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Stopping powers of antiprotons in H, He, Ne, Ar, Kr, and Xe targets are calculated using a semi-
classical time-dependent convergent close coupling method. The helium target is treated using both
frozen-core and multiconfiguration approximations. The electron-electron correlation of the target is
fully accounted for in both cases. Double ionization and ionization with excitation channels are taken
into account using an independent-event model. The Ne, Ar, Kr and Xe atom wave functions are
described in a model of six p-shell electrons above a frozen Hartree-Fock core with only one-electron
excitations from the outer p-shell allowed. Results obtained for helium in the multiconfiguration
treatment are in better agreement with experimental measurements than other theories.

PACS numbers: 34.10.+x, 34.50.Bw

I. INTRODUCTION

Knowledge of energy losses as particles travel through
matter is of fundamental importance in a number of
fields including medical radiation therapy [1], aviation
and space exploration [2], and astrophysics [3]. Signifi-
cant attention is being drawn to the area of antiproton
scattering from atoms and molecules due to the develop-
ment of sources of low energy antiprotons, see the review
of Kirchner and Knudsen [4]. The antiproton decelerator
at CERN [5] is extending its Extra Low Energy Antipro-
ton ring (ELENA) [6] to significantly increase the number
of usable/trappable antiprotons, with scattering experi-
ments due to begin in 2017. Interest in the processes
occurring during antiproton scattering from atoms and
molecules is compounded due to its potential applica-
tion to radiotherapy and oncology (see, e.g., Ref. [4, 7]).
Also, the future Facility for Antiproton and Ion Research
(FAIR) at GSI has requirements for precise knowledge of
the collision mechanisms between antiprotons and vari-
ous atomic and molecular targets.

With the development of the low-energy antiproton
ring (LEAR) facility at CERN stopping power measure-
ments for antiprotons in He were performed by Agnello
et al. [8]. They simultaneously measured the spacial co-
ordinates and times of annihilation. Then they solved an
inverse problem to obtain the stopping power. Result-
ing equations are solved numerically using parameters
to obtain the best fit to the data. Measurements were
performed between 0.5 keV and 1.1 MeV. This data was
later reanalysed by Rizzini et al. [9] with emphasis on the
Barkas effect [10].

The first quantum-mechanical formulation of energy
loss per unit path length, or stopping power, was devel-
oped by Bethe [11]. He applied the first Born and dipole
approximations and proposed that the stopping power
for heavy projectiles travelling through matter at non-
relativistic velocity v is given by
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where N is the number of target atoms per cubic meter,
ke is the Coulomb constant, e is the elementary charge,
me is the electron mass, Zt is the atomic number of the
target, Zpe is the charge of the incident particle and Ē
is mean excitation energy of the target. Due to the ap-
proximations made by Bethe [11] the above formula is
applicable only at sufficiently high projectile velocities.
However, with the increased interest in heavy projectile
interactions with matter due to applications in hadron
therapy it is important that calculations of the stopping
power are accurate over the whole energy range includ-
ing low energies. With experimental data to compare
with, Schiwietz et al. [12, 13] performed the first theoret-
ical calculations of antiproton stopping power in H and
He. They performed calculations using atomic-orbital
(AO) close coupling, distorted-wave (DW) Born and gen-
eralized adiabatic-ionization (AI) methods. It was found
that the first order contribution to the stopping power
dominates at high velocities with higher order effects be-
coming important at intermediate velocities, while near-
adiabatic dynamics prevailed in the low velocity limit.
The AO and DW calculations were in agreement above
the stopping maximum. The He calculations of Schiwietz
et al. [12, 13] are in general not within the experimental
uncertainty of Agnello et al. [8]. Cabrera-Trujillo et al.
[14] was the next to contribute from a theoretical per-
spective. They used electron nuclear dynamics (END)
formalism to calculate antiproton energy loss in hydro-
gen up to 300 keV. The results showed reasonable agree-
ment with the AO method of Schiwietz et al. [12, 13].
The latest development in the problem comes from Lühr
and Saenz [15] who calculated antiproton stopping pow-
ers in H and He between 1 keV and 6.4 MeV. They used
a semi-classical close-coupling approach to the solution
of the time-dependent Schrödinger equation. The radial
wave function was expanded in a B-spline basis with the
He target described using an effective one-electron treat-
ment. For H, Lühr and Saenz [15] obtained good agree-
ment with the calculations of Schiwietz et al. [12, 13] and
there was reasonable agreement with the calculations of
Cabrera-Trujillo et al. [14] as well. For He, there was
good agreement with the data of Agnello et al. [8] above



