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The dynamic electric dipole polarizability function for the magnesium atom is formed by assem-

bling the atomic electric dipole oscillator strength distribution from combinations of theoretical and

experimental data for resonance oscillator strengths and for photoionization cross sections of valence

and inner shell electrons. Consistency with the oscillator strength (Thomas-Reiche-Kuhn) sum rule

requires the adopted principal resonance line oscillator strength to be several percent lower than

the values given in two critical tabulations, though the value adopted is consistent with a number

of theoretical determinations. The static polarizability is evaluated. Comparing the resulting dy-

namic polarizability as a function of photon energy with more elaborate calculations reveals the

contributions of inner shell electron excitations. The present results are applied to calculate the

long-range interactions between two and three magnesium atoms and the interaction between a

magnesium atom and a perfectly conducting metallic plate. Extensive comparisons of prior results

for the principal resonance line oscillator strength, for the static polarizability, and for the van der

Waals coefficient are given in an Appendix.

PACS numbers: 34.20.Cf, 32.10.Dk, 31.10.+z

I. INTRODUCTION

Magnesium is an abundant element currently of interest in several applications. Analysis of photo association

spectroscopy for the Mg dimer [1, 2] indicates that the s-wave scattering length for collisions between two ground

state Mg atoms is positive [1], with the accuracy of the determination affected by the remnant uncertainty in the

value of the atom-atom van der Waals constant [2]. (A Bose-Einstein condensate of Mg atoms has not been created

experimentally, to date.) However, a determination of the leading term in the long-range interaction of electronically

excited states of the Mg dimer, which is related to the principal resonance line oscillator strength, using molecular

spectroscopy has been elusive [3]. Mg atoms were investigated as a possible sympathetic cooling agent in collisions

with NH [4, 5] and Lonij et al. [6] theoretically explored the interaction of an Mg atom with a wall for applications to
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atom interferometry. And, while Mg is abundant in the solar system, it is interesting to note that the Mg principal

resonance line was recently detected in the observation of the exoplanet HD 209458b using transit spectroscopy [7].

Modeling Mg absorption in exoplanet atmospheres depends proportionally on the principal resonance line absorption

oscillator strength [8], the value of which in turn affects the use of that line as a probe of escaping atoms in exoplanet

atmospheric spectroscopy [9].

An analysis of the dynamic electric dipole polarizability function of Mg is valuable for several reasons. First, because

the principal resonance line oscillator strength is an important contributor to the function, it is possible to determine

a value that achieves consistency with oscillator strength sum rules. Secondly, it is desirable to have an independent

assessment of the completeness of existing elaborate calculations of the function itself, for which extensive tabulations

from two different types of calculations are available [10, 11].

Calculations of dynamic electric dipole polarizabilities are of intrinsic theoretical interest due to the challenges

inherent in treating correlations and excitations of all electrons quantum-mechanically at different photon energies [12,

13]. Such calculations are necessarily important benchmarks for theoretical methods applied to photoabsorption [14],

photodetachment [15], blackbody radiation shifts [16–18] and AC Stark shifts [19], magic wavelengths [20], and parity

non conservation amplitudes [21], as well as being helpful in the ongoing development of density functional theory

(DFT) methods for dispersion forces (cf. [22–26]). In addition, for metals experimental data at a wide spectrum of

photon energies are relatively scarce though X-ray data, and sometimes optical data [27, 28], are available. There

is recent progress for systematically measuring static polarizabilities [29]. Many theoretical approaches are available,

but their reliability in calculating dynamic polarizabilities can be difficult to gauge without critical evaluation, but

critical evaluations are limited to the static polarizabilities [30–32]. Nevertheless, dynamic polarizabilities are of great

utility in calculating coefficients appearing in certain potential energies, particularly van der Waals constants (for

investigations of ultra-cold collisions, for photo association spectroscopy, and for ultra-cold gas studies) and Lennard-

Jones constants (for atom-surface interactions, where recent applications include tests for gravity-related new physics

at submillimeter distances [33–35], optical clocks [36, 37], atom-graphene interactions [38], noncontact van der Waals

friction [39], and interactions between nanostructures [40]).

In a previous paper treating the sodium atom [41], a semi-empirical theory utilizing oscillator strength sum rules and

input data from experiments and calculations predicted a value of the van der Waals coefficient [41], which was found

to be in harmony with subsequent experimentally determined fits from photo-association spectroscopy data [42, 43]

and ab initio theoretical methods [44]. In the case of sodium, the availability of precise measurements of the principal
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resonance line oscillator strength from photo-association spectroscopy and of the static electric dipole polarizability

from atom interferometry augmented the semi-empirical analysis [41]. In the case of magnesium, such data are not

available. Therefore, in this paper, for Mg, the electric dipole oscillator strength distribution is composed using extant

data on electric dipole oscillator strengths, photoabsorption cross sections, and energies obtained experimentally and

