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We perform an analytical investigation in the framework of generalized K matrix theory of the
scattering problem in tight isotropic and harmonic waveguides allowing for several open scattering
channels. The scattering behavior is explored for identical bosons and fermions, as well as for
distinguishable particles, the main aspect being the confinement-induced resonances (CIR) which
are attributed to different partial waves. In particular we present the unitarity bounds which emerge
when considering a quasi one dimensional system. Unitarity bounds are also given for the transition
coefficients, which show the limitations for efficient transversal (de-)excitations by means of CIRs.
We analyze the CIR for d-waves and find the intriguing phenomenon of a strong transmission
suppression in the presence of more than one open channel, which represents an interesting regime
to be applied in the corresponding many-particle systems. The corresponding channel threshold
singularities are studied and it is shown that these are solely determined by the symmetry class of
the partial wave.

PACS numbers: 34.10.+x, 03.75.-b, 34.50.-s

I. INTRODUCTION

Trapping ultracold atomic vapors in tight waveguides
and thus effectively reducing their dimensionality has be-
come a key concept in the contemporary study of ultra-
cold atomic few- and many-body systems, as exotic low-
dimensional quantum phases [1–3] such as the Tonks-
Girardeau gas in one dimension (1D) or the Berezinsky-
Kosterlitz-Thouless transition in two dimensions (2D) are
available. Besides these intriguing phenomena, the re-
duction of dimensionality also allows for a novel mecha-
nism to control the scattering physics of two-body inter-
actions. This was first pointed out by Olshanii [4] who
studied the influence of a tight cylindrical confinement
on scattering events. In particular, a resonance appears
when the s-wave scattering length becomes comparable
with the length scale associated with the confining waveg-
uide potential. This so called confinement-induced reso-
nance (CIR) as a result can be controlled by tuning the
trap frequency, which recently also led to the first exper-
imental realization of a super Tonks-Girardeau gas [5].
A similar prediction of a CIR for spin-polarized fermions
[6] was in the following also experimentally confirmed [7–
9]. Except these experiments discovering CIRs in 1D and
2D, a recent experiment [10] was carried out in mixed-
dimensions.
However, the substantial theoretical effort prevail the

experimental observations, while at the same time build-
ing up a comprehensive understanding of the princi-
ples of CIR and suggesting a variety of systems where
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CIRs can emerge. These efforts include works on dif-
ferent waveguide geometries [11–17], resonant molecule
formation [18], transparency induced by the confinement
[19, 20], CIRs in mixed dimensions and multiple open
channels [21–23], the coupling of various partial waves
due to the confinement [24, 25], or atomic scattering with
anisotropic interactions [26, 27]. Alongside with these
studies we also want to mention recent investigations on
ultracold quantum gases on atom chips [28–30] where ex-
cited transversal modes of the confinement are utilized in
order to prepare entangled atom clouds.

The focus of the present study is the two-body multi-
mode scattering behavior of atoms in the presence of an
axially symmetric and harmonic waveguide. In addition
to the treatment of bosonic and spin-polarized fermionic
collisions, we also provide a theoretical description of
the collisional properties of distinguishable particles, for
which even and odd partial waves contribute. Similar
to preceding studies [20, 24], the particles are allowed
to interact with higher partial waves. The constraint
of colliding with energies below the excitation energy of
the first excited transversal state is however lifted in this
work, thus allowing inelastic collisions, where particles
can be scattered into different channels. The latter are
asymptotically defined by the transversal trap modes.
Our approach is based on the fully analytical and non-
perturbative description in terms of K matrices, whose
usefulness has already been demonstrated in a series of
previous works [6, 20, 24, 27]. Due to the seminal results
of Bo Gao [31–33] who investigated the free-space scat-
tering properties of neutral alkaline atoms possessing a
van der Waals tail, analytical formulas for the (general-
ized) scattering length were derived, which are used in
the present setup to adequately describe the scattering
event on the interatomic scale.



2

The K matrix approach provides a generalization of
the works of Granger et al [6] and Kim et al [34] incor-
porating however all the higher partial waves and contri-
butions from all the closed channels. Furthermore, go-
ing beyond the previous studies we derive the connection
of the physical K-matrix with all the relevant scatter-
ing observables obtaining thus the full multi-component
scattering wave function. Using this formalism we study
the universal properties of ultracold collisions in the ℓ-
wave single partial wave approximation (ℓ-SPWA). Here,
we find the existence of energies above the correspond-
ing channel threshold at which the collision effectively
behaves as in free-space. This energy is found to be in-
dependent of the number of open channels for s- and
p-wave interactions. Furthermore, we investigate the uni-
tarity bounds for quasi-1D collisions. This quantitatively
explains the transmission at a CIR in higher transver-
sal modes and explains the confinement induced uni-
tarity bound, from which we also derive the unitarity
bounds for inelastic collisions in the waveguide. These
bounds may be useful when investigating the possibilities
and limitations of populating higher transversal modes
by means of a CIR, as interest in coherent excitations
in waveguides increases [28–30]. Next, we investigate
the intriguing possibility of a blockade in the first ex-
cited transversal mode, found from the quasi 1D unitar-
ity bound in the d-SPWA, with an adequate interatomic
potential and the coupling of partial waves taken into
account, showing that an almost totally blockaded trans-
mission channel may exist even if there are other possi-
ble scattering channels available. In addition we discuss
the scattering of distinguishable particles in waveguides
and show the qualitative difference of partial wave cou-
pling for distinguishable particles by introducing reso-
nance and transparency coefficients [20]. We discuss the
occurring threshold singularities for collisions of indistin-
guishable particles and show the qualitatively different
behavior for bosons and fermions.
In detail, this paper is organized as follows. Section II

