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We derive an analytic expression for the wavelength scaling of the high-harmonic generation
(HHG) yield induced by midinfrared driving laser fields. It is based on a quasi-classical descrip-
tion of the returning electron wave packet (EWP), which is shown to be largely independent of
atomic properties. The accuracy of this analytic expression is confirmed by comparison with results
of numerical solutions of the time-dependent Schrödinger equation for wavelengths in the range
1.4µm 6 λ 6 4µm. We verify the wavelength scaling of the HHG yield found numerically for
midinfrared laser fields in a recent Letter by A.-T. Le et al. [Phys. Rev. Lett. 113, 033001 (2014)].

PACS numbers: 42.50.Hz, 42.65.Ky, 32.80.Fb, 32.80.Rm, 33.80.Eh

I. INTRODUCTION

Significant progress in the development of intense laser
sources having mid-infrared (IR) and even far-IR laser
wavelengths has stimulated a growing interest in strong-
field processes in the deep tunneling regime [1–3]. Since
the energetics of this strong-field process is governed by
the ponderomotive energy, Up, of a tunnel-ionized elec-
tron in a laser field (where Up ∝ λ2), increasing the laser
wavelength, λ, opens the way for producing higher energy
photons and electrons in strong-field reactions. For high-
order harmonic generation (HHG), such long-wavelength
laser sources allow experimentalists to utilize higher-
pressure gas targets and to extend phase matching con-
ditions into the X-ray regime, thus enabling the produc-
tion of a nearly continuous spectrum of high-order har-
monics having extremely short-wavelengths [4–9]. As the
wavelength increases, these beneficial macroscopic fea-
tures of the target medium for phase matching compete
with the negative feature of the microscopic single-atom
HHG yield, which decreases rapidly [1, 10]. Therefore,
the dependence (or scaling) of the single atom HHG yield
as a function of laser wavelength has become crucially im-
portant for the generation of attosecond [4, 11] and even,
possibly, zeptosecond pulses [12]. Consequently, different
schemes for achieving a more favorable λ-dependence of
the single-atom HHG yield have been suggested [13, 14].

The HHG process depends nonlinearly on many pa-
rameters. Determining the λ-scaling of HHG as a func-
tion of any one of these parameters (e.g., laser intensity,
ponderomotive energy, harmonic energies, laser pulse du-
ration, etc.) requires that all other parameters remain
fixed. Depending on which parameters are kept fixed, dif-
ferent scaling laws can be obtained. Thus, for example,
if the laser intensity and the interval of harmonic ener-
gies are fixed, the energy radiated per unit time into this

interval (an integrated HHG yield) scales as λ−µ, where
5 ≤ µ ≤ 6 [1, 10, 15–18]. If the ponderomotive energy,
Up, is kept fixed instead of the intensity, the HHG yield
decreases exponentially with λ [19]. In contrast to these
two cases, however, if harmonic energies are not fixed,
the HHG yield for a fixed intensity may even increase
with increasing wavelength λ due to atomic structure ef-
fects [20].

Systematic study of the wavelength dependence of the
HHG yield began with investigations of the fine-scale
oscillations in the λ-dependence of integrated harmonic
yields [15–18]. These oscillations modulate the smooth
λ-dependence, ∝ λ−µ, predicted earlier in Ref. [1].
Quasiclassical analyses find that these oscillations orig-
inate from the interference of high-order quantum or-
bits [15, 17], while a rigorous quantum analysis finds
that these oscillations are a manifestation of threshold
phenomena in the HHG yield at the closing of multipho-
ton ionization channels [16, 18]. As shown in Ref. [18],
the positions of the maxima of these oscillations depend
on the shape of the atomic potential: for a short-range
potential they coincide with the positions of multipho-
ton thresholds [16], while the corresponding peaks for
a Coulomb potential occur in the middle between two
neighboring multiphoton thresholds [18]. (Similar fea-
tures have been found in strong-field ionization of an
electron in a Coulomb potential [21].)

Another kind of wavelength-scaling for the HHG pro-
cess has been studied in Refs. [22, 23] based on an im-
proved version of the strong field approximation [24]. In-
stead of the integrated HHG yield analyzed previously in
Refs. [15–18], Refs. [22, 23] analyzed the HHG conversion
efficiency (CE) for a given harmonic frequency Ω, which
is proportional to the HHG yield integrated over the en-
ergy interval [~(Ω−ω), ~(Ω+ω)], where ω = 2πc/λ is the
frequency of the driving field. In the tunneling regime,
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Refs. [22, 23] show that the CE scales as ∝ λ−5 at the
HHG plateau cutoff for a fixed cutoff energy, as ∝ λ−9

at the cutoff when the cutoff energy is not fixed, and
as ∝ λ−6 over the plateau region for a fixed harmonic
energy.