2

2 MeV, but disagreement at intermediate and low ener-
gies. Lühr and Saenz [15] concluded that this is due to
using a one-electron model.

In this paper we present stopping power calculations
of antiprotons in H, He, Ne, Ar, Kr, and Xe. We use a
semi-classical time-dependent convergent close coupling
(CCC) method for calculation of stopping powers. It
is the first time the CCC method has been applied to
calculations of energy loss processes. The results pre-
sented in this paper improve upon current theories of
Schiwietz et al. [12, 13] and Lühr and Saenz [15] by em-
ploying a multiconfiguration treatment of He which fully
accounts for the electron-electron correlation and taking
into account double ionization and ionization with excita-
tion via an independent-event model. The first coupled-
channel calculations of scattering cross-sections with cor-
related two-electrons dynamics have been performed by
Hall et al. [16, 17], however their calculations were not
applied to stopping powers. Our calculations involving
Ne, Ar, Kr, and Xe are the first results for these targets.

The paper is set out as follows. Section II outlines
the method. Section III presents and discusses results.
Finally in section IV we draw conclusions and discuss
future work.

II. THEORY

A. Time-dependent convergent close-coupling
method in impact parameter representation

The time-dependent CCC method has been applied
to antiproton-impact ionization of molecular hydrogen
[18, 19] and multi-electron targets [20]. Here we briefly
describe the method in a general form for single-, two-
and multi-electron targets.

The method employs a semi-classical impact-
parameter approach, meaning the incident antiproton
is treated classically while the target electrons are
treated fully quantum mechanically. This semi-classical
approximation is valid over all energies considered in this
paper. Our calculations are performed in the laboratory
frame in which the target is at rest. We assume a
straight line trajectory (R(t) = b + vt) for the incident
antiproton traveling with velocity v, where b is the
impact parameter. The non-relativistic time-dependent
Schrödinger equation for the electronic part of the total
scattering wave function describing our many-body
system is written as

HΨ(t, r,R) = i
∂Ψ(t, r,R)

∂t
, (2)

where R is the position vector of the antiproton relative
to the target defined above and r collectively denotes the
position vectors of all target electrons (r = {r1, ..., rNe}).
For a hydrogen target Ne = 1, and for a helium target
Ne = 2. However for noble gasses it is not practical to
include all target electrons and so we limit ourselves to

Ne = 6 outer p-shell electrons with the remaining elec-
trons treated as an inert core. The antiproton-target
scattering system has a total Hamiltonian given by

H = V +Ht, (3)

where Ht is the target atom Hamiltonian, and V is the
projectile target interaction, written as

V = V0 +

Ne∑
i=1

V0i. (4)

Here V0i is the interaction of the projectile with the target
electrons and V0 is the interaction of the projectile with
the nucleus/inert core.

The electronic wave function is expanded in terms of
a complete set of target pseudostates Φα according to

Ψ(t, r,R = b + vt) =
∑
α

Aα(t, b) exp(−iεαt)Φα(r),

(5)

where εα is the energy of the target electronic state α.
The expansion coefficients Aα(t, b) define the probabil-
ity for transitions into electronic bound and continuum
states.