gives a brief review of the considered waveguide Hamil-
tonian as well as the applied techniques, namely the K
matrix formalism while employing the local frame trans-
formation. Thereafter, Sec. III introduces and discusses
the relevant scattering observables for 1D multichannel
collisions as well as provides their connection to the phys-
ical K matrix for the case of 1D geometries. Section IV
is devoted to the analysis of our results while our sum-
mary and conclusions are given in Sec. V. The Appendix
provides among others some technical concepts used to
derive the physical K matrix.

II. WAVEGUIDE HAMILTONIAN AND

K-MATRIX APPROACH

In the following we study the collisional behavior of
two particles within a harmonic waveguide. Hereby indis-
tinguishable or distinguishable particles are considered.

The harmonic nature of the confining potential does not
couple the center of mass (CM) coordinates with the rela-
tive ones and permits us to treat their motions separately.
The Hamiltonian accounting for the CM motion simply
describes a CM excitation in a harmonic potential. This
solution is well known and thus of no further interest.
The non-trivial part is the relative motion Hamiltonian,
which reads

H =
−~

2

2µ
∆+

1

2
µω2

⊥ρ
2 + VLJ (r), (1)

where r =
√

z2 + ρ2 is the interparticle distance, with z
and ρ describing the longitudinal and transversal degrees
of freedom, respectively. µ denotes the reduced mass of
the colliding pair and ω⊥ is the confinement frequency.
Accordingly, the harmonic oscillator length scale is given
by a⊥ =

√

~/µω⊥. The term VLJ (r) =
C10

r10 − C6

r6 is the
Lennard-Jones 6-10 potential indicating the short-range,
two-body interatomic interactions. C6 is the dispersion
coefficient and it defines the van der Waals length scale
via the relation β6 = (2µC6/~

2)1/4. We regard C10 as
a parameter in order to tune the corresponding scatter-
ing lengths induced by the short-range potential. Among
others, the particular choice VLJ(r) is motivated by the
fact that we attribute to the two-body physics a realistic
character avoiding the use of zero-range approximations.
In addition, this particular type of interactions are an-
alytically solvable by means of the generalized effective
range theory [35]. However, any other interatomic poten-
tial is also suited as long as the length scale βn associated
with this potential is small compared to the oscillator
length, i.e. βn ≪ a⊥.
As in previous works [6, 20, 24, 27] on the Hamilto-

nian given in Eq. (1), the separation of length scales is
assumed, i.e. β6 ≪ a⊥. In short, this implies that the
Hamiltonian has three distinct regions where (a) different
potential contributions dominate and (b) different sym-
metries are obeyed by the corresponding Hamiltonian.
(i) Starting in the inner region, where r ∼ β6 holds,

the interatomic potential dominates. The two particles
thus experience a free-space collision with total energy

E = ~
2k2

2µ .

(ii) The effect of this collision on the wave function is
best observed from the intermediate region (β6 ≪ r ≪
a⊥), where both potential contributions are negligible.
Hence, we can monitor the outcome of the collisional
event in region (i) by a well defined phase shift δℓ for
each partial wave. Due to the invariance under rotations
SO(3) we can arrange the full scattering information in
a diagonal, energy dependent, K matrix K

3D.
(iii) As the asymptotic region r ≫ a⊥ is concerned,

only the transverse confining potential contributes. The
wave function is thus a direct product of a sine or
cosine function in the z-direction and a 2D harmonic
oscillator (HO) mode for the ρ-direction, i.e. |ψ〉 =
∑

n cn |qn;n;m〉, where qn denotes the channel momen-
tum in z-direction, n denotes the transversal oscillator
mode and m the magnetic quantum number. The total
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energy E distributes over these two degrees of freedom

according to the relation E = ~ω⊥(2n+ |m|+ 1) +
~
2q2n
2µ .

We note however, that the azimuthal quantum num-
ber m asymptotically associated to the SO(2) rotations,
is a good quantum number in both regimes and there-
fore is a fixed quantity throughout our analysis which
is set to m = 0 for what follows and is therefore also
omitted in the labeling of the states. Hereafter, we drop
the typical assumption in most of the existing literature
that the total collision energy has to be sufficiently small
such that only the energetically lowest transversal state
can be populated, i.e. |ψ〉 ∼ |q0; 0〉 and thus we are
going beyond previous studies by allowing inelastic col-
lisions involving several transverse modes. Already from
this expansion which is only invariant under Tz ⊗SO(2),
where Tz denotes translation along the z-direction and
SO(2) rotations around that axis, we conclude that the
mapping from region (ii) to (iii) cannot be accomplished
by a unitary transformation. Thus, in order to transfer
the scattering information between these two regions of
different symmetry, an appropriate way is given by the
local frame transformation Uln [36–38]. However, as al-
ready discussed previously [6, 27] the application of this
technique comes at the price of rendering the closed chan-
nel (~ω⊥(2n+ 1) > E) components of the wavefunction
unphysical. This drawback is due to the boundary con-
ditions of our scattering approach, namely the standing
wave approach, which after the analytical continuation
to the closed channels turns the oscillating solutions into
exponential diverging ones. To overcome this unphysical
situation a standard channel closing procedure, familiar
from multichannel quantum defect theory has to be ap-
plied [39], leading to the physical K matrix, given by