An analysis of the λ-dependence of the HHG yield
within the framework of the strong field approximation
and quantum orbit theory was reported in Ref. [25].
Within this approach, the partial HHG yield associated
with long orbits was found to scale as ∝ λ−4.1 for a fixed
absolute harmonic energy, while the yield associated with
short orbits decreases more rapidly with increasing wave-
length, ∝ λ−8.5. Although these partial λ-scalings of the
short- and long-trajectory contributions to HHG strongly
differ from each other, the overall trend of the decreasing
HHG yield with increasing λ for fixed harmonic energy
obtained in Ref. [25] agrees with earlier results.

Recently, interest in the λ-scaling of the HHG yield has
revived within the context of the universality properties
of the returning electron wave packet (EWP) in HHG
produced by midinfrared laser pulses [26]. Within the
quantitative rescattering theory (QRS), which is based
on the phenomenological factorization of the HHG yield
in terms of the EWP and the field-free photorecombi-
nation cross section [27–29] [as confirmed by numerical
solutions of the time-dependent Schrödinger equation
(TDSE)], several scaling properties have been suggested
in Ref. [26] for the EWP considered as a function of the

electron energy, E, the Up-scaled energy Ẽ = E/Up, and
the carrier wavelength, λ, of the laser pulse:
(i) for fixed E, the EWP and the spectral density of
harmonic radiation scale as ∝ λ−4.2;
(ii) for fixed Ẽ, the EWP scales as ∝ λ−1.2;

(iii) as a function of Ẽ, the EWP in the long-wavelength

limit scales as Ẽ1.5;
(iv) over the interval 1.5 . Ẽ . 3.17, the EWP scales

approximately as e1.2Ẽ.

In this paper, we present an analytic description of
the λ dependence of the HHG yield based on an anal-
ysis of the (near) universal properties of the returning
EWP [30, 31]. Our results confirm the main conclusions
concerning the λ-scaling of HHG represented in [26]. In
Sec. II we briefly review the relationship between the
HHG yield and the spectral distribution of the returning
EWP that, upon radiative recombination, controls the
spectral distribution of the emitted harmonic radiation.
A detailed analysis of the universal scaling properties of
the EWP is given in Sec. III. In Sec. IV we compare our
analytic results for the EWP with TDSE results for both
the hydrogen (H) and helium (He) atoms, compare our
analytic λ-scaling result for the HHG yield with TDSE
results for H, and discuss the validity of QRS results [26]
for the λ-scaling of both the EWP and the HHG yield.
In Sec. V we summarize our results.

II. DEFINITION OF THE HHG YIELD

The scaling of the yield of high-harmonic radiation as a
function of the wavelength λ of the driving infrared laser
depends on the precise definition of the HHG yield. In
accord with Refs. [1, 15–18], we analyze the integrated
harmonic yield, ∆Y, which is defined as the energy ra-
diated per unit time by the target atom (subjected to a
laser pulse of duration T ) into a fixed harmonic energy
range [E1;E2]:

∆Y =
1

T

∫ E2

E1

ρ(EΩ)dEΩ, (1)

where ρ(EΩ) is the spectral density of the emitted radi-
ation. When the duration of the driving pulses is kept
fixed in terms of the number of optical cycles as assumed
in the following, T scales linearly with λ. Consequently,
the prefactor T −1 in Eq. (1) introduces one inverse power
of λ to the overall scaling of ∆Y. Note that Ref. [26]
states that for λ ≥ 3µm there is a slower decrease of the
HHG yield with increasing λ than found for λ ≤ 2µm
in earlier investigations [1, 15, 16, 18]. This was shown
in Ref. [32] to be due to the use in Ref. [26] of a dif-
ferent definition of the HHG yield from that in Eq. (1).
(Specifically, the authors of Ref. [26] considered a non-
integrated HHG yield Y for a fixed harmonic energy.)
Using the definition (1) for ∆Y, the wavelength scaling
results of Ref. [26] for the HHG yield agree with previous
wavelength scaling results (see Ref. [32] for details).