theoretically. As will be shown, consistency with the oscillator strength (Thomas-Reiche-Kuhn) sum rule requires

a value of the principal resonance line oscillator strength that is several percent lower than values listed in critical

tabulations by Morton [45] and by Kelleher and Podobedova [46]. Other evidence for the value adopted is given. The

static electric dipole polarizability is evaluated and compared with other values. The dynamic polarizability function is

calculated and compared with previous results obtained by Porsev et al. [10] using configuration interaction and many-

body perturbation theory with core contributions (CI-MBPT) [47] and by Jiang at al. [11] using the configuration

interaction with semi-empirical core-valence interaction (CICP) method. The present dynamic polarizability function

is used to evaluate the van der Waals constant, Axilrod-Teller-Muto constant, and atom-surface interactions. Results

from the literature for the principal resonance line oscillator strength, static electric dipole polarizability, and van der

Waals constant are collected and compared in the Appendix.

II. DIPOLE OSCILLATOR STRENGTH SUM RULES

The absorption oscillator strength from the ground state |0〉 with eigenvalue E0 to an excited state |n〉 with

eigenvalue En is

fn = 2
3 (En − E0)

∣∣∣∣∣
〈

0

∣∣∣∣∣
N∑
i=1

ri

∣∣∣∣∣n
〉∣∣∣∣∣

2

, (1)

where ri is the position vector of electron i, and N is the number of electrons. Atomic units are used throughout

unless otherwise specified.

Denoting by S′n the sum-integral (the sum over all discrete transitions excluding the initial state and the integration

over all continuum states), the resultant sum rules are

S(0) = S′nfn = N, (2)

with N = 12 for Mg,

S(−1) = S′nfn/(En − E0) = 2
3

〈
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∣∣∣∣∣∣
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)2
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〉
, (3)
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and

S(−2) = S′nfn/(En − E0)2 = α(0), (4)

where α(0) is the static electric dipole polarizability. The dynamic electric dipole polarizability function is

α(ω) = S′n
fn

(En − E0)2 − ω2
, (5)

where ω is the photon energy. By direct integration the S(−1) sum rule is related to the atom-wall interaction

coefficient C3 [41]

C3 = 1
8S(−1) =

1

4π

∫ ∞
0

dω α(iω), (6)

the van der Waals coefficient is

C6 =
3

π

∫ ∞
0

dω [α(iω)]2, (7)

and the Axilrod-Teller-Muto coefficient is

C9 =
3

π

∫ ∞
0

dω [α(iω)]3. (8)

III. OSCILLATOR STRENGTH DISTRIBUTION

A magnesium atom has twelve electrons. Their configuration is (1s22s22p63s2) 1S0.

A. Discrete transitions

Sources with tabulations of values, experimental and theoretical, for the absorption oscillator strengths are

Mitchell [48], Mendoza and Zeippen [49], Ray and Mukherjee [50], Jönsson and Fischer [51], Hamonou and Hib-

bert [52], and Derevianko and Porsev [53].

There are numerous theoretical determinations of the oscillator strength for the principal resonance line (3s2) 1S−

(3s3p) 1P o. A detailed survey is given in the Appendix. Reliable theoretical calculations range from 1.709 to 1.76,

and there were at least ten experimental determinations as of 2003 [45]. In a critical review, Morton [45] adopted a

value of 1.83± 0.03 based on a weighted mean of the ten experimental values. A long-standing discrepancy between

experimental and theoretical trends was noted previously [54–57]. The tendency of high-level theoretical results to be

less than 1.8 was noted recently by Zatsariny et al. [57] who calculated a nonrelativistic value of 1.738 and pointed
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out that a “very extensive and essentially converged multiconfiguration Hartree-Fock (MCHF)” ab initio calculation

by Jönsson, Fischer, and Godefroid [56] found 1.717. Jönsson, Fishcher, and Godefroid [56], using the observed

transition energy to evaluate the oscillator strength, obtained 1.710 and also pointed out (see their Table 11) that

(as of 1999) theoretical values were consistently smaller than the experimental ones (to date) by about 5 percent.

Recently, Derevianko and Porsev [53] quote for the matrix element governing the line strength a value 4.03±0.02 with

error of 0.5% based on their calculations from 2001 [58]; the corresponding oscillator strength using the experimental

transition energy [46] is 1.73±0.02. The original NIST (NBS) tabulation of 1969 [59] adopts 1.8±0.18 from an average

of the experiments of Refs. [60, 61] and the calculation of Weiss [62]. The value 1.8 (cited as a private communication

from A. W. Weiss) is given with 3 percent error (±0.05) at the 90 percent confidence level in the 2008 NIST revised

tabulation [46].

I adopt the value 1.75, which is the lower limit of the value 1.80(5) from Kelleher and Podobedova [46] and the

upper limit of the value 1.73(2) recommended by Derevianko and Porsev.