K
1D,phys
oo = K

1D
oo + iK1D

oc (1 − iK1D
cc )−1

K
1D
co , (2)

where in turn, K
1D refers to the corresponding 1D K

matrix K
1D = UT

K
3DU [6, 17, 24, 27]. In addi-

tion, K1D
oo ,K

1D
cc denote the open-open and closed-closed

channel transitions, respectively. Accordingly, K1D
oc and

K
1D
co denote the open-closed channel transitions and vice

versa. From Eq. (2) the resonant processes are given
as poles of the physical K

1D matrix. Therefore, the
roots of det(11 − iK1D

cc ) correspond to the positions of
the closed channel bound states lying in the continuum
of the open channels. The resonant structure thus ful-
fills a Fano-Feshbach scenario [40]. Performing the above
calculations (cf. Appendix A) for a given 3D K matrix
K3D = diag(tan δℓ, tan δℓ′) yields a physical K matrix,
given by

K
1D,phys
oo =

1

det(11− iK3DU)
×
{

∆ℓF
o

ℓℓ +∆ℓ′F
o

ℓ′ℓ′−

− i∆ℓ∆ℓ′
(

Uℓ′ℓ′F
o

ℓℓ + UℓℓF
o

ℓ′ℓ′ − Uℓℓ′(F
o

ℓℓ′ + F
o

ℓ′ℓ)
)

}

,

(3)

where ∆ℓ(E) = tan δℓ(E) contains the energy depen-
dent ℓ-th phase shift and the matrices Fo

ℓℓ′ are given by

(Fo

ℓℓ′)nn′ = UℓnUℓ′n′ , with 0 ≤ n, n′ ≤ no − 1 and no

denoting the number of open channels. At this point
we also introduce the generalized, energy dependent,
scaled scattering length defined for all partial waves ℓ,

by āℓ(E)2ℓ+1 = (aℓ(E)/a⊥)2ℓ+1 = − ∆ℓ(E)
(a⊥k)2ℓ+1 . Note that

throughout this study the ℓ-wave scattering lengths will
be considered as energy dependent quantities. This par-
ticular consideration permits us to go beyond the effec-
tive range approximation. As the local frame transfor-
mation Uℓn also depends on the energy, this also holds for
the matrices Fo

ℓℓ′ = F
o

ℓℓ′(E). Here, we also note that one
should carefully distinguish the number of open channels
no from the actual quantum numbers of the correspond-
ing transverse modes n, e.g. consider the single mode
regime where only the population of the lowest transver-
sal mode |q0; 0〉 is allowed, we have no = 1. Note that in
the single mode regime the obtained physical K-matrix
and its corresponding scattering amplitudes are the same
as in Ref.[25] for the case of identical fermions where en-
ergy dependent p-wave scattering lengths are expressed
in terms of the effective range approach.
The energy dependent K matrix K

1D,phys
oo , given in

Eq. (3) appropriately describes the scattering in a tight
harmonic waveguide with several open transverse modes.
The coupling of two arbitrary partial waves ℓ and ℓ′ be-
longing to the same symmetry class, i.e. ℓ−ℓ′ = 0mod 2,
is properly taken into account. Before proceeding let us
recall that the effect of the closed channels on the scat-
tering phase shift can conveniently be expressed as

Uℓℓ′(ǫ) =

ℓ+ℓ′
∑

p=0

c
(ℓ,ℓ′)
p

2(ǫ+ 1
2 )

p+1

2

ζH
(

− p− 1

2
, no − ǫ

)

,

(4)

c(ℓ,ℓ
′)

p = (−1)
ℓ+ℓ′

2

√

(2ℓ+ 1)(2ℓ′ + 1)

×
ℓ+ℓ′
∑

ν=max{p,|ℓ−ℓ′|}
Γ(ℓ, ℓ′, ν, p) , (5)

Γ(ℓ, ℓ′, ν, p) = ip−12ν−1(2ν + 1)

×
(

v
p

)(

ν+p−1
2
ν

)(

ℓ ℓ′ ν
0 0 0

)

(6)

where ζH(s, a) denotes the Hurwitz zeta function and
Γ(·) are some combinatorial constants containing the
Wigner 3j-symbols. Equation (4) is discussed in more
detail in [20]. The dimensionless, channel-normalized en-
ergy ǫ is defined by the relation E = 2~ω⊥(ǫ+

1
2 ), which

is chosen such that n ≤ ǫ ≤ n+ 1 is between the thresh-
old of th n-th and the (n+ 1)-th channel. We note, that
no = ⌊ǫ⌋ + 1 is the number of open channels, where ⌊ǫ⌋
denotes the largest integer smaller than ǫ. The represen-
tation of Eq. (4), which differs from the one introduced in
[20], is in particular useful when considering the thresh-
old singularities below. One further remark is in order,
which refers to the second argument of the Hurwitz zeta
function. This argument is given by ǫc = no−ǫ = 1−∆ǫ,
where ∆ǫ = ǫ−⌊ǫ⌋ denotes the fraction of the total colli-
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sion energy above the threshold of the last open channel
rendering ζH periodic with a saw-tooth like behavior.
Throughout the following analysis the energy ranges

up to ǫ = 4, passing several channel thresholds of the
transverse confinement. We note that all these energies
lie close to the threshold of the interatomic potential and
thus the analytic solutions [35] for our interatomic po-
tential are applicable.