For the analytic investigation of the scaling, we make
use of the approximate factorization of ρ(EΩ) [27–29],

ρ(EΩ) = w(E,F )σ(r)(E), (2)

in terms of the field-free photo-recombination cross sec-
tion σ(r) for an electron with energy E and the spec-
tral distribution of the returning EWP w(E,F ) with
E = EΩ−Ip. This factorization is supported by compari-
son with numerical solutions of the TDSE and represents
the key ingredient to the QRS theory. Since σ(r)(E) is
independent of the parameters characterizing the laser
field, the factor σ(r) in Eq. (2) does not contribute to the
λ scaling. Specifically, for comparison with our numeri-
cal TDSE calculations we will employ the cross section
for recombination into the ground state of hydrogen,

σ(r)(E) = 32πα3 e−4q−1arctan(q)

q2(q2 + 1)2(1− e−2π/q)
, (3)

where q = pa0/~, α = e2/(~c), and p =
√
2mE.

The remaining λ dependence of ∆Y therefore origi-
nates exclusively from the EWP, which we analyze in
detail in the next section.
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III. ANALYTIC LOW-FREQUENCY RESULTS

FOR THE EWP AND THE HHG YIELD

Analytical approximations to w(E,F ) have been pre-
sented in Refs. [30] and [31]. They are based upon
a quantum mechanical treatment of an exactly-solvable
model for an electron in both a short-range potential and
a strong laser field [33] and form the starting point of
the present investigation of the λ scaling for short low-
frequency midinfrared pulses. The analytic model results
are extended to the case of HHG by neutral atoms and
the accuracy of the extended results is confirmed by com-
parison with HHG results obtained by numerical solution
of the TDSE.

A. Definition of the Phase-Averaged EWP

We consider an atom with an ionization potential Ip
exposed to an intense linearly-polarized laser pulse with
electric field F(t) = ẑF (t), where F (t) has a peak value,
F0, carrier frequency ω or wavelength λ = 2πc/ω, and
duration T . Within the classical three-step scenario for
HHG, the EWP can be expressed in terms of a coherent
superposition of contributions from returning closed clas-
sical orbits j of electrons escaping from and recombining
with the atoms as [31],

w(E,F ) =
∑

j,k

sjk
√
wjwk cos(ϕj − ϕk), (4)

where the phase ϕj for the jth closed orbit is a rapidly
varying function of the path index j [see Eq. (55) for
ϕj in Ref. [31]] and where sj,k = 1 for j = k. In our
analysis of the λ-scaling of HHG, we neglect the fine-
scale interference features of HHG spectra. Thus, we
average Eq. (4) over the phase ϕj , which is equivalent to
the substitution cos(ϕj−ϕk) → δj,k. The phase-averaged
EWP is then given by a sum of partial EWPs wj :

w(E,F ) =
∑

j

wj . (5)

The weight wj with which each classical orbit contributes
is given by [20]

wj =
πEΩ

2~ω2
IjWj , (6)

where Ij and Wj are the ionization and propagation fac-
tors, respectively.

B. λ-Scaling of the partial EWPs wj

Within the single-active-electron approximation, the
ionization factor Ij in Eq. (6) can be approximated in
terms of the quasi-classical static tunneling ionization

rate Γst of an initially bound state ψκlml
(r) by [34]

Ij =
4γ̃2jΓst(F̃j)

πκvat
, γ̃j =

√

2mIp ω

|e|F̃j

, (7)

Γst(F̃j) =
Ip
~
(2l + 1)C2

κl

(

2Fat

F̃j

)2ν−1

×e−2Fat(κa0)
3/(3F̃j), (8)

where F̃j = |F (t(j)i )|, vat = e2/~ and Fat = m2e5/~4

are the atomic units of velocity and field strength. The
asymptotic behavior of ψκlml

(r) for large r underlying
Eq. (7) is given by

ψκlml
(r)|κr≫1 = Cκl

√
κr−1(κr)νe−κrYlml

(r̂), (9)

where Cκl is a dimensionless asymptotic coefficient, l
is the electron’s angular momentum, κ =

√

2mIp/~,
ν = Z/(κa0), Z is the charge of the atomic core, and
a0 = ~

2/(me2) is the Bohr radius. In what follows, we
consider only initial states (9) with ml = 0, since the
contributions to the HHG yield from magnetic sublevels
with ml 6= 0 are strongly suppressed in the low-frequency
limit [35]. The overall λ scaling of the ionization factor
(7) is obviously Ij ∝ ω2 ∝ λ−2.
The propagation factor Wj is expressed in terms of the

Airy function, Ai(x) [31]:

Wj =
p

m

Ai2(ξj)

(vat∆tj)3ζ
2/3
j

, ξj =
E − E

(j)
max

ζ
1/3
j Eat

, (10)

E(j)
max = Ecl

max(t
(j)
i , t(j)r )− F (t

(j)
r )

F (t
(j)
i )

Ip, (11)

ζj = −F
2(t

(j)
r )

2F 2
at

(

1− F (t
(j)
r )

F (t
(j)
i )