Substitution of the expanded total scattering wave
function (5) into the time-dependent Schrödinger equa-
tion (2) yields a set of coupled-channel differential
equations for the time-dependent expansion coefficients
Aα(t, b),

i
dAα(t, b)

dt
=
∑
β

Aβ(t, b)〈Φα|V (t, r, b)|Φβ〉

× exp[i(εα − εβ)t]. (6)

Eq. (6) is solved with the initial conditions Aα(t =
−∞, b) = δαi, as the target is initially in the ground
state Φi. The probability for transition into some final
state f is then

pf (b) = |Af (t = +∞, b)|2. (7)

After integrating over impact parameters one obtains the
cross section σfi for transition from initial state i to final
state f .

B. Target structure calculations for H, He, Ne, Ar,
Kr and Xe

For a hydrogen target the pseudostates in Eq. (5) are
written as

Φα ≡ Φnlm(r) = Rnl(r)Ylm(r̂), (8)

where

Rnl(r) =
∑
k

Blnkξkl(r). (9)
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Here ξkl is a complete set of basis functions and Blnk are
the expansion coefficients found by diagonalization of the
target Hamiltonian (〈Φα|Ht|Φβ〉 = εαδαβ).

An important feature of the CCC approach is the
choice of the basis as a set of orthogonal Laguerre func-
tions,

ξkl(r) =

(
λl(k − 1)!

(2l + 1 + k)!

)1/2

(λlr)
l+1

× exp(−λlr/2)L2l+2
k−1 (λlr), (10)

where L2l+2
k−1 (λlr) are the associated Laguerre polynomi-

als, l is the orbital angular momentum and index k ranges
from 1 to Nl, the maximum number of Laguerre func-
tions. Here λl is the exponential fall-off parameter which
is typically chosen to give the most accurate ground state
of the target with a minimum number of basis functions.
Choice of λl should not affect the final result, however it
does affect the speed of convergence. Specific values of
λl used for each target are given below. This choice of
basis allows us to model the whole spectrum of the tar-
get atom. As the size of the one-electron basis increases
the low-lying states will converge to the bound states of
the target, while the remaining (pseudo) states will pro-
vide a representation of the target atom high-lying bound
states and an increasingly dense square-integrable repre-
sentation of the target continuum.

Full details of the target structure calculations for he-
lium were presented in Fursa and Bray [21] and for noble
gas atoms (Ne, Ar, Kr, Xe) in Fursa and Bray [22]. Here
we give a short overview only.

Within a non-relativistic formulation adopted in this
paper the target atom orbital angular momentum l, spin
s, and parity π are conserved quantum numbers. For each
target symmetry {l, s, π} the target states are obtained
via the configuration-interaction (CI) expansion

Φn =
∑
k

Cnk Φ̃k, (11)

where configurations {Φ̃k} are built by orbital angular
momentum and spin coupling of one-electron functions.
The coefficients Cnk in the CI expansion (11) are obtained
by diagonalization of the target atom Hamiltonian Ht in
the basis of configurations {Φ̃k}.

The one-electron basis is a set of Laguerre functions
[23],

φα(x) = φα(r)χ(σ) = ξkαlα(r)Ylαmα(r̂)χ(σ) (12)

where ξkαlα is the function defined in (10). For helium
the set of configurations is simply antisymmetrized two-
electron configurations

|Φ̃k〉 = A |φαk , φβk : lsπ〉. (13)

The antisymmetrization operator A is given by

A =
1√
Ne

(
1−

Ne−1∑
i=1

PiNe

)
, (14)

where Pij is a permutation operator and Ne = 2. Note
that the 1s Laguerre function with λ0 = 4.0 is exactly the
same as the 1s orbital of the He+ ion. Limiting the set
of two-electron configurations to those where one of the
electrons occupies the 1s He+ orbital leads to a frozen-
core model of helium. Excited states of helium are well
described within the frozen-core model. However, the
ground state benefits from a more accurate description
which can be readily achieved by allowing for a more gen-
eral choice of configurations. When several inner orbitals
are allowed we have the multiconfiguration description.
We emphasize here that both frozen-core and multicon-
figuration descriptions of the target explicitly account for
the electron correlation effects.