III. SCATTERING OBSERVABLES

In the asymptotics of the scattering process the
transversal and longitudinal degrees of freedom are de-
coupled and the quantum number of the transversal 2D
HO modes can be used to define the asymptotic scatter-
ing channel.

ψn(r) = eiqnzφn(ρ) +

no
∑

n′=0

f±
nn′e

iqn′ |z|φn′(ρ), (7)

describing an incoming wave in channel n which is then
(in)-elastically scattered into all open channels. Here, the
scattering amplitude f±

nn′ in forward (+), respectively
backward (−) direction reads

f±
nn′ = fe

nn′ + sgn(z)fo
nn′ , (8)

whereas in turn fe and fo refer to the respective scatter-
ing amplitudes for even and odd exchange symmetry and,
sgn(z) = z/|z| denotes the sign function. By the conser-
vation of flux, the forward f+ and backward f− scat-
tering amplitude contain the same information about a
scattering event, we concentrate our analysis on f+, for
which the transmission and reflection coefficients Tnn′

and Rnn′ , respectively, from channel n to n′ take the
following form

T
(ℓ,ℓ′)
nn′ = |δnn′ + f ℓ

nn′ + f ℓ′

nn′ |2 (9)

R
(ℓ,ℓ′)
nn′ = |f ℓ

nn′ + f ℓ′

nn′ |2, (10)

where ℓ and ℓ′ refer to even and odd partial waves, re-

spectively. The transition probabilityW
(ℓ,ℓ′)
nn′ characteriz-

ing the transversal excitation and de-excitation processes
from channel n into a specific channel n′ are given by the
sum of the corresponding transmission and reflection co-
efficients

W
(ℓ,ℓ′)
nn′ = T

(ℓ,ℓ′)
nn′ +R

(ℓ,ℓ′)
nn′ (11)

If the constituents of the scattering event both belong to
the same symmetry class, i.e. both are either bosons or
fermions, we obtain a special case of Eq. (9), given by

T
(ℓ)
nn′ = |δnn′ + f

(ℓ)
nn′ |2, where the scattering amplitudes

f
(ℓ)
nn′ are connected to the physical K matrix, via

f (ℓ) = iK1D,phys
oo,ℓ

[

11− i K1D,phys
oo,ℓ

]−1

, (12)

see also [20]. This relation in particular allows for a
extension of previous studies on the CIRs in harmonic
waveguides to distinguishable particles, as it is in detail
discussed in Sec. IVC.

IV. RESULTS AND DISCUSSION

A. Universal Properties

We start our discussion of the universal properties for
the (in)-elastic scattering in waveguides by considering
the ℓ-wave single partial wave approximation (ℓ-SPWA).
Since the main focus is the study of CIRs which typ-
ically occur in the vicinity of a free space resonance,
the ℓ-SPWA can safely be assumed to be accurate in
the description of the scattering process. Recall that for
the particular choice of a Lennard-Jones type 6-10 inter-
atomic potential the background energy dependent scat-
tering length from higher lying partial waves (ℓ > 1) is
negligible. The advantage of the ℓ-SPWA is given by the
fact, that (i) analytical results can be derived straight-
forwardly, see below and (ii) for certain energy regimes
it serves as a good approximation for the coupled ℓ-wave
CIR [24].
Employing thus the physical K matrix in the ℓ-SPWA,

where ℓ is not restricted to belong to a specific symmetry
class

K
1D,phys
oo,ℓ = −iαℓF

o

ℓℓ ,with (13)

αℓ =
i∆ℓ

1− i∆ℓUℓℓ
, (14)

we calculate according to Eqs. (9) and (10) the
transmission- and reflection coefficients

T
(ℓ)
nn′ = δnn′ +

α2
ℓ

(

2Tr[Fo

ℓℓ](F
o

ℓℓ)nn′δnn′ − (Fo

ℓℓ)
2
nn′

)

1− α2
ℓ Tr[F

o

ℓℓ]
2

(15)

R
(ℓ)
nn′ =

−α2
ℓ (F

o

ℓℓ)
2
nn′

1− α2
ℓ Tr[F

o

ℓℓ]
2
, (16)

from which we derive in particular the total transmission

coefficient T
(ℓ)
n =

∑

n′<no
T

(ℓ)
nn′ , when incident in channel

n which takes the appealing form

T (ℓ)
n = 1−

Tr[K1D,phys
oo,ℓ ](K1D,phys

oo,ℓ )nn

1 + Tr[K1D,phys
oo,ℓ ]2

(17)

This quantity is in the focus of the following analysis since
it encapsulate all the relevant scattering information for
both all the open and closed channels.