+
Ḟ (t

(j)
r )

F (t
(j)
r )

∆tj

)

,(12)

where ∆tj = t
(j)
r − t

(j)
i is the time interval between tun-

nel ionization and recombination of the jth trajectory
and Eat = e2/a0 is the atomic unit of energy. The ex-
plicit form (10) of the propagation factor Wj for the jth
orbit was obtained assuming that the kinetic energy E at

the instant of recombination t
(j)
r is not too far from the

maximum energy E
(j)
max gained in the laser field, where

max{E(j)
max} determines the cut-off of the harmonic spec-

trum. The magnitude of E
(j)
max is controlled by the max-

imum classical kinetic energy of a free electron (having

zero initial velocity at the time t
(j)
i and returning to the

same spatial point at the time t
(j)
r ) gained in the laser

field [31]:

Ecl
max(t

(j)
i , t(j)r ) =

e2

2mc2

[

A(t(j)r )−A(t
(j)
i )
]2

, (13)

where A(t) is the vector potential of the laser pulse,

F (t) = −∂A(t)/(c∂t). The pair of times {t(j)i , t
(j)
f } sat-
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isfy the coupled system of two classical equations

A(t
(j)
i )− 1

t
(j)
r − t

(j)
i

∫ t(j)r

t
(j)
i

A(t)dt = 0, (14a)

1

c

A(t
(j)
r )−A(t

(j)
i )

t
(j)
r − t

(j)
i

+ F (t(j)r ) = 0. (14b)

We emphasize that the index j in the present analysis
enumerates all closed electron trajectories occurring dur-
ing the laser pulse [i.e., the real solutions of the classical
equations (14)], while in Ref. [31] only those trajectories

were included for which the ionization (t
(j)
i ) and recom-

bination (t
(j)
r ) times occur during neighboring [jth and

(j + 1)th] half-cycles of the laser pulse. For this reason,
the latter results are relevant only in the high-energy re-
gion of short-pulse HHG spectra.
If the vector potential A(t) depends on the time only

through the combination ωt [so that the substitution
t → ω−1t̃ removes the ω-dependence from the time de-
pendence of A(t)], then the system of equations (14)

shows explicitly that the times t
(j)
i and t

(j)
r are linear

functions of ω−1. Moreover, these times do not depend
on the peak value of the laser field. Indeed, converting
the system of equations (14) to dimensionless variables by
dividing the vector potential by A0 = cF0/ω, the electric
field by F0, and the time by ω−1, the resulting dimen-
sionless system depends only on the shape of the laser
pulse. In most cases, the vector potential can be well-
approximated by a function of ωt (excluding, e.g., the
case of a chirped pulse). Approximating the time depen-
dence of A(t) by such a function, the λ-scaling of the
energy Ecl

max coincides with that of the ponderomotive
energy, Up = e2F 2

0 /(4mω
2) ∝ λ2

Ecl
max(t

(j)
i , t(j)r ) = εjUp ∝ λ2, (15)

where the pre-factor εj depends neither on the carrier
frequency nor on the peak value F0. Thus, Ecl

max increases
quadratically with increasing laser wavelength λ. The λ-
scaling of the propagation factor follows now from the
asymptotic expansion of the Airy function in Eq. (10)
for large negative arguments

ξj =
E − E

(j)
max

ζ
1/3
j Eat

< −1. (16)

Eq. (16) implies that the difference between the energy E

of the recombining electron and its maximum value E
(j)
max

is large on the energy scale given by ∼ (F/Fat)
2/3Eat [see

Eq. (12)]. For moderate driving laser field strengths cor-
responding to intensities . 1014 W/cm2, Eq. (16) is al-
ready satisfied for energy differences as small as a few eV.
Employing the asymptotic expression of the Airy func-

tion and averaging it over its rapid oscillations,

Ai2(−x) ≈ sin2
(

2
3x

3/2 + π
4

)

π
√
x

≈ 1

2π
√
x
, (17)

the expression (10) can be simplified to

Wj ≈
p ω3

2πm(vat∆τj)3ζ
1/2
j

√

Eat

E
(j)
max − E

, (18)

where ∆τj = ω(t
(j)
r − t

(j)
i ) is independent of the car-

rier frequency ω (since t
(j)
i,r ∝ ω−1). [Note that con-

tributions for which EΩ > (Ip + E
(j)
max) are exponen-

tially suppressed.] In the low-frequency limit, E
(j)
max ≈

Ecl
max(t

(j)
i , t

(j)
r ) ∝ Up ≫ Ip, so that, using the defini-

tion (15), Eq. (18) can be approximated by

Wj ≈ Cjω3

√

Ẽ

εj − Ẽ
θ(−ξj − 1), (19)

where Ẽ = E/Up is the Up-scaled return energy and Cj =
(πv2at∆τ

3
j

√

2ζj)
−1. In Eq. (19) we have multiplied Eq.

