensionless quantity R as

R(ν) ≡
E(µ) + 1

2
nεB

EFG

= −ν2
+ g(ν) + 2ν. (82)

The physical results of ν and R correspond to the maximum

point of the the function R(ν) in the range 0 ≤ ν ≤ 1. In the

mean-field theory, we neglect the Gaussian contribution g(ν)

and hence R(ν) ≃ −ν2
+ 2ν. The maximum of the function

R(ν) gives the results ν = 1 and R = 1, which are precisely

the mean-field predictions (73). Including the Gaussian con-

tribution g(ν), the maximum of R(ν) will be modified since the

function g(ν) depends explicitly on the interaction strength α

or the gas parameter η. In Fig. 1, we show the curves of the

function R(ν) for several values of the gas parameter η. We

find that the quantum fluctuations become more and more im-

portant when the attraction strength increases.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ν

R
(ν

)

−0.5

0

0.5

1

1.5

η=2.5

FIG. 1: (Color-online) The curves of the function R(ν) for various

values of the gas parameter η = ln(kFa2D). For comparison, we show

the mean-field prediction RMF(ν) = −ν2
+ 2ν by the dashed line.
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(µ
+

ε B
/2

)/
ε F

FIG. 2: Evolution of the chemical potential µ in the BCS-BEC

crossover. We show in this figure the quantity ν = (µ + εB/2)/εF

as a function of the gas parameter η = ln(kFa2D). The mean-field

prediction is denoted by the dashed line.

−2 −1 0 1 2 3 4 5 6

10
−2

10
−1

10
0

10
1

ln(k
F
a

2D
)

∆/
ε F

FIG. 3: The order parameter or pairing gap ∆ (divided by εF) as

a function of the gas parameter η = ln(kFa2D). The dashed line is

the mean-field prediction. The dashed-dotted line corresponds to the

prediction with GMB effect in the weak coupling regime (η > 2).

In Fig. 2, we show the evolution of the chemical potential µ

or explicitly the quantity ν = (µ + εB/2)/εF in the BCS-BEC

crossover. We find that ν → 1 in the BCS limit and ν → 0

in the BEC limit, in agreement with our general expectation.

The order parameter ∆ is shown in Fig. 3. We find that the

inclusion of the quantum fluctuations leads to a large suppres-

sion of the order parameter in the strong coupling regime. At

weak coupling, it was shown that the induced interaction or

the Gor’kov–Melik-Barkhudarov (GMB) effect [93] leads to

a suppression of the critical temperature and hence the pairing

gap ∆ by a factor of 1/e [49]. In Fig. 3, we also show the

prediction with the GMB effect in the weak coupling regime

(η > 2). Obviously, the current GPF theory does not take into

account the GMB effect.

In Fig. 4, we show the evolution of the energy density E or

−2 −1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ln(k
F
a

2D
)

(E
+

nε
B
/2

)/
E

F
G

FIG. 4: (Color-online) Evolution of the energy density E in the BCS-

BEC crossover. This figure shows the quantity R = (E + nεB/2)/EFG

as a function of the gas parameter η = ln(kFa2D). The dashed line is

the mean-field prediction. The blue circles and the red squares repre-

sent the predictions from the diffusion Monte Carlo simulation [46]

and the auxiliary field Monte Carlo simulation [47], respectively. The

green dashed line denotes the Bogoliubov EOS of a weakly interact-

ing 2D Bose gas with the boson scattering length aB = 0.56a2D [see

Eq. (74)]. The purple dashed line shows the EOS of a weakly inter-

acting 2D Fermi gas [see Eq. (76)].
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FIG. 5: (Color-online) Evolution of the pressure P in the BCS-BEC

crossover. This figure shows P/PFG as a function of the gas parameter

η = ln(kFa2D). The mean-field prediction is denoted by the dashed

line. The blue points with error bars are the experimental data taken

from [37].

explicitly the quantity R = (E + nεB/2)/EFG in the BCS-BEC

crossover. In the BEC limit (η → −∞), our result approaches

the Bogoliubov EOS (74) of weakly interacting 2D Bose gases

with the boson scattering length aB ≃ 0.56a2D. In the BCS

limit (η→ +∞), our result tends to the perturbative EOS (76)

of weakly interacting 2D Fermi gases. The energy density has

been computed recently by using the diffusion Monte Carlo

simulation [46] and the auxiliary field Monte Carlo simula-

tion [47]. In Fig. 4, we also show these Monte Carlo results
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FIG. 6: (Color-online) Evolution of the contact C in the BCS-BEC

crossover. This figure shows (C − CMF)/k4
F

as a function of the gas

parameter η = ln(kFa2D), where CMF = α/2 is the mean-field predic-

tion. The blue dashed line and the red dash-dotted line represent the

predictions from the diffusion Monte Carlo simulation [46] and the

auxiliary field Monte Carlo simulation [47], respectively.

for comparison. Even though our theory recovers the correct

BCS and BEC limits, there exists a slight deviation between

our theoretical prediction and the Monte Carlo results. This

is not surprising because the GPF theory, which considers

only the Gaussian pair fluctuations, is not an exact treatment.