1. General aspects of collisions in harmonic waveguides

In this subsection we focus on the general behavior
of the transmission coefficients for partial waves ℓ = 0
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and ℓ = 1 at total collision energies beyond the single
mode regime. In particular we note, that the separation
of length scale induces an energy scale separation. This
means that even several quanta of the transversal exci-
tation imply that the corresponding energy dependence
of the scaled s-wave energy dependent scattering length
is negligible. Due to the increasingly narrow width of
higher partial wave resonances, this simplification is not
legitimate for ℓ ≥ 1. In addition we should recall that
in the following and throughout this study all the energy
dependent scattering lengths are obtained via a Lennard-
Jones 6-10 potential. In particular the analytical formu-
las from Ref.[35] are used which permit the calculation
of the corresponding energy dependent scattering lengths
(see Eq. (24), (46-49) and appendix in Ref.[35]).

FIG. 1. (Color online) (a) Transmission coefficients

T
(0)
0 , T

(0)
1 , T

(0)
2 versus the scaled s-wave scattering length ā0,

for the first, second and third open channel (solid, dashed and
dotted lines), respectively, at energy ∆ǫ = 0.95. Higher lying
curves for a particular number of open channels correspond

to a lower entrance channel. Panel (b) shows T
(1)
0 , T

(1)
1 , T

(1)
2

at ∆ǫ = 0.05 for the case ℓ = 1. Note that all the scattering
lengths are energy dependent

First we show a typical case of the transmission coef-

ficients T
(ℓ)
n for ℓ = 0, 1 versus the corresponding scaled

energy dependent scattering length ā2ℓ+1
ℓ in panels (a)

and (b) of Fig.1, respectively. In particular we observe

the asymmetric line shape of the transmission spectra for
ℓ = 0. The scaled energy above the corresponding chan-
nel threshold ∆ǫ = 0.95 is chosen such that the CIRs,
identified as the minima of the respective transmission
coefficients are best pronounced, i.e. we aim at a large
difference between the transmission values taken for large
|ā0| and the specific value of ā0 leading to a CIR. This
relative difference maximizes especially at energies below
every threshold which can be readily seen in panel (a)
of Fig. 5, where the transmission coefficient values for

|ā0| → ∞ (T
(0)
∞,i - black lines) and for ā0 at a CIR (T

(0)
CIR,i

- red lines) are displayed. Furthermore, we observe that a
transmission blockade is present only for the single mode
regime (see Fig.1 (a) red solid line). However, in the
case of several open channels the transmission blockade
is lifted giving in turn rise to finite values of the transmis-

sion coefficient. In addition transparency, i.e. T
(0)
i = 1

occurs in the absence of interactions (ā2ℓ+1
ℓ = 0) between

the colliding particles. Analogously, panel (b) of Fig. 1
depicts the results for ℓ = 1, as a function of the scaled
p-wave scattering volume (ā1)

3. Unlike the s-wave case,
here the asymmetry of the line shape is barely visible if
the collision energy is raised above the first excited chan-
nel threshold.

More insight into the behaviour of the transmission

coefficients T
(0)
i can be obtained from Fig. 2, where we

present T
(0)
0 and T

(0)
1 versus ǫ in panels (a) and (b), re-

spectively. These results correspond to different values of
the C10 parameter. As it is discussed in more detail below
(see Sec. IV A subsection 3 and 4), a CIR process belongs
to the transmission minima which occur in the interval
of energies among the open channels. Specifically, in Fig.
2 (a) we observe that for ǫ < 1, ie between the thresh-
olds of the ground and first excited transverse state, the
transmission minima for varying values of the energy de-
pendent scattering lengths leads to a transmission block-
ade. For 1 < ǫ < 2 and higher energies the minimal
value of the transmission is nonzero and increases with
increasing channel the energy belongs to. The transmis-
sion exhibits a repeating pattern shifted to higher val-
ues. The locations of the minima with varying energy
dependent scattering length form thus a “topos“ which
in Fig. 2 is denoted by the black dot-dashed line: This is
the confinement-induced (CI) unitarity bound and repre-
sents a universal feature. We should note however that
the specific functional form of the CI unitarity bound de-
pends on the particular ℓ-wave character of the collisions.
Furthermore, in Fig. 2(a) we observe that a CIR occurs
for positive scattering length at ∆ǫ < 0.69, while CIRs of
negative values of ā0 emerge for ∆ǫ > 0.69. The partic-
ular value of ā0 = 0.3 does not permit a CIR at all and
is hence monotonically increasing, while departing from
ǫ = 0 with a finite, non-vanishing slope.

Finally we note that the transmission coefficient goes
up to unity at the channel thresholds regardless of the
value of the energy dependent scattering length. Consid-
ering the case ℓ = 1, presented in Fig. 3, we use the C10
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FIG. 2. (Color online) (a) Transmission coefficient T
(0)
0 versus