(18) by a Heaviside cut-off function θ(x) to restrict non-
zero contributions Wj to values of the arguments of the
Airy functions well separated from the region near −1,
where the asymptotic expansion (17) breaks down and
Eq. (18) becomes singular. In the low-frequency limit

Ẽ < ǫj , Wj scales as Wj ∝ ω4 since Ẽ ∝ ω2, while for

fixed Ẽ no obvious universal scaling emerges.
Combining now Eqs. (6), (7), and (19) leads to an ap-

proximate analytic expression for the weight of the wave
packet wj for the jth trajectory

wj ≈ θ(εjUp − E − ζ
1/3
j Eat)Djω(Ẽ + Ip/Up)

√

Ẽ

εj − Ẽ
,

(20)
with

Dj =
Cj
2

(

F0

F̃j

)2
~κ

mvat
Γst(F̃j). (21)

From Eq. (20), two frequency scalings can be ob-
tained for the averaged EWP in the low-frequency limit
(cf. Ref. [26]): (i) for a fixed electron energy E and (ii)

for a fixed Up-scaled energy Ẽ. Since Ẽ ∝ ω2, the first

case corresponds to the limit Ẽ ≪ εj for which we can
approximate Eq. (20) by

wj ≈
ωDj(E + Ip)

√
E

U
3/2
p

√
εj

∝ ω4(E + Ip)
√
E. (22)

Consequently, the phase-averaged wave packet (5) scales
as

w(E,F ) = Dω4(E + Ip)
√
E ∝ λ−4, (23)

where the factor

D =
8m3/2

|e|3F 3
0

∑

j

Dj√
εj
, (24)
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depends only on the shape and intensity of the laser
pulse, but not on λ. Because of the λ independence of the
recombination cross section, the same scaling holds for
the spectral density of the harmonic radiation in Eq. (2),

ρ(EΩ) = Dω4(E + Ip)
√
Eσ(E) ∝ λ−4. (25)

Considering now the second case, i.e., a fixed Ẽ,
Eq. (20) implies, to leading order, a linear scaling of the
weight of the wave packet with ω, wj ∼ ω ∼ λ−1. Unlike
the first case, the pre-factor is not universal but depends
on the properties of the path distribution,

w(E,F ) = ω(Ẽ + Ip/Up)
√

Ẽ

×
∑

j

Dj θ(εjUp − E − ζ
1/3
j Eat)

√

εj − Ẽ
. (26)

For large ponderomotive energies compared to the initial
binding energy, Ip/Up ≪ 1, the averaged wave packet

(26) scales with the scaled energy Ẽ, to leading order, as

w(E,F ) ∝ Ẽ3/2.

C. λ-Scaling of the HHG Yield ∆Y

In accordance with Eqs. (1) and (2), the ω-scaling law
for the EWP allows one to predict the wavelength scaling
law for the HHG yield. Indeed, according to Eq. (23),
the phase-averaged EWP scales as ∝ λ−4, while T −1 ∝
λ−1 for a fixed number of cycles in a pulse. Thus the
analytical scaling law for ∆Y is

∆Y ∝ λ−5. (27)

In Sec. IV we show that our analytically-derived scaling
law (27) agrees well with TDSE results for λ ≤ 4µm.

IV. COMPARISONS OF ANALYTIC SCALING

LAWS WITH TDSE AND QRS RESULTS

In order to check the accuracy of our approximate ana-
lytic results for the EWP and the resulting λ-scaling (27)
of the harmonic yield ∆Y, we compare the analytic pre-
dictions in Eqs. (23) and (26) for the scaling of the phase-

averaged EWP w(E,F ) with corresponding results from
full TDSE calculations for both the H and He atoms. For
the TDSE calculations of harmonic spectra, we adopt
the same method as was used recently to investigate
below-threshold harmonic generation [36]. Essentially,
the HHG spectrum is evaluated by computing the Fourier
transform of the electron’s acceleration, which is recorded
at each instant during the evolution of the electron wave
packet. The details of our numerical solution of the
TDSE can be found in Refs. [37–39]. In brief, we ex-
pand the wave function Ψ (r, t) in spherical harmonics
and the radial wave functions are discretized using the

finite difference method. The wave function Ψ (r, t) is
propagated in real time using the split-operator method
with a time step of 0.01 a.u. The maximum radial grid
point is taken up to 6000 a.u. with a grid spacing of 0.1
a.u. An absorption function is applied near the end of
the radial box to avoid reflections at the box edge. The
maximum angular momentum Lmax is taken to be 500
in order to obtain converged HHG spectra at even the
longest wavelength (λ = 4 µm) considered in the present
work. All other parameters are carefully chosen to make
sure that all results are fully converged.
To compare our analytically-derived scaling laws with