For the heavier noble gas atoms (Ne, Ar, Kr, Xe) we
adopt a model of six p-electrons above an inert Hartree-
Fock core. Excited states of noble gases are obtained by
allowing one-electron excitations from the p-shell. This
model is similar to the frozen-core model of helium. We
implement this model in a number of steps. Taking the
Ne atom as an example, the first step is to perform the
self-consistent Hartree-Fock calculations for the Ne+ ion
that produces 1s, 2s, and 2p orbitals. Then the quasi
one-electron Hamiltonian of the Ne5+ ion is diagonalized
in the Laguerre basis (10). This leads to a set of one-
electron orbitals from which we drop the 1s and 2s or-
bitals and replace the 2p orbital with the Hartree-Fock 2p
orbital. These orbitals are orthogonalized by the Gram-
Schmidt procedure to produce {φα} one-electron basis.
The configurations are built by angular momentum and
spin coupling of the wave function of the 2p5 electrons
ψc(l

4l0+1
0 ) and one-electron functions {φα},

|Φ̃k〉 = A |ψc(l4l0+1
0 ), φαk : lsπ〉, (15)

where l0 = 1 and the antisymmetrization operator A is
given by (14) with Ne = 6.

C. Helium double ionization and ionization with
excitation

In this work we account for double ionization (DI)
and ionization with excitation (IE) processes via an
independent-event model. In this model DI and IE are
considered a two step process. The first step is single
ionization of He and the second is ionization/excitation
of He+. The probability of the primary electron being
ionized and the second electron transitioning from the
He+ ground state to some final state k is the product of
the two probabilities. Hence the cross-section is

σ+
k = 2π

∫ ∞
0

pHe
ion(b)pHe+

k (b)bdb, (16)

where b is the magnitude of the impact parameter b, and
pHe

ion is the total ionization probability of helium, which is
given by the sum over all probabilities (7) for transitions
to positive energy states.
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D. Stopping power

The energy loss per unit path length, or stopping
power, is in general defined as

− dE

dx
= NS(E0), (17)

where S(E0) is referred to as the stopping cross section
and is dependent on the incident energy of the projec-
tile, E0. For heavy projectiles the total stopping cross
section, in the semi-classical approximation, is the sum
of two contributions, the nuclear and the electronic stop-
ping cross sections.

The electronic contribution is the energy losses asso-
ciated with all excitation and ionization events of the
target electrons. In a one electron target the electronic
stopping cross section is

Se(E0) =

∞∑
f=1

(εf − εi)σfi +

∫ E0+εi

0

(ε− εi)
dσ

dε
dε, (18)

where εi is the energy of the initial state of the target i,
σfi is the cross section for excitation to a state f of en-
ergy εf , and dσ/dε is the single differential cross section
for an electron of energy ε. Hence one sums over all pos-
sible energy losses due to excitation to bound states and
integrates over all possible energy losses due to ionization
to continuum states.

In the CCC method we discretize the continuum as
described in subsection II. Therefore the integral in
Eq. (18) becomes a sum over the total number NT of
negative- and positive-energy pseudostates. The elec-
tronic stopping cross section is then written as

Se(E0) ≈
NT∑
f=1

(εf − εi)σfi. (19)

In our calculation of the antiproton-helium electronic
stopping cross section we include energy losses due to
excitation and ionization of the inner electron as well.
In this instance we have a second term in our electronic
stopping cross section due to these processes:

Se(E0) ≈
NT∑
f=1

(εf − εi)σfi +

N ′
T∑

k=1

(εk − εHe+)σ+
k , (20)

where εHe+ is the ground state energy of He+, and σ+
k is

the cross section for the transition of the inner electron
to a state k of energy εk. The process of calculating σ+

k
is defined by Eq. (16).

The nuclear stopping cross section Sn is due to the ki-
netic energy transferred to the target atom during elastic
and inelastic scattering. Calculations of nuclear stopping
were only performed for helium so we could more accu-
rately compare with experiment, which measures all en-
ergy loss contributions at once (electronic plus nuclear).
The procedure of calculating nuclear stopping cross sec-
tions is in general well defined, and given in Appendix
A.
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FIG. 1. (Color online) Electronic stopping cross section for
antiproton incident on hydrogen. CCC calculations are com-
pared with calculations of Schiwietz et al. [12, 13], Lühr and
Saenz [15], and Cabrera-Trujillo et al. [14].