Mitchell [48] used the anomalous dispersion (hook) method to measure the second (3s–4p) through sixth (3s–8p)

resonance transition oscillator strengths and found, respectively, 0.107±0.0019, (2.27±0.12)×10−2, (8.53±0.46)×10−3,

(4.11±0.36)×10−3, and (2.34±0.15)×10−3, all determined relative to the value of 1.72 for the principal transition that

Victor and Laughlin [63] calculated using a semi-empirical model potential method. Other theoretical determinations

of f values for the second and higher resonance transitions are those of Saraph [64], Mendoza and Zeippen [49], Chang

and Tang [65] and Zatsarinny et al. [57]. I adopt the values of Chang and Tang, who calculated for the principal

to sixth resonance lines, respectively, oscillator strengths 1.75, 0.111, 0.024, 0.0091, 0.0043, and 0.0024. These five

discrete (second to sixth resonance) transitions contribute 0.151 to the S(0) sum and 2.81 to the S(−2) sum for the

3s shell.

Including the principal resonance line, the discrete transition contribution from the 3s shell to S(0) is 1.90 and to

S(−2) is 71.4.

B. Continuum transitions

A number of sources exist for the continuum oscillator strengths corresponding to the ejection of a 3s electron [66–

86]. The photoionization cross sections calculated using a variational MCHF method by Fischer and Saha [74] are in

good agreement with the experimental results of Wehlitz et al. [82]. The threshold cross section of 2.5 Mb calculated

by Fischer and Saha [74] is slightly larger than both the value 2.1±0.3 Mb measured by Fung et al. [80] and the value
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2.36±0.02 Mb that Parkinson, Reeves, and Tomkins [69] found by extrapolation from the measured discrete oscillator

strengths of Ref. [48]. Wehlitz et al. [82] normalized their own measurements to the value 2.1 Mb at threshold. At

a photon energy of 30 eV, a recent calculation by Pindzola et al. [85] using a time-dependent close-coupling method

with an effective core potential gives σ3s(30 eV) = 0.217 Mb, while Verner et al. [78] calculate 0.255 Mb. At 80 eV,

the “complete” experiment of Haussman et al. [83], for which the total absorption cross section of Ref. [87] was

used for normalization, yields σ3s(80 eV) = 0.080 ± 0.011 Mb from the main transition compared to the value 0.087

from Verner et al. Haussman et al. also measured an additional 0.014 ± 0.004 Mb contribution from satellites. The

measurements of Wehlitz et al. [82] are adopted for energies from threshold to 11.6 eV and the 3s cross section data

were extended to higher energies using the results of Verner et al. [78].

The contributions to the three sum rules S(0), S(−1), and S(−2) from the continuum are, respectively, 0.261, 0.162,

and 0.277. Combining these with the discrete contributions from the Sec. III A the total valence shell contributions

are 2.16, 11.8, and 71.7, which are listed in Table I. The calculated valence shell contribution of 2.16 to the S(0)

sum confirms that the contribution from the 3s electron to S(0) is greater than 2 [88, 89], indicating configuration

interaction of the valence electrons with the core electrons. Maeder and Kutzelnig [90] obtained 2.06 using a model

potential including core-valence correlation.

The excitation and ejection of K shell electrons was considered by Verner et al. [78], Kutzner et al. [91], and

Hasoğlu et al. [92]. Hasoğlu et al. used R-matrix methods to calculate excitation of K shell electrons to np states

resonant below the threshold. The resonances are estimated to contribute 0.03 to the value of S(0). The relativistic

random-phase approximation modified to include relaxation effects (RRPAR) calculations of Kutzner et al. are in

good agreement with the cross sections calculated by Verner et al. from threshold to high energies. Their results

at threshold are in accord with those of Verner et al. Banna et al. [93] measured the shake-up peak just above the

threshold, but absolute cross sections are not available. The cross sections of Verner are adopted from the threshold

for ejection of a 1s electron at 1310.9 eV. The K shell contribution yields 1.56 to S(0) and it is negligible for S(−1)

and S(−2). The 1s contribution to S(0) found here for Mg is comparable to that found for Na [41].

Deshmukh and Manson [70], Nasreen, Manson, and Deshmukh [94], Kutzner, Maycock, and Thorarinson [91], and

Verner et al. [78] calculated the partial cross sections for the ejection of a 2s electron. The cross section value 0.3 Mb

at the threshold energy of 94.0 eV is adopted [91, 94] and linearly joined to the results of Verner et al. at 270 eV, which

are used for higher energies. For the 2s shell the contribution to the sums S(0), S(−1), and S(−2) are, respectively,

1.02, 0.1, and 0.02.
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TABLE I: Contributions to the sum rule S(k) for Mg.

S(0) S(−1) S(−2)

1s 1.56 0.02 ...

2s 1.02 0.10 0.02

2p 7.26 1.60 0.44

3s 2.16 11.8 71.7

Total 12.0 13.5 72.2

The remaining oscillator strength must come from the 2p shell and the expected contribution to S(0) is 7.26.