QRS results [26] discussed in the introduction, the TDSE
was solved for the same laser pulse as in Ref. [26], i.e.,
for a trapezoidal pulse with a 2-cycle flat top of intensity
I = 1014 W/cm2 and half-cycle ramps for turn-on and
turn-off. We note that the oscillations of the HHG results
were smoothed in Ref. [26] by using Bezier interpolation
whereas we present our TDSE results for the actual HHG
spectra calculated. The TDSE quantum prediction for
the wave packet, wQM (E,F ), is determined from the nu-
merical result for the harmonic spectral density, ρ(EΩ),
using Eq. (2),

wQM (E,F ) =
ρQM (EΩ)

σ(r)(E)
. (28)

(Note that wQM can alternatively be directly estimated
from the quantum phase space distribution of the return-
ing wave packet [40] without involving the recombination
cross section.)
In Fig. 1 we compare our Up-scaled expression (26)

for the averaged quasi-classical EWP w(E,F ) with wQM

for both the H and He atoms. To remove the linear
dependence of the result (26) on the carrier frequency,
we normalize the calculated EWPs for different wave-
lengths by the factor ω and plot them on the Ẽ ≡ E/Up

scale. As shown in Fig. 1(a) for the H atom, our av-
eraged EWP analytic result (26) agrees well with the

TDSE results, and the shape of the ratio w(E,F )/ω is
essentially independent of the carrier wavelength. The
dash-dotted (red) line in Fig. 1(b), also for the H atom,
corresponds to the limit (23), whose smooth dependence

on the scaled electron energy Ẽ contrasts with the spike-
like feature (ǫj − Ẽ)−1/2 predicted by Eq. (26) whenever

Ẽ approaches the maximum value ǫj for a given closed
orbit j.
In Fig. 1(b), five such “threshold” energies can be ob-

served for which a spike occurs: ε1 ≈ 0.09, ε2 ≈ 0.65,
ε3 ≈ 1.54, ε4 ≈ 2.40, and ε5 ≈ 3.17. (Note that val-
ues for the threshold energies ε3 to ε5 have been re-
ported in Ref. [41], taking into account quantum cor-
rections.) These threshold energies are related to the
maxima of the return energies (in units of Up) that the
active electron gains by moving in the laser field along
the 1 ≤ j ≤ 5 closed classical trajectories. These closed
trajectories may be single-return trajectories, which start
at the maximum magnitude of the electric field,|F (tj)|, of
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FIG. 1: (Color online) Comparison of different theoretical

results for the scaled EWP, w(E,F )/ω (arb.units), as a func-

tion of the scaled electron energy, Ẽ ≡ E/Up. (a) Compar-
ison of TDSE results wQM (E,F ) for the H atom with the
analytic results for three different carrier wavelengths. Filled
areas are the TDSE results for λ = 3 µm (orange filled area),
λ = 3.4 µm (red filled area), and λ = 3.8 µm (blue filled
area), with each for the case of a trapezoidal pulse with a 2-
cycle flat top of intensity I = 1014 W/cm2 and half-cycle
ramps for turn-on and turn-off. Black lines: analytic re-
sults for w(E,F )/ω, where w(E,F ) is given by Eq. (26).
(b) For the case of λ = 3.8 µm, comparison of the TDSE
(blue filled area) and analytic results for the H atom using
Eq. (26) (black curve with spikes) with the smooth depen-

dence ∝

√

Ẽ
(

Ẽ + Ip/Up

)

[cf. Eq. (23)] indicated by the

dash-dotted (red) line. Arrows mark the positions of the
“threshold” energies εj , 1 ≤ j ≤ 5 (see text for details). In
each case the relative TDSE results are multiplied by a single
constant for comparison with the analytic results. (c) Com-

parison of scaled EWPs, w(E,F )/ω, for the H and He atoms.
Blue filled area: TDSE results for the H atom for a laser field
with intensity I = 1014 W/cm2 and λ = 3.8 µm; red filled
area: TDSE results for the He atom for a laser field with
intensity I = 2 × 1014 W/cm2 and λ = 3.2 µm; black line:
analytic result (26) for the EWP calculated for the He atom
in a laser field with I = 2× 1014 W/cm2 and λ = 3.2 µm.