III. RESULTS AND DISCUSSION

A. p̄-H

For calculations of electronic stopping cross sections
for antiprotons in hydrogen we find that the maximum
orbital angular momentum of the target states, required
to reach convergence, is 6, and Nl = 30 − l. The ex-
ponential fall-off λl of the basis functions was chosen to
be 2. In Fig. 1 we present our result for the antiproton-
hydrogen electronic stopping cross section , and find good
agreement with the theoretical approaches of Schiwietz
et al. [12, 13] (AO), Lühr and Saenz [15], and Cabrera-
Trujillo et al. [14]. There is currently no experiment to
compare with, however good agreement with other the-
ories validates our method and the associated computer
code. Also included is Bethe’s formula (1). Our calcula-
tions tend toward Bethe’s formula at high energies where
the latter is applicable. Although the Bethe formula is
a high energy approximation we have included the full
curve to illustrate the extent to which this equation fails
at intermediate and low energies. Bethe-type theories are
currently relied upon in the field of hadron therapy for
depth-dose simulations used in treatment planing. This
highlights the potential inaccuracies that can be incurred
from the use of such formulas and the need for more ac-
curate calculations.

B. p̄-He

For our calculations of the electronic stopping cross
sections for antiprotons in helium we find that the max-
imum orbital angular momentum of the target states re-
quired to reach convergence is also 6. However for He+
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FIG. 2. (Color online) Total stopping cross section for an-
tiproton incident on helium. Included is the experiment of
Agnello et al. [8], with the shaded region representing the ex-
perimental uncertainty. Electronic stopping cross sections of
Lühr and Saenz [15], and Schiwietz et al. [12, 13] are also
presented.

the maximum orbital angular momentum required to
achieve the same level of convergence was 4. This reduc-
tion in the required maximum orbital angular momentum
for He+ is due to the increase in the binding energy of the
target electron. For both He and He+ sufficient conver-
gence is obtained forNl = 20−l with λl chosen to be 2. In
our multiconfiguration helium calculations the number of
included inner electron orbitals were also increased sys-
tematically until convergence is reached. It was found
that 5 s-states, 4 p-states, and 3 d-states produced con-
vergent results while f-states and beyond did not give a
significant contribution. In a frozen-core approximation
the energy of the helium ground state was obtained to
be -23.741 eV. One of the major effects of the multicon-
figuration structure model is that it improves the ground
state. In our multiconfiguration calculation we obtain a
ground state ionization energy of 24.540 eV. This is very
close to the experimentally measured value of 24.586 eV.

In Fig. 2 we present result for the antiproton-helium
stopping cross section together with the theories of Lühr
and Saenz [15] and Schiwietz et al. [12, 13], and the ex-
perimental results of Agnello et al. [8]. We use the multi-
configuration representation of helium which, when com-
pared to the frozen-core approach, significantly increases
the stopping cross section below the stopping maximum,
and slightly reduces it above the maximum. We also
take into account double ionization and ionization with
excitation via the independent-event model. The nuclear
contribution is also added, which makes a noticeable con-
tribution below 5 keV, as discussed later. Our calcula-
tions are in agreement with those of Lühr and Saenz [15]
above 400 keV and the AO and DW calculations of Schi-
wietz et al. [12, 13] above 80 keV, but our calculations
appear to systematically underestimate the experiment
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FIG. 3. (Color online) Individual contributions to the
antiproton-helium total stopping cross section. FC is the
stopping cross section for the primary electron in a frozen-core
approximation. Similarly MC is for the multiconfiguration ap-
proximation. DI+IE is the stopping cross section associated
with double ionization and ionization with excitation events
(obtained using MC treatment). Sn is the nuclear stopping
cross section. The stopping cross section for antiprotons in
He+ is also shown.