Deshmukh and Manson [70], Altun [77], Nasreen, Manson, and Deshmukh [94], Kutzner, Maycock, and Thorarin-

son [91], investigated photoionization of a 2p electron. There a number of resonances corresponding to excitation to

autoionizing states [77] and they contribute significantly to the oscillator strength. Measurements of the cross section

by Haussman et al. [83] at 80 eV found that the resonances constitute 25% of the 2p shell photoionization cross

section. The cross sections averaged over the resonances from the correlated length gauge many-body perturbation

theory (MBPT) calculations of Altun (Figure 9 of Ref. [77]) are adopted from 63.29 eV to 344.89 eV, giving σ2p(80 eV)

= 6.2 Mb which is slightly larger than the reference value used by Haussman et al. The calculations of Verner et al.

are used from the threshold energy of 54.9 eV up to 63.29 eV and for energies above 344.89 eV. These data yield

for the 2p shell the contributions to the sums S(0), S(−1), and S(−2), respectively, 7.33. 1.61, and 0.45. If the

calculations of Altun are multiplied by a factor of 0.985, the cross section at 80 eV becomes 6.1 Mb and the sums

S(0), S(−1), and S(−2) are calculated to be, respectively, 7.26, 1.60, and 0.44 and the values are listed in Table I.

The contributions to the sums S(0), S(−1), and S(−2) from the excitation of the 1s, 2s, 2p, and 3s electrons are

summarized in Table I.

C. Discussion

Stwalley [88], Pal’chikov and Ovsiannikov [95], Ovsiannikov et al. [96], and Sarkisov et al. [28] constructed oscillator

strength distributions of Mg for calculations of dynamic polarizabilities, considering valence transitions. Sarkisov et

al. [28] included an estimate of 2p excitations.

From their tabulated data, the results of Pal’chikov and Ovsiannikov [95] and Ovsiannikov et al. [96] indicate a total

discrete contribution of 1.9 to the S(0) sum rule for 3s discrete transitions in agreement with the present result. They
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used a value of 1.73 for the principal resonance line oscillator strength, which offsets in the sum rule their slightly

larger value of 0.122 for the second resonance line oscillator strength, compared to the present adopted values of,

respectively, 1.75 and 0.111. For the S(−2) sum, they find for the second to sixth resonance transitions a contribution

of 3.12 to S(−2), to be compared to the present value of 2.81. The difference between their value and the present

value is due primarily to the different values of the second resonance line oscillator strength. Their total value (valence

electrons) for S(−2) is 71.39, while the present value for the 3s shell is 71.7.

Including all shells, the present value of α(0) is 72.2 from the S(−2) sum rule, see Table I. It lies only 0.2 above

the range of values 71.3(7) recommended by Porsev and Derevianko [47] and it is compared with a number of other

theoretical calculations in the Appendix.

Note that if the value 1.8 is adopted for the principal oscillator strength [46], without any other adjustments to the

adopted data, the present S(0) sum becomes 12.05 and α(0) becomes 73.4, which is far beyond the value recommended

by Porsev and Derevianko. The value 1.83 for the oscillator strength adopted by Morton [45] is more difficult to

reconcile within the present analysis. The S(0) sum becomes 12.08 and the value of α(0) becomes 74.6. Sarkisov et

al. [28] use the oscillator strength data from Morton [45] and estimate the 2p and 3s continuum contributions using

the data from Verner et al. [78] and find α(0) = 73.6. Stwalley’s early calculation [88] used the value 1.82(5) for the

principal resonance line oscillator strength (see his Ref. 7 for sources) and obtained an estimate α(0) = 75.0± 3.0.

A recent experiment [29] using a pulsed cryogenic molecular beam electric deflection method obtained a value

α(0) = 59(15), which is not sufficiently accurate to discriminate between theoretical calculations.

Reshetnikov et al. [89] explored the relationship between the uncertainty in α(0) and the uncertainty in the lifetime

of the first resonance transition in two-valence electron atoms and ions. Their formalism allows a valence shell

contribution to N that is not exactly 2, as found here and in Ref. [90]. In terms of the the valence contribution, Ne,

the principal resonance line oscillator strength f3s,3p, and the excitation energies of the first and second resonance

transitions, respectively, E3s,3p and E3s,4p, they give

α(0) =
f3s,3p
E2

3s,3p

+
Ne − f3s,3p

2E2
3s,4p

(9)

and an uncertainty estimate for the polarizability

∆α(0) =
Ne − f3s,3p

2E2
3s,4p

. (10)

Using the present adopted value f3s,3p = 1.75, calculated value Ne = 2.16, and transition energies [46] E3s,3p =

0.159 705 and E3s,4p = 0.224 840, yields an estimate α(0) = 72.7 ± 4. Likewise, using their formula for estimating
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the uncertainty of f3s,3p, given the present calculated value α(0) = 72.2, yields f3s,3p = 1.79± 0.07. The formulae of

Reshetnikov et al. [89] demonstrate that the present results are mutually consistent, but the estimates obtained are

not sufficiently precise to allow selection of a particular value of f3s,3p from the many available values, see Appendix.