the channel scaled energy ǫ for ℓ = 0 for various scaled s-

wave scattering lengths. The CIR obeys T
(0)
0 = 0 in the

ground channel and for higher channels the resonances follow

the confinement induced unitarity bound T
(0)
CIR,0 (thick, dot-

dashed line), see Eq. (22). (b) T
(0)
1 versus ǫ for the same

scattering lengths. Again, the resonances are bounded by

T
(0)
CIR,1. Note that the corresponding scattering lengths are

energy dependent

parameter to label the different curves. This is due to the
narrow width of the p-wave free space resonances which
makes an energy independent treatment of the scaled p-
wave energy dependent scattering length impossible. For
each curve the C10 parameter is adjusted such that a
free-space resonance occurs for every energetic interval
i − 1 ≤ ǫ ≤ i for 0 ≤ i ≤ 4. Again, at a CIR the corre-
sponding transmission coefficient touches the p-wave CI
unitarity bound and thus we encounter a suppression of
the transmission with a complete blockade T = 0 for the
case ǫ < 1. Away from a free-space resonance the en-
ergy dependent scattering length quickly decreases to its
small background value leading to the large value of the
transmission coefficient away from a resonance. Further-
more we observe that in the case of p-wave interactions

the value of T
(1)
i taken at the channel thresholds indeed

strongly depends on the scaled p-wave energy dependent
scattering length, which drastically differs from the case
of ℓ = 0 thus rendering the threshold behavior for ℓ = 0
universal with respect to the s-wave energy dependent

FIG. 3. (Color online) (a) T
(1)
0 versus the scaled energy ǫ for

four open channels. Different curves correspond to different
values of the short range parameter C10. It is clearly observed
that the CIR saturates at the confinement induced unitarity
bound depicted as the dot-dashed curve. As for general ℓ a
CIR associated with a transmission blockade is only happen-

ing for ǫ ≤ 1. In (b) the transmission coefficient T
(1)
1 , when

incident in the first excited channel is shown.

scattering length.

2. The decoupling energies

In Ref. [20] it was shown that the coupling of the par-
tial waves to the closed channels, given by the Uℓℓ(ǫ)’s in
Eq.(4) exhibits roots for all considered partial waves ℓ.
These roots ǫ∗ℓn = ⌊ǫ∗ℓn⌋ + ∆ǫ∗ℓn, in the following called
decoupling energies, depend on the partial wave ℓ, and, in
general, also on the number of open channels n. The de-
coupling energies determine the particular energy where
the bound state of the closed channels decouples from all

the open channels. Therefore, in this case, the physical
K matrix can be written in the following form

K
1D,phys
oo |⌊ǫ⌋+ǫ∗ = (K3D)ℓℓ F

o

ℓℓ(⌊ǫ⌋+ ǫ∗)

= U
T
K

3D
U|⌊ǫ⌋+ǫ∗ (18)

where ⌊ǫ⌋ is the threshold energy for the largest open
channel. Equation (18) shows the expected result, that
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FIG. 4. (Color online) (a) Transmission coefficients at the
decoupling energies ⌊ǫ∗0⌋+∆ǫ∗0 versus the scaled s-wave scat-
tering length ā0. Different curves depict the transmission co-
efficients for up to three open channels. The symmetric line
shape centered around the non-interacting case ā0 = 0 in-
dicates an effective decoupling from the closed channels of
the waveguide. For large values of |ā0|, the transmission ap-
proaches the values given by Eq. (20). The case of ℓ = 1 is
shown in (b) for energies ⌊ǫ∗1⌋+∆ǫ∗1. Note that the scattering
lengths are considered energy dependent quantities.

the 3D scattering information which emerges close to the
origin is transfered to the asymptotic regime without be-
ing affected by the closed channels of the trapping po-
tential. In other words the colliding pair experiences
effectively a free space collision in the presence of the
waveguide geometry.

In particular by using the expression for Uℓℓ(ǫ) in Eq.
(4) one can show, that for the cases ℓ = 0 and 1, the de-
coupling energies do not depend on the number of open
channels, i.e. ∆ǫ∗ℓn = ∆ǫ∗ℓ , which means that the closed
channels decouple from the open channels at the same
energy ∆ǫ∗ℓ above the channel threshold, as it is illus-
trated in Fig. 4. Fig. 4(a) shows the bosonic case, with
ℓ = 0 and ∆ǫ∗0 ≈ 0.69, where the transmission coeffi-

cients T
(0)
0 , T

(0)
1 , T

(0)
2 versus the scaled s-wave energy de-

pendent scattering length ā0 are shown for one, two and
three open channels, respectively. The symmetric line

shape centered around the non-interacting case ā0 = 0
is clearly seen. Transmissions for ℓ = 1 and ǫ∗1 ≈ 0.31,
are shown in panel (b) as a function of the scaled p-wave
scattering volume (ā1)

3. In both panels the respective
scaled energy dependent scattering length are considered
as external parameters which is in the ℓ-SPWA equiva-
lent to a change of the C10 parameter.

3. The CIR limit

As already emphasized above a CIR occurs in the vicin-
ity of a free-space resonance, i.e. in parameter regions
|āℓ| ≫ 1. For this free-space unitarity regime the scat-
tering amplitude matrix in the ℓ-SPWA is simply given
by

f (ℓ)
∞ = − F

o

ℓℓ

Uℓℓ +Tr[Fo

ℓℓ]
, (19)

from which we readily derive the corresponding transmis-
sion coefficients

T (ℓ)
∞,n =

U
2
ℓℓ − Tr[Fo

ℓℓ](Tr[F
o

ℓℓ]− (Fo

ℓℓ)nn)

U2
ℓℓ − Tr[Fo

ℓℓ]
2

. (20)

This equation gives the values in the wings of large energy
dependent scattering length of the transmission coeffi-
cients of Figs. 1 and 4. Furthermore, its general energy
dependence is show in panels (a) and (b) of Fig. 5 for the
cases of ℓ = 0 and 1, respectively. There the transmis-

sion coefficients (ie. T
(ℓ)
∞,n) for large values of the energy

dependent scattering length are compared to the quasi
1D unitarity bound, i.e. the bound to the transmission

coefficient at a CIR ie. T
(ℓ)
CIR,n.