Some many-body effects we have not taken into account in

the GPF theory may account for this disagreement. First, the

current GPF theory does not consider the GMB effect [93]

which leads to a suppression of the pairing gap ∆ by a factor

of 1/e at weak coupling [49]. The inclusion of this effect may

lead to a slight suppression of the energy density and a faster

convergence to the EOS (76) of weakly interacting 2D Fermi

gases. The GMB effect may also be important in the crossover

regime (roughly −0.5 < η < 2). Second, in the GPF theory,

we consider only the Gaussian pair fluctuations. The contri-

butions from the non-Gaussian quantum fluctuations (beyond

quadratic order in φ and φ∗) may be important to make a bet-

ter agreement with the Monte Carlo results in the crossover

regime.

As we have mentioned, the most important thermodynamic

quantity which shows the significance of the quantum fluc-

tuations is the pressure P. The mean-field theory predicts

P = PGF for arbitrary attraction strength. In the GPF theory,

we have

P(n)

PFG

= 2ν − R, (83)

where ν and R have been determined by searching for the max-

imum of the function R(ν). Therefore, the pressure depends

explicitly on the interaction strength. In Fig. 5, we show

the evolution of the pressure or explicitly the ratio P/PFG in

the BCS-BEC crossover. Recent experiments on the quasi-2D

Fermi gases across a Feshbach resonance have measured the

local pressure at the center of the atom trap at sufficiently low

temperature [37, 41], which can be regarded as the ground-

state pressure of a homogeneous 2D Fermi gas in the BCS-

BEC crossover. In Fig. 5, we also show the experimental data

reported in [37]. Except for the deep BCS regime (η > 3),

our theoretical prediction is in good agreement with the ex-

perimental measurement. The observed high pressure in the

deep BCS regime could be attributed to the mesoscopic na-

ture of the experimental system: In the deep BCS regime, the

scattering length a2D becomes larger than the cloud size and

hence the interaction is effectively suppressed [37]. On the

other hand, it has been argued that the temperature effect may

also be crucial to understand the observed high pressure in the

deep BCS regime [70]. In the future, it is necessary to study

the finite temperature effect in the current GPF theory.

Having determined the EOS, we can calculate the contact

C which is a powerful quantity to relate the energy, pressure,

and the microscopic momentum distribution [94, 95]. In 2D,

the contact C can be defined as [96]

C

k4
F

=
1

4

d(E/EFG)

dη
. (84)

After some simple manipulation, we obtain

C

k4
F

=
µ

εF

− E

EFG

=
1

2

(

P

PFG

− E

EFG

)

. (85)

Using the mean-field result CMF/k
4
F
= α/2, we can show that

C −CMF

k4
F

= ν − R. (86)

In Fig. 6, we show the quantity (C − CMF)/k4
F

in the BCS-

BEC crossover. We find that this difference is quite small in

the entire BCS-BEC crossover and is peaked around η ≃ 0.7,

which agrees with recent quantum Monte Carlo results [46,

47].

V. SUMMARY

The lack of a weakly interacting Bose condensate in the

strong attraction limit is a longstanding problem for the the-

ory of BCS-BEC crossover in two-dimensional Fermi gases.

Especially, the mean-field prediction for the pressure in the

BCS-BEC crossover shows the inadequacy of the mean-field

theory in 2D. The inadequacy of the 2D mean-field theory can

be understood from the fact that the Born approximation for

four-body scattering in 2D predicts an incorrect form of the

composite boson coupling. In this work, we showed that this

problem can be solved by including the contributions from the

Gaussian quantum fluctuations. In the BEC limit, the missing

logarithmic dependence on the boson chemical potential and

hence the boson-boson interaction is naturally recovered by

the quantum fluctuations. We determined the composite bo-

son scattering length as aB ≃ 0.56a2D, in good agreement with

the exact four-body calculation and recent quantum Monte

Carlo results. We calculated the chemical potential, the en-

ergy density, the pressure, and the contact for a homogeneous
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2D Fermi gas in the BCS-BEC crossover. Our theoretical pre-

dictions are in good agreements with recent quantum Monte

Carlo results and experimental measurements.