The availability of a more accurate measurement of α(0) and a definitive measurement of the principal resonance

line lifetime would significantly improve the present model [41]. Nevertheless, the values adopted here, in particular

f3s,3p = 1.75, generate sum rules that are consistent and not in contradiction with other major studies, while a value

of f3s,3p ≥ 1.8 is inconsistent.

IV. DYNAMIC ELECTRIC DIPOLE POLARIZABILITY FUNCTION

The dynamic electric dipole polarizability function at imaginary frequencies is constructed using the discrete and

continuum oscillator strength data as assembled in Sec. III.

The continuum oscillator strength distribution is given in terms of the photoionization cross section σ(E) by

df

dE
=

σ(E)

2π2αfs
, E > 0.281, (11)

with αfs the fine structure constant, and the dynamic dipole polarizability at imaginary energy is

α(iω) =
∑
n

fn
(En − E0)2 + ω2

+

∫
dE

df/dE

E2 + ω2
. (12)

The function α(iω) resulting from the analysis in Sec. III is shown at low energies in Fig. 1. It may be compared

with the calculations of Derevianko et al. [10] and those of Jiang et al [11]. The present function α(iω) was evaluated

at the fifty energies corresponding to the energies ωk of a 50-point quadrature, as listed in Table A of Ref. [10], and

the energies for a 40-point quadrature listed in Table C of Jiang et al. In Fig. 2 the data are plotted. Agreement

is very good between the present results and the CI-MBPT results of Ref. [10]. There are noticeable discrepancies

between the present results and the CICP results of Ref. [11]. To further investigate the discrepancies, in Fig. 3 the

percentage difference between the values from the functions given in Ref. [10] or Ref. [11] and the present values

are shown. The present model and the calculations of Ref. [10] agree within several percent at all energies. The

present values are larger than those of Ref. [10] at low energies, due to the larger principal oscillator strength adopted

herein. The several percent agreement across all energies is satisfactory and a more detailed analysis might await an

accurate experimental value for α(0) and a definitive measurement of the principal resonance line oscillator strength.

In contrast, the differences between the present model and the model of Ref. [11] are made apparent in Fig. 3 showing

that the CICP model of Ref. [11] yields larger values for α(iω) in the energy range of 1 to 200 au. The difference
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FIG. 1: The dynamic dipole polarizability function α(iω) from the present calculations.
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FIG. 2: For the dynamic dipole polarizability function α(iω), comparison between the present values (line), the configuration

interaction with semi-empirical core-valence interaction (CICP) values from Ref. [11] (circles), and the configuration interaction

and many-body perturbation theory with core interactions (CI-MBPT) values from Ref. [10] (squares).
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FIG. 3: For the dynamic dipole polarizability function α(iω), percent difference comparison between the present values and

the CI-MBPT values from Ref. [10] and between the CICP values from Ref. [11] . The quantity plotted is 100 × [(other) −

(present)]/present, where “other” is either Ref. [10] or [11]. The filled squares are the percent differences of the present values

from the CI-MBPT values and the filled circles are the percent differences of the present values from the CICP values. The

plotted values show that the present α(iω) is within several percent of the CI-MBPT values across the range of energies and

show that the CICP values are larger for photon energies between roughly 1 and 200 atomic units.

may arise due to the choice of “effective” core oscillator strengths in the CICP model [11, 97]. The percent difference

peaks at about 16 % around 5–6 e2/a0 (135–160 eV) placing the missing oscillator strength of the CICP model in the

inner s shells, where the “effective” oscillator strengths are placed to model inner shell absorption [11, 97].

V. APPLICATIONS

A. van der Waals coefficient C6

The long-range potential energy between two Mg atoms separated by a distance R is −C6/R
6, where C6 is given

by Eq. (7). For the van der Waals coefficient, I find C6 = 642.4 by evaluating Eq. (7) using the quadrature method
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of Ref. [10],

C6 ≈
3

π

50∑
j=1

wjα
2(iωj), (13)

using the present values of α(iω) evaluated at the energies ωj and with the weights wj given in Table A of Ref. [10].

Porsev and Derevianko [98] quote accuracy of 2% or better for their value C6 = 627(12) obtained using a semi-

empirical hybrid relativistic many-body perturbation theory (CI-MBPT) approach. The present value lies just above

their range, mainly corresponding to their principal resonance line oscillator strength of 1.73, compared to the present

adopted value of 1.75, thus, 642× (1.73/1.75)2 ≈ 627. The present result improves upon the earlier empirical estimate

of 683(35) by Stwalley [88]. A more detailed survey and comparison of other determinations of C6 is given in the

Appendix.