(except the region from 10 keV and 150 keV). In this work
we have also evaluated contributions to nuclear stopping
from inelastic scattering. This was achieved by summing
over the kinetic energy transfers (A2) corresponding to
matrix elements (A4) where Φf is no longer the ground
state wave function. However due to the dominance of
the elastic matrix element these contributions were neg-
ligible.

To better understand the reason for the small sys-
tematic disagreement a comment about the experimen-
tal data and associated uncertainties is warranted. The
experiment of Agnello et al. [8] measures the mean an-
nihilation time 〈ta〉 and path length R of antiprotons in
helium and then simultaneously solves the following two
relationships for the total stopping cross section; (i)

R =

∫ E0

Ecap

dE

S(E)
, (21)

and (ii)

t(E0) =

∫ E0

Ecap

dE

vS(E)
= 〈ta〉 − 〈tcas〉, (22)

where v is the antiproton instantaneous velocity, Ecap

is the antiproton capture energy by the target atom,
and 〈tcas〉 is the mean cascade time. To solve these
equations they make use of a parameterized function
for S presented by Andersen and Ziegler [24]. Where
at low energies S is based on the Thomas-Fermi sta-
tistical model and is given by Sl = αEβ , and at high
energies it is based on Bethe’s formula and is given by
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Sh = [(243−0.375Z2)Z2/E] ln(1+γ/E+4meE/mp̄Ē). In
the intermediate energy range an interpolation formula
originally proposed by Varelas and Biersack [25] is used,
where 1/S = 1/Sl + 1/Sh. In this formula α, β, and γ
are determined by fitting to their experimentally mea-
sured data and were found to be 1.45, 0.29, and 2× 105

respectively. According to Andersen and Ziegler [24] this
particular fitting function has an accuracy of around 10%
at 10 keV and 5% at 500 keV. However the accuracy
of the interpolation method in the intermediate energy
range is said to be approximately 20%. This uncertainty
is in addition to the shaded region in Fig. 2, which is the
limiting behaviour determined by the uncertainty in the
experimental measurements. The constraints of using a
fitting function may be one possible explanation for the
small systematic disagreement between our calculations
and the experimental data. Furthermore, in the experi-
ment a beam of antiprotons enters a cylinder containing
the helium gas target. Following a single ionization event
one may have residual He+ ions within the target gas
chamber. To take this into account we may add to our
calculations in Fig. 2 the stopping cross section associ-
ated with antiproton scattering on He+ multiplied by the
probability of He+ being formed. This could be another
possible reason for the disagreement. In terms of uncer-
tainties in our calculations it must be pointed out that
the independent-event model tends to overestimate the
double ionization cross section by approximately 30%.
However since the contribution of double ionization and
ionization with excitation processes to the total stopping
cross section is small this leads to about a 2% overesti-
mation at the stopping maximum.

The AO calculations of Schiwietz et al. [12, 13] and
the calculations of Lühr and Saenz [15] are for the elec-
tronic stopping cross section. These calculations are in
good agreement with each other, however they signifi-
cantly overestimate the experimental data below 15 keV.
Adding the nuclear stopping cross section would make
the disagreement even worse. This overestimation can
be attributed the their use of a hydrogen-like description
for helium that does not take into account electron corre-
lation effects. The stopping cross section obtained from
this model is multiplied by two in order to account for
the contribution from both electrons. This demonstrates
the importance of using a more detailed structure model
if one wishes to obtain more accurate results. The struc-
tural improvements over existing theories have allowed
us to obtain better agreement with experiment. It is im-
portant to emphasize that the CCC results shown in Fig.
2 are based on the cross section for single ionization of
helium that is in excellent agreement with experiment.

Individual contributions to the total stopping cross sec-
tion are presented in Fig. 3. This figure demonstrates
the improvement a multiconfiguration description of the
target provides over a frozen-core description at low and
intermediate energies. It also shows that energy losses
associated with double ionization and ionization with ex-
citation process make a substantial contribution, as does
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FIG. 4. (Color online) Electronic stopping cross sections due
to one-electron transitions from the outer p-shell for antipro-
ton in Ne, Ar, Kr, and Xe.

the nuclear stopping cross section. The stopping cross
section for antiprotons in He+ is also shown.