To understand the behavior of the transmission coeffi-
cient at a CIR, recall that the denominator of Eq. (13)
represents det(11 − iK1D

cc ), which implies, that if this ex-
pression vanishes for a particular value of ∆ℓ, or the cor-
responding energy dependent scattering length, respec-
tively, a CIR occurs. We hence have a sufficient crite-
rion for the occurrence of a CIR given by the condition
αℓ → ∞, with αℓ from Eq. (14). A transmission value of
T = 0 can only be achieved in the s-SPWA when there
is a single open channel, since then Tr[Fo

ℓℓ] = F
o

ℓℓ holds.
From a physical point of view this behavior is expected,
since a transmission blockade in a specific channel will
not prevent the scattering into other channels, which for
example can be seen in Fig. 7, where the transmission

coefficients T
(0)
0 and T

(0)
1 are shown, respectively. Both

curves exhibit minima at the CIR. Also in Fig. 7 we

plot the transition coefficient W
(0)
01 (dotted lines) which

is enhanced at a CIR clearly demonstrating that for two
open channels at CIR the inelastic process are enhanced
prohibiting in this manner the transmission coefficient to
be zero when more than one channel is involved.
The absence of a transmission blockade at a CIR in

the case of more than one open channel, can be derived
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FIG. 5. (Color online) (a) Transmission coefficient T
(ℓ)
CIR,i at

a CIR, i.e. the confinement induced unitarity bound, ver-
sus the scaled energy ǫ as well as the transmission coefficient

T
(ℓ)
∞,i taken for large energy dependent scattering length |āℓ|,

i.e. for scattering at the free-space unitarity bound. (b) Cor-
responding result for ℓ = 1. Note that the two curves rapidly
converge, implying a far less pronounced CIR in terms of a
transmission suppression than in the case of ℓ = 0.

quantitatively from the formal limit αℓ → ∞ taken in
Eq. (12). This yields

f
(ℓ)
CIR = − F

o

ℓℓ

Tr[Fo

ℓℓ]
, (21)

which generalizes the well known single mode result

f
(ℓ)
CIR = −1. It is remarkable that for the transver-
sal ground state a non-trivial energy dependence is not
present. We note that Eq. (21) can, by virtue of [20],
also be obtained by formally equating Eq. (19) at a van-

ishing closed channel coupling, i.e. f
(ℓ)
CIR = f

(ℓ)
∞ |Uℓℓ=0.

Writing down the transmission coefficients for the scat-
tering amplitude at a CIR, or, equivalently considering

T
(ℓ)
CIR,n = limαℓ→∞ T

(ℓ)
n , yields

T
(ℓ)
CIR,n = 1− (Fo

ℓℓ)nn
Tr[Fo

ℓℓ]
. (22)

This expression in particular contains the previous state-

ment that a CIR for a single open channel has T
(ℓ)
0 = 0.

In the ℓ-SPWA the smallest value the transmission co-
efficient can take as a function of the energy is determined

by Eq. (22), which serves as a lower bound for the trans-
mission coefficient. This lower bound is compared to the
value of the transmission coefficient for infinite energy
dependent scattering length in Fig. 5. The channel of
incidence varies within the first few transversal modes,
i.e. 0 ≤ i ≤ 4. As it can be easily deduced from Eq.
(22) all quasi 1D unitarity bounds tend to unity irre-
spective of the partial wave ℓ under consideration. This
makes the CIR being less pronounced for increasing ener-
gies (excited channels) with respect to the corresponding
suppression of the transmission. The difference between
the transmission for infinite energy dependent scattering
length and at a CIR is largest close to the channel thresh-

olds for ℓ = 0. Remarkably, this difference T
(1)
CIR,i − T

(1)
∞,i

for l = 1 happens to vanish as soon as the channel thresh-
old to the first excited mode is exceeded. This also ex-
plains the rather symmetric line shapes observed in panel
(b) of Fig. 1 for no ≥ 2.

FIG. 6. (Color online) Confinement induced unitary bounds

W
(ℓ)
CIR,nn′ for energies ǫ ≤ 3. Panels (a)-(c) depict the cases

ℓ = 0, 1 and 2, respectively. In particular, W
(ℓ)
CIR,12 coincides

for ℓ = 1 and 0 for the first excited channel, as can be seen
in panels (a) and (b). The d-wave bound (c) exhibits a non-
monotonic behavior as well as a total suppression of transi-
tions at ǫ = 1.75.