In the future, it is necessary to consider more many-body

effects to explain the slight discrepancy between our theoret-

ical prediction and the quantum Monte Carlo results, such as

the GMB effect and the non-Gaussian fluctuations. In the

BEC limit, an exact low density expansion for the compos-

ite bosons [97] could also exist in 2D. It is also interest-

ing to extend the present theoretical approach to the finite

temperature case and the spin imbalanced case. The inclu-

sion of the Gaussian fluctuations may provide better predic-

tions for the Berezinskii-Kosterlitz-Thouless transition in the

2D BCS-BEC crossover [43] and the phase structure of spin-

imbalanced 2D Fermi gases [41].
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Appendix A: Counting the infrared divergence of the function f (ζ)

Using the Taylor expansion ln(1 − a) = −∑∞
n=1 an/n, we can express the function f (ζ) as

f (ζ) =
4

π

∫ ∞

0

dx

∫ ∞

0

dy
AC + y2BD + 2F 2

A2 + y2B2
− 2ζ2

π

∫ ∞

0

dx

∫ ∞

0

dy
C2
+ y2D2

A2 + y2B2

+
2

π

∞
∑

n=2

ζ2n−2

n

n
∑

k=0

(

n

k

)

2k(−1)n−kζ2n−2k

∫ ∞

0

dx

∫ ∞

0

dy
(AC + y2BD + 2F 2)k(C2

+ y2D2)n−k

(A2 + y2B2)n
(A1)

To analyze the infrared divergence for ζ → 0, we expand the quantitiesA and B in the denominators in powers of ζ,

A(x, y) = A0(x, y) +

∞
∑

n=1

ζn

n!
An(x, y), B(x, y) = B0(x, y) +

∞
∑

n=1

ζn

n!
Bn(x, y), (A2)

where An = ∂
nA/∂ζn|ζ=0 and Bn = ∂

nB/∂ζn|ζ=0. The expansion coefficientsAn and Bn can be evaluated to arbitrary order by

using Mathematica. Here we list the results forA1 and B1. We have

A1 =

∫ ∞

0

dz
1

L2 + y2













1 +
8xz

(

L2 − 4xz
)3/2













+

∫ ∞

0

dz
2L2

(

L2 + y2
)2

(

2
√

L2 − 4xz
− 1

)

,

B1 = −
∫ ∞

0

dz
2L

L2 + y2

1
(

L2 − 4xz
)3/2
+

∫ ∞

0

dz
2L

(

L2 + y2
)2

(

1 − 2
√

L2 − 4xz

)

, (A3)

where L ≡ z + 1 + x as defined in the text. In the infrared limit x, y → 0, we haveA1 → 1 and B1 → −1. The expansion of the

quantityA2
+ y2B2 takes the form

A2(x, y) + y2B2(x, y) = A2
0(x, y) + y2B2

0(x, y) +

∞
∑

n=1

ζn

n
∑

k=0

1

k!(n − k)!

[

Ak(x, y)An−k(x, y) + y2Bk(x, y)Bn−k(x, y)
]

. (A4)

For further analysis, it is convenient to use the polar coordinates x = ρ cosϕ and y = ρ sin ϕ. At exactly ζ = 0, we have

A2
0
+ y2B2

0
≃ ρ2 in the infrared limit ρ → 0. To capture the leading asymptotic behavior, we find that it is sufficient to

approximate the quantityA2
+ y2B2 as

A2(x, y) + y2B2(x, y) ≃ J(x, y) = A2
0(x, y) + y2B2

0(x, y) + 2ζA0(x, y)A1(x, y) + ζ2A2
1(x, y). (A5)

In the infrared limit ρ→ 0, the functionJ(x, y) behaves as

J(x, y) ≃ ρ2
+ 2ζρ cosϕ + ζ2. (A6)

The other contributions we neglected in the approximation (A5) behave in the infrared limit as















∞
∑

n=1

anζ
n















ρ2
+















∞
∑

n=2

bnζ
n















ρ +















∞
∑

n=3

cnζ
n















. (A7)
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The above terms lead to vanishing contributions in the limit ζ → 0. One can prove this observation by carefully analyzing the

infrared behavior of the following integral

Imn =

∫ ǫ

0

ρdρ
ρm

(ρ2 + 2ζρ cosϕ + ζ2)n
. (A8)

The properties of the integral Imn can be summarized as follows: For m > 2(n − 1), the integral is finite; for m = 2(n − 1), it

diverges as Imn ∼ − ln ζ; for m < 2(n − 1), we have Imn ∼ 1/ζ2n−2−m for ζ → 0.
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FIG. 7: The quantity f (ζ) + ln(ζ) as a function of ζ in the range 10−6 < ζ < 10−2. In the calculation we use Eq. (A16) for f (ζ).