C. Nobel gas targets

We have also performed antiproton electronic stop-
ping cross section calculations in the more complex nobel
gasses of Ne, Ar, Kr, and Xe using the frozen-core treat-
ment with Nl = 20 − l and λl chosen to be 2, 2, 2.5,
and 3 respectively. For Ne and Ar the maximum orbital
angular momentum of target states used in calculations
were 3 and 5, respectively. For Kr and Xe the maximum
orbital angular momentum of target states was 9. This
resulted in the total number of coupled differential equa-
tions for the different targets being 803, 1276 and 3475,
respectively. To quantitatively assess the accuracy of our
structure model for noble gasses we may compare our
calculated ionization energies to measured ones. With
our frozen-core approximation for Ne, Ar, Kr, and Xe we
obtained ionization energies of 20.57, 14.95, 13.38 and
11.73 eV, respectively, which agree reasonably well with
the measured data of 21.56, 16.76, 14.00 and 12.13 eV.

The presented results for Ne, Ar, Kr, and Xe are shown
in Fig. 4. Stopping cross sections of antiprotons in these
targets have been calculated for the first time. The peak
of the stopping cross section increases with the atomic
number of the target. This is as expected since the ion-
ization energies decrease with the atomic number of the
target and hence the active electron is less tightly bound.
We note that these curves are the stopping cross sections
associated with the energy losses due to single electron
transitions from the outer p-shell.
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IV. CONCLUSION

In conclusion we have applied the CCC method to the
calculation of stopping cross sections for antiprotons in
H, He, Ne, Ar, Kr and Xe. We have obtained excellent
agreement with existing theories for H and use this as a
validation of our approach. For He we obtain generally
better agreement with the experiment of Agnello et al. [8]
than the other theories due to the use of a multiconfigura-
tion description of the He atom and taking into account
double ionization and ionization with excitation via an
independent-event model. We also presented the first
calculations of stopping cross sections for antiprotons in
Ne, Ar, Kr, and Xe. For the latter we used a model
of six p-shell electrons above a frozen Hartree-Fock core
with only one-electron excitations from the outer p-shell
allowed.

As a next step we plan to apply the CCC method to
calculations of stopping cross sections for antiprotons in
molecules. Our ultimate goal is to perform accurate cal-
culations, including rearrangement channels, of protons
and carbon ions in biologically-relevant molecules for ra-
diation dose simulations in hadron therapy.
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Appendix A: The nuclear stopping cross section

The nuclear stopping cross section can be modelled as
classical scattering from a screened Coulomb potential. It

is defined as the integral of the kinetic energy transferred
to the target atom over all impact parameters:

Sn = 2π

∫ ∞
0

bT (b)db, (A1)

where T (b) is the kinetic energy transfer given by

T (b) = 4µE0 sin2 [θ(b)/2] , (A2)

µ is the reduced mass of the system, and θ is the scatter-
ing angle defined as

θ(b) = π − 2

∫ ∞
rmin

bdr

r2
√

1− V (r)/Ec − b2/r2
. (A3)

Here Ec = E0MHe/(Mp̄ + MHe) is the centre of mass
energy and V (r) is the screened Coulomb potential. The
distance of closest approach rmin is given by the largest
zero of the term under the square root.

Calculations of nuclear stopping were performed for
helium. For the screened Coulomb potential in Eq. (A3)
we use a static potential obtained from

V (r) =

〈
Φf

∣∣∣∣−2

r
+

1

|r − r1|
+

1

|r − r2|

∣∣∣∣Φi〉 , (A4)

where r1 and r2 are the coordinates of the two electrons
in the helium atom, and Φi is the ground state wave
function. For elastic scattering Φf is taken to be the
ground state wave function. All other Φf wave functions
correspond to inelastic scattering. The wave functions
are produced in our structure calculations described in
section II B.
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