B. Atom-wall coefficient C3

The long-range potential energy of an Mg atom at distance z from a perfectly conducting wall is −C3/z
3, where C3

is given by Eq. (6). Mitroy and Bromley [97] calculated C3 = 1.704 using the CICP approach, while the CI-MBPT

value is 1.666 [10]. Lonij et al. [6] gave an approximate value of 1.51 using a limited 4-parameter model for the

dynamic polarizability. The value of C3 is known to be sensitive to the completeness of the description of the core

electrons [44, 99, 100].

The present value is C3 = 1.69 using C3 = 1
8S(−1) and the value of S(−1) from Table I and 1.687 using Eq. (6)

and the quadrature from Ref. [10],

C3 ≈
1

4π

50∑
j=1

wjα(iωj). (14)

Both of the present values (sum rule and quadrature) are in good accord with Ref. [10]. The slightly larger value

of C3 from the CICP calculations, Ref. [11], is consistent with the relatively larger values of α(iω), as discussed in

Sec. IV and shown in Figs. 2 and 3.

C. Other properties

The Axilrod-Teller-Muto coefficient C9, Eq. (8), characterizes the mutual long-range interaction potential of three

atoms. The value obtained by Mitroy and Bromley [97] is 33 380 and that obtained by Porsev et al. [10] is 33 241.
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Using the dynamic polarizability function I evaluated, Eq. (8), using the quadrature of Ref. [10],

C9 ≈
3

π

50∑
j=1

wjα
3(iωj), (15)

and obtained C9 = 34 480.

The larger value for C9 found here mainly reflects the larger principal oscillator strength 1.75 adopted compared

to the principal oscillator strengths found in Refs. [97] and [10]. The oscillator strength appears as a cubic power in

Eq. (15) through α(iω), see Eq. (12). For example, comparing to Ref. [10], which used a principal oscillator strength

of 1.73, scaling the present value I obtain 34 450×(1.73/1.75)3 = 33 310, which is within 0.2 % of the value of Ref. [10].

VI. CONCLUSION

Experimental and theoretical data were assembled and used to formulate the dynamic polarizability function for

Mg. I find that consistency in the sum rules can be achieved using the adopted value of the principal resonance line

oscillator strength to be 1.75; lower than the curated values of 1.83 [45] and 1.8 [46], but in agreement with theoretical

calculations. Comparisons of the dynamic dipole polarizability functions from the present work and those calculated

using the CI-MBPT approach and the CICP approach were presented. Good agreement (within several percent) was

found with the CI-MBPT results over all photon energies providing an independent confirmation of the CI-MPBT

approach for Mg [10]. For the CICP method the differences were more pronounced, approaching 16% at energies

around 5–6 e2/a0, or about 135–160 eV, indicating that the “effective” oscillator strengths of Refs. [97] and [11] may

not completely model oscillator strengths corresponding to the core electrons. To improve the present model it would

be valuable to have more accurate experimental measurements of the polarizability and a definitive measurement

of the principal oscillator strength. Where sufficient and reliable data is available, the present methodology can be

applied to other atoms.
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Appendix: Values from the literature

In this Appendix, values for Mg of the principal resonance transition oscillator strength, of the static electric

dipole polarizability, and of the van der Waals constant are collected from the literature. Some earlier collections

include Refs. [48–50, 76] for the principal oscillator strength, Refs. [32, 50, 52, 90, 97, 101] for the polarizability, and

Ref. [97] for the van der Waals constant.

For the oscillator strength, as discussed in the Sec. III, it was noted in several recent papers [56, 57] that in general

the most sophisticated theoretical calculations lie several percent below the published experimental values, see also

earlier similar comments in Refs. [63], [55], and [49]. Also, it was noted that the “best” calculations lie below [57]

the adopted value of 1.8 in the NIST tabulation [46]. As shown in Table II, the configuration interaction (CI), multi-

configuration Dirac-Fock (MCDF), and multi-configuration Hartree-Fock with Breit-Pauli interactions (MCHF+BP)

calculations, are all in general agreement; the latter two methods include relativistic effects. In addition, the semi-

empirical model potential (MP) calculation of Victor and Laughlin [63] agrees with the MCHF calculation. In

the Table, where treatment of core-valence correlation was included the suffix CV is appended. In addition, the

relativistic configuration interaction with the Breit interaction (RCI+Breit ) of Ref. [103] are in close agreement with

the configuration interaction Dirac-Fock with core polarization (CIDF-CP) calculations of Ref. [104]. CI+MBPT

methods use complete relativistic CI calculations for the valence electrons in a frozen core combined with MBPT to

account for core-valence interactions. The CI frozen core calculations of Saraph [64] and Chang and Tang [65] and

the CI-CV calculations of Moccia and Spizzo [76] are in close agreement with values between 1.75 and 1.76. There is

substantial theoretical evidence for a value of the principal oscillator strength around 1.75.