the jth half-cycle of the laser pulse and finish near the end
of the next (neighboring) (j + 1)th half-cycle, as well as

multiple-return trajectories, for which the excursion time
is larger than the period T = 2π/ω of the laser pulse. In
particular, for the EWP in Fig. 1(b), ε5 is related to the
single-return trajectory on the flat-top of the pulse inten-
sity, ε1 and ε3 correspond to double-return trajectories,
and ε2 and ε4 correspond to triple-return trajectories.
Note that the spike-like behaviors of the EWP (or the
HHG yield) become more pronounced as the laser wave-
length increases. They have been observed previously in
both numerical and analytical HHG calculations [12, 31].
The present analysis shows that between the two thresh-
old energies ε3 and ε5 (i.e., for 1.5 . Ẽ . 3.17), the EWP
can be well approximated by

w(E,F ) ∝ Ẽ1.5

√

ε5 − Ẽ
, (29)

where we have neglected the correction term Ip/Up in

comparison with Ẽ in Eq. (26). The result (29) differs

from that in Ref. [26], in which a scaling e1.2Ẽ is proposed
for this region. We also observe in Fig. 1(b) that the

smooth curve [cf. Eq. (23)] representing the limit Ẽ ≪ ǫj
approximates the dependence of the EWP on the scaled
energy Ẽ quite well with the exception of the regions of
spike-like behavior. Since harmonic energies may be of
the same order of magnitude as Ip, we have kept the term

∼ Ip
√
E in Eq. (23). Our calculations show that this

term can be neglected for Ip/Up ≪ 10−1, which corre-
sponds to λ≫ 5 µm for an intensity of I = 1014 W/cm2

and for hydrogen. [Note that Ip/Up ≈ 10−1 for the

data in Fig. 1(b).] Thus, the scaling w(E,F )/ω ∝ Ẽ1.5

provides a good approximation only in the deep low-
frequency regime for harmonics with energies EΩ ≫ Ip.
In Fig. 1 (c) we compare the scaled EWPs for the H and

He atoms. The HHG spectrum for He was calculated in
single active electron approximation using the potential:

V (r) = −1

r

(

1 +

[

1 +
27

16
r

]

e−27/8r

)

. (30)

This potential supports a ground s-state with binding
energy 0.904 a.u., which is close to the recommended
value 0.903 a.u. Our comparison shows that, in the long-
wave-length limit, the scaled EWP is universal in terms
of the scaled energy E/Up [26].
In Fig. 2 we present TDSE results for the harmonic

yield ∆Y of the H atom, as defined in Eq. (1), for wave-
lengths up to λ = 4µm. The TDSE numerical results
show that with increasing λ, ∆Y decreases slightly faster
than the λ−5 behavior predicted by our analytical result
(27). Specifically, fits to the TDSE data of a wavelength
dependence ∝ λ−µ for two ranges of the harmonic ener-
gies, Ω ∈ [20, 50] (eV) and Ω ∈ [40, 70] (eV) find that
µ = 5.1 and µ = 5.3, respectively, as shown by the
two curves in Fig. 2. Possible sources for these minor
discrepancies include residual numerical uncertainties in
the TDSE calculation, which become increasingly chal-
lenging as λ increases. Likewise, the quasi-classical ap-
proximation and the restriction to leading terms in the
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FIG. 2: (Color online) Comparison of TDSE results (symbols)
for the HHG yield ∆Y defined in Eq. (1) with scaled functions
∝ λ−µ (χ2-fitted solid lines) for two different ranges of the
harmonic energies in Eq. (1). Circles: Ω ∈ [20, 50] (eV), µ =
5.1; Squares: Ω ∈ [40, 70] (eV), µ = 5.3. Results are for the
H atom in a two-cycle pulse with I = 1× 1014 W/cm2 (as in
Ref. [26]).

asymptotic expansion underlying our analytic result may
contribute to this deviation.

V. SUMMARY

In this paper, we have derived simple analytic expres-
sions [Eq. (23) and Eq. (26)] for the returning EWP in
the low-frequency (or long wavelength) limit that allows
one to predict the λ-scaling (27) of the harmonic yield. A
major simplification in our derivations was achieved by
neglecting all interference effects in HHG spectra. Hence,
our results for the EWP cannot be used to describe the
fine structure features of HHG spectra. Nevertheless,
these analytic formulas for the EWP describe well the
shapes of the HHG spectra (averaged over their rapid os-
cillations), as we have demonstrated in Fig. 1 by their
nearly perfect matching with TDSE results for both the
H and He atoms. Moreover, although the result (26) for
the (phase-averaged) EWP does not include interference
effects, it remains sensitive to different closed classical
electron trajectories, which are responsible for the spike-
like behaviors of the HHG spectra, as shown in Fig. 1(b).
Equation (26) shows explicitly that the shape of the EWP
depends on the shape of the laser pulse, which governs the
magnitudes of the Up-scaled threshold energies εj. These
energies mark the positions of the spikes in the HHG