In the infrared limit ρ→ 0, the second term in the expansion (A1) behaves as

−2ζ2

π

∫ ∞

0

dx

∫ ∞

0

dy
C2
+ y2D2

A2 + y2B2
∼ −2ζ2

π

∫ π/2

0

dϕ

∫ ǫ

0

ρdρ

1
16
+

1
25
ρ2 sin2 ϕ

ρ2 + 2ζρ cosϕ + ζ2
(A9)

It vanishes in the limit ζ → 0. The third term in the expansion (A1) behaves as

2

π

∞
∑

n=2

ζ2n−2

n

n
∑

k=0

(

n

k

)

2k(−1)n−kζ2n−2k

∫ ∞

0

dx

∫ ∞

0

dy
(AC + y2BD + 2F 2)k(C2

+ y2D2)n−k

(A2 + y2B2)n

∼ 2

π

∞
∑

n=2

ζ2n−2

n

n
∑

k=0

(

n

k

)

2k(−1)n−kζ2n−2k

∫ π/2

0

dϕ

∫ ǫ

0

ρdρ
(ρ cosϕ/4 + ρ2 sin2 ϕ/5 + 1/2)k(1/16 + ρ2 sin2 ϕ/25)n−k

(ρ2 + 2ζρ cosϕ + ζ2)n
(A10)

A careful analysis shows that this term leads to a finite contribution in the limit ζ → 0. The nonvanishing contribution from the

k = n terms can be expressed as

2

πζ2

∞
∑

n=2

1

n

∫ ∞

0

dx

∫ ∞

0

dy

(

4ζ2F 2

A2 + y2B2

)n

= − 2

πζ2

∫ ∞

0

dx

∫ ∞

0

dy ln

(

1 − 4ζ2 F 2

A2 + y2B2

)

− 8

π

∫ ∞

0

dx

∫ ∞

0

dy
F 2

A2 + y2B2
(A11)

Next we analyze the first term in (A1) which develops the logarithmic divergence. In the infrared limit, it behaves as

4

π

∫ ∞

0

dx

∫ ∞

0

dy
AC + y2BD + 2F 2

A2 + y2B2
∼ 4

π

∫ π/2

0

dϕ

∫ ǫ

0

ρdρ
ρ cosϕ/4 + ρ2 sin2 ϕ/5 + 1/2

ρ2 + 2ζρ cosϕ + ζ2
. (A12)

Therefore, we can separate the above contribution into two pieces. The finite piece is given by

4

π

∫ ∞

0

dx

∫ ∞

0

dy
AC + y2BD
A2 + y2B2

. (A13)
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The divergent piece is given by

8

π

∫ ∞

0

dx

∫ ∞

0

dy
F 2

A2 + y2B2
. (A14)

In the infrared limit, this piece behaves as

8

π

∫ π/2

0

dϕ

∫ ǫ

0

ρdρ
1/4

ρ2 + 2ζρ cosϕ + ζ2
∼ − ln ζ. (A15)

Therefore, it exactly develops the asymptotic behavior f (ζ) ∼ − ln ζ + λ for ζ → 0. Summarizing the nonvanishing pieces

(A11), (A13), and (A14), we find that to capture the logarithmic divergence and determine the finite term λ, it is sufficient to

approximate the function f (ζ) as

f (ζ) ≃ − 2

πζ2

∫ ∞

0

dx

∫ ∞

0

dy ln













1 − 4ζ2
F 2

0
(x, y)

J(x, y)













+
4

π

∫ ∞

0

dx

∫ ∞

0

dy
A0(x, y)C0(x, y) + y2B0(x, y)D0(x, y)

A2
0
(x, y) + y2B2

0
(x, y)

. (A16)

In Fig. 7 we show the numerical result of f (ζ)+ ln(ζ) in the range 10−6 < ζ < 10−2. It is clear that in the limit ζ → 0, it converges

to a constant. Thus we determine λ ≃ −0.54.
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