Many calculations of the static polarizability α(0) are available. There are several good tables containing summaries

of other earlier works. In particular, from 1976, Reinsch and Meyer [101] and from 1991, Archibong and Thakkar [108],

see also Schwerdtfeger [30]. Thakkar and Lupinetti [31] recommend a theoretical value of 71.22± 0.36, which includes

a relativistic correction of −0.35, and Chu and Dalgarno [109] recommend 71.

Table III lists some of the results from the literature. The quantum defect theory (QDT) value from Chernov et

al. [110] models the response of the valence electrons only. The pseudopotential (PP) [90] and model potential (MP)

calculations [111, 112] model the response of the valence electrons with inclusion of effective potentials to treat the core

electrons. An effective core potential is used similarly in the configuration interaction core potential (CICP) calculation

of Müller, Flesch, and Meyer [113]. The CICP calculation of Mitroy and Bromley [97] utilizes a model that treats

core excitation using effective oscillator strengths designed to reproduce the core polarizability. The multi-reference
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TABLE II: A comparison of results for the principal resonance transition absorption oscillator strength for Mg. Abbreviations

for methods are defined in the text. Where a calculation was carried out in the length gauge (LG) and the velocity gauge (VG),

the simple average is listed and the LG and VG values are listed as a table footnote.

Method f Source Ref. (Year)

MCDF-CV 1.709 Jönsson and Fischer [51] (1997)

MCHF 1.717 Jönsson, Fischer, & Godefroid [56] (1999)

MP 1.717 Victor and Laughlin [63] (1973)

MCHF+BP 1.719 Fischer, Tachiev, & Irimia [102] (2006)

RCI+Breit 1.722 Cheng et al. [103] (2011)

CIDF-CP 1.72 Stanek, Glowacki, & Migdalek [104] (1996)

CI+MBPTa 1.724 Savukov and Johnson [105] (2002)

CIb 1.725 Mengali and Moccia [106] (1996)

CIc 1.73 Nesbet and Jones [107] (1977)

CI+MBPTd 1.73(2) Derevianko and Porsev [53] (2011)

CICP 1.732 Mitroy and Bromley [97] (2003)

CI 1.735 Hamonou and Hibbert [52] (2008)

CIe 1.737 Weiss [62] (1967)

MCHF-CV 1.738 Zatsarinny et al. [57] (2009)

MCHFf 1.747 Fischer [54] (1975)

CI-frozen core 1.75 Chang and Tang [65] (1990)

CI-CVg 1.755 Moccia and Spizzo [76] (1988)

CI-frozen core 1.76 Saraph [64] (1976)

NIST adoptedh 1.8 Kelleher and Podobedova [46] (2008)

Experimenti 1.83(3) Morton [45] (2003)

aMean of LG and VG line strength with experimental transition energy from [46]
bMean of LG 1.72 and VG 1.73
cMean of LG 1.746 and VG 1.717
dLine strength with experimental transition energy from [46]
eMean of LG 1.773 and VG 1.701
fMean of LG 1.757 and VG 1.736
gMean of LG 1.76 and VG 1.75
hCited as Weiss, private communication. Using the CI value for the line strength from Weiss (1967) and the measured transition energy

yields 1.77.
iWeighted average of ten experimental values as of 2003.
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configuration interaction (MRCI) calculation of Partridge et al. [114] gives 71.2. They also calculated a CI-CV value

of 70.3 (not listed in Table III), which is in good agreement with the similar calculation of 70.9 by Hamanou and

Hibbert [52], but the average value of 74.37 from the CI-CV calculations by Moccia and Spizzo [115] is significantly

larger. The coupled cluster double-excitation with contributions of single and triple excitations (CCD+ST) model

of Castro and Canuto [116] yields a value of 70.89, somewhat lower than the MRCI value and the fourth order

many body perturbation theory [MBPT(4)], value of 71.7 calculated by Archibong and Thakkar [108], while the

coupled cluster with single and double excitation-effective Hamiltonian (CCSD-EH) approach of Stanton [117] yields

72.2 using basis sets from Ref. [118], denoted WMR in the Table. The pseudo-natural orbital coupled electron pair

approximation (PNO-CEPA) calculation of Reinsch and Meyer [101] is close to the CI+MBPT calculation of Porsev

and Derevianko [47]. Two time-dependent density functional theory (TDDFT) calculations are included in Table III.

Using time-dependent DFT with a self-interaction correction (TDDFT-SIC), Chu and Dalgarno [109] obtained 71.8

and using the symmetry adapted perturbation theory codes, SAPT(DFT), Patkowski et al. [119] obtained 73.27 for the

polarizability. An extensive table of values for the polarizability of Mg resulting from various density functional theory

functionals is given in Ref. [22]. The R-matrix calculation of Robb [120] is 75(5); the relatively large value results

because core-valence correlation effects were not included [90]. Excluding the relatively large value from Ref. [115],

the CI, MRCI, CICP, and MBPT calculations fall in the range from 70.74 to 71.7. Reshetnikov et al. [89] use a

semi-empirical method that utilizes a sum rule with constraints and error bars determined using measured lifetimes

and excitation energies. Their value is 74.4(2.7), with the accuracy limited by the available input data. The recent

experiment of Ma et al. [29] using a cryogenic molecular beam found a value of 59(15), which is not yet sufficiently

accurate to test the calculations against.