spectra which are related to the maximum energies, εjUp,
that the active electron can gain by moving along the jth
closed trajectory. Neglecting the spike-like features, the
EWP can be further simplified and is well represented by
Eq. (23). This result for the EWP shows explicitly that,
in the deep tunneling regime(Ip ≪ Up) and for electron
energies in the interval Ip ≪ E ≪ 3.17Up, the energy
scaling of the EWP is given by E1.5, independent of the
target and the pulse shape. This fact analytically justi-
fies the result of Ref. [26], which was obtained based on
numerical analysis of TDSE results. However, our ana-
lytic result (26) predicts a dependence of the EWP on

Ẽ in the interval 1.5 < Ẽ < 3.17 [see Eq. (29)] different
from the empirical result, ∝ e1.2Ẽ , suggested in Ref. [26].

For fixed absolute values of the electron energy E, the
EWP is shown to scale as ∝ λ−4. This result is close to
the result found numerically in Ref. [26], i.e., ∝ λ−4.2.

For a fixed Up-scaled energy Ẽ, our results show that
the EWP scales as ∝ λ−1, which is also close to the re-
sult of Ref. [26], i.e., ∝ λ−1.2. Employing these results
we have shown both analytically and numerically that
the λ-scaling results for the HHG yield found in prior
works [1, 10, 15–18] remain valid also in the midinfrared
region, as confirmed by the excellent agreement of our an-
alytical results with TDSE calculations of HHG spectra
for wavelengths λ ≤ 4 µm (see Fig. 2).
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mintchev, M. M. Murnane, H. C. Kapteyn, A. Jaron-
Becker, A. Becker, and L. Plaja, Zeptosecond High
Harmonic keV X-Ray Waveforms Driven by Midinfrared
Laser Pulses, Phys. Rev. Lett. 111, 033002 (2013).

[13] K. L. Ishikawa, E. J. Takahashi, and K. Midorikawa,
Wavelength dependence of high-order harmonic genera-
tion with independently controlled ionization and pon-
deromotive energy, Phys. Rev. A 80, 011807(R) (2009).

[14] H. Du, S. Xue, H. Wang, Y. Wen, and B. Hu, Wave-
length scaling of high-order harmonic yield from a Ryd-
berg atom in a few-cycle pulse, J. Opt. Soc. Am. B 31,
1621 (2014).

[15] K. Schiessl, K. L. Ishikawa, E. Persson, and
J. Burgdörfer, Quantum Path Interference in the Wave-
length Dependence of High-Harmonic Generation, Phys.
Rev. Lett. 99, 253903 (2007).

[16] M. V. Frolov, N. L. Manakov, and A. F. Starace, Wave-
length Scaling of High-Harmonic Yield: Threshold Phe-
nomena and Bound State Symmetry Dependence, Phys.
Rev. Lett. 100, 173001 (2008).

[17] K. Schiessl, K. L. Ishikawa, E. Persson, and
J. Burgdörfer, Wavelength dependence of high-harmonic
generation from ultrashort pulses, J. Mod. Opt. 55, 2617
(2008).

[18] K. L. Ishikawa, K. Schiessl, E. Persson, and
J. Burgdörfer, Fine-scale oscillations in the wavelength
and intensity dependence of high-order harmonic gener-
ation: Connection with channel closings, Phys. Rev. A
79, 033411 (2009).

[19] T. Auguste, F. Catoire, P. Agostini, L. F. DiMauro,
C. C. Chirila, V. S. Yakovlev, and P. Salières, Driving-

frequency scaling of high-harmonic quantum paths, New
J. Phys. 14, 103014 (2012).

[20] M. V. Frolov, N. L. Manakov, T. S. Sarantseva, M. Yu.
Emelin, M. Yu. Ryabikin, and A. F. Starace, Ana-
lytic Description of the High-Energy Plateau in Har-
monic Generation by Atoms: Can the Harmonic Power
Increase with Increasing Laser Wavelengths?, Phys. Rev.
Lett. 102, 243901 (2009).

[21] K. Krajewska, I. I. Fabrikant, and A. F. Starace, Thresh-
old effects in strong-field ionization: Energy shifts and
Rydberg structures, Phys. Rev. A 86, 053410 (2012).

[22] E. L. Falcão-Filho, V. M. Gkortsas, A. Gordon, and
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