Table IV presents a collection of van der Waals constant values from the literature and a significant range is

apparent, though the CI+MBPT and CICP calculations, which include models of core electron excitations, are in good

agreement. The value 620(5) from the model potential (MP) calculation of Santra, Christ, and Greene [121] is close

close to the pseudopotential (PP) calculation of 618.4 from Maeder and Kutzelnigg [90], both of which include effective

potentials to account for the presence of core electrons, but don’t fully include their excitations. The MP calculation

from Patil [112], however, is significantly larger, at 648. Three DFT calculations are listed in Table IV. Hult et al. [122]

introduced a local dielectric function and cutoff on the interaction volume and obtained 615. In contrast, Chu and

Dalgarno used time-dependent DFT with a self-interaction correction (TDDFT-SIC) and an empirical correction to

obtain 626 with an estimated uncertainty of 1%. Patkoswki et al. [119] used the symmetry adapted perturbation
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TABLE III: The static electric dipole polarizability (in units of a30) for Mg in the ground state. Abbreviations for methods are

defined in the text.

Method α(0) Source Ref. (Year)

Experiment (cryogenic molecular beam) 59(15) Ma et al. [29] (2015)

QDT 69.54 Chernov et al. [110] (2005)

PP 70.5 Maeder and Kutzelnigg [90] (1979)

CICP 70.74(71) Müller, Flesch, & Meyer [113] (1984)

CCD+ST(CCD) 70.89 Castro and Canuto [116] (1993)

CI 70.90 Hamanou and Hibbert [52] (2008)

MRCI 71.2 Partridge et al. [114] (1990)

CICP 71.35 Mitroy and Bromley [97] (2003)

CI+MBPT 71.3(7) Porsev and Derevianko [47] (2006)

PNO-CEPA 71.32 Reinsch and Meyer [101] (1976)

MBPT(4) 71.70 Archibong and Thakkar [108] (1991)

TDDFT-SIC 71.8 Chu and Dalgarno [109] (2004)

MP 72.0 Patil [112] (2000)

MP 72.1 Victor and Slavsky [111] (1974)

CCSD-EH (WMR) 72.2 Stanton [117] (1994)

TDDFT CKS 73.27 Patkowski et al. [119] (2007)

CI-CVa 74.37 Moccia and Spizzo [115] (1988)

Sum rule 74.4(2.7) Reshetnikov et al. [89] (2008)

R-matrixb 75(5) Robb [120] (1975)

aMean of LG 74.7 and VG 74.03
bDoes not include core valence according to Ref. [90]

theory codes, SAPT(DFT), and obtained 635. The calculation of C6 by Stanton [117] used a quadrature and values of

the dynamic polarizability at imaginary frequencies calculated using the CCSD-EH coupled cluster approach with the

basis sets from [118]. The CI-CV calculations of Moccia and Spizzo [115] in the velocity gauge (VG) and in the length

gauge (LG) are substantially larger than the other listed calculations. Robb [120] estimated his R-matrix calculation

to be accurate to 10 %. Stwalley [88] used an empirically constructed polarizability function to calculate C6. The

large value for C6 corresponds to the choice of 1.82 for the principal oscillator strength. In Ref. [2] it was found that
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TABLE IV: The dispersion constant (in units of e2a50) for the Mg dimer from various references. Abbreviations for methods

are defined in the text.

Method C6 Source Ref. (Year)

DFT 615 Hult at al. [122] (1999)

PP 618.4 Maeder and Kutzelnigg [90] (1979)

MPa 620(5) Santra, Christ, & Greene [121] (2004)

TDDFT-SICb 626(6) Chu and Dalgarno [109] (2004)

CI+MBPT 627(12) Porsev and Derevianko [47] (2006)

CICP 629.5 Mitroy and Bromley [97] (2003)

MP 632.27 Victor and Slavsky [111] (1974)

SAPT(DFT) 635 Patkowski et al. [119] (2007)

CCSD-EH (WMR) 648 Stanton [117] (1994)

MP 648 Patil [112] (2000)

CI-CV (VG) 658.1 Moccia and Spizzo [115] (1988)

CI-CV (LG) 670.9 Moccia and Spizzo [115] (1988)

Empirical 683(35) Stwalley [88] (1971)

R-matrix 689(70) Robb [120] (1975)

aDoes not include core contributions
bListed in Table VII as “corrected,” corresponding to an empirical rescaling.

a 2% uncertainty in C6 leads to an uncertainty of no more than 0.3 nm in the scattering length for 24Mg2.
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