A similar analysis can be performed in the ℓ-SPWA

for the transition coefficient W
(ℓ)
nn′ . In this case, the limit

αℓ → ∞ leads to

W
(ℓ)
CIR,nn′ = 2

(Fo

ℓℓ)
2
nn′

Tr[Fo

ℓℓ]
2
, (23)

describing the unitarity bounds for the transition coef-
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ficients which occur between different channels during a
CIR. Results for this observable are shown in Fig. 6,
where all possible transition coefficients are given for en-
ergies ǫ ≤ 3. In particular, panel (a) and (b) depict
the cases for ℓ = 0 and 1, respectively. In the ener-
getic range 1 ≤ ǫ ≤ 2 the transition coefficients exactly
coincide and exhibit a monotonically increasing behav-
ior. This coincidence abruptly changes when crossing the
channel threshold to the second open channel especially

for W
(0/1)
CIR,12, which has a sharp drop to zero for ℓ = 0

while for ℓ = 1 the coefficient continuously decreases but
remains the dominant transition process throughout the
channel. Fig.6(c), depicts the case for ℓ = 2, which ex-
hibits a non-monotonic behavior for all considered transi-
tion coefficients. Even though, as discussed in more detail
below in Sec. IVB 1, we do not expect this behavior to
exactly describe the processes for d-waves as additional
s-wave contributions have to be taken into account, it is
nevertheless remarkable that for ℓ = 2 energetic regions
exist where by means of a CIR no transitions between
channels can be induced, i.e. at the energy ǫ = 1.75 the
transition probability between the two available channels
vanishes.
Another important feature depicted in Fig.6(c) is that

at the channel threshold ε = 2 the unitarity bounds for
the transition coefficient W for the d-waves remains finite
when approach the channel threshold from below and it
is zero if we approach the threshold from above. This
particular behavior can be analyzed via Eq. (23) where
when we approach the threshold from above the denom-
inator of Eq.(23) diverges yielding thus a zero transition
coefficient W. On the other hand, approaching the chan-
nel threshold from below the local frame transformation
U remains finite as can be seen by Eq. (35). Recall that
Eq. (23) depends on the square of the frame transforma-
tion U as it is given by Eq. (35).
The interest in the observable W is given by recent

experiments on atom chips [28–30] where coherent ex-
citations in higher transversal confinement modes are
engineered. From this viewpoint the presented analy-
sis may contribute to an understanding in how far the
CIR may be utilized to coherently excite atoms to higher
modes and which are the most efficient energetic regions
in which these transitions can be achieved.

4. Unitarity and CIR

To further illuminate the unitarity regime let us con-
sider the situation from the viewpoint of traditional scat-
tering theory. Here, by using the appropriate relation for
one spatial dimension

S = 1 + 2f (24)

between the scattering matrix and amplitude [41], we
readily derive the quasi 1D unitarity relation

ff† = − Re (f), (25)

where the right hand side denotes the real part of the
scattering amplitude matrix, whereas the left hand side
in particular encapsulates the total reflection coefficient

R
(ℓ)
n =

∑

n≤no
R

(ℓ)
nn′ with R

(ℓ)
n = (ff†)nn. We thus con-

clude from the unitarity relation, that the total reflection
coefficient Rn when incident in a specific channel n is
fully contained within a single element of the scattering
amplitude, namely

R(ℓ)
n = −Re (f (ℓ)

nn ) (26)

Equating now the right hand side with our system specific
information from Eq. (12), we find after some algebra

R(ℓ)
n =

(Fo

ℓℓ)nn
Tr[Fo

ℓℓ]

1

1 + 1
(αℓ Tr[Fo

ℓℓ
])2

, (27)

which shows, that the scattering saturates at the uni-
tarity bound αℓ → ∞. It is hence legitimate to regard

T
(ℓ)
CIR,n or the equivalent quantity R

(ℓ)
n |αℓ→∞ as the con-

finement induced (CI) unitarity bound, similar to the
unitarity bound in free space, which scales as k−2.

B. Transmission suppression in excited channels

1.96 1.97 1.98 1.99 2.00
0.0

0.2

0.4

0.6

0.8
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FIG. 7. (Color online) Transmission coefficient T
(0)
0 (red solid

line) for a small negative value of the s-wave scattering length
where the CIR is expected to occur near the threshold, namely
at ǫ = 1.98. At the same position occurs also the CIR in the

first excited channel see T
(0)
1 (dashed line). The total block-

ade is absent, since the transition W
(0)
01 (dotted line) between

the channels is also resonantly enhanced at the position of the
CIR. Note that the scattering length are fully energy depen-
dent quantities.

Increasing the total collision energy across the thresh-
old of the first excited transversal mode lifts in general
the blockade in a particular channel as the scattering con-
stituents may escape via inelastic collisions to a different
asymptotic state. This is for example present in Fig.
7, where a pronounced s-wave CIR is shown for a total
collision energy of ǫ ≈ 1.98. In particular, the transmis-

sion coefficients T
(0)
0 and T

(0)
1 are shown together with
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FIG. 8. (a) T
(20)
0 versus ǫ for coupled partial waves ℓ = 0 and

2 constituted by different regions of near resonant behaviour
belonging to different C10 values. In the middle of each verti-
cal stripe a free-space resonance translates to a corresponding

CIR. The thick dashed line depicts T
(2)
CIR,0. Deviations of the

transmission minima from the unitarity bound arise due to
the d-SPWA. The inset (b) shows a zoom-in plot around the
blockade region (T = 0) in the neighborhood of ǫ ≈ 1.75.
The leftmost resonance (see arrow) coincides with the uni-
tarity bound in which case the partial waves decouple, i.e.

U20 = 0. Panels (c) and (d) show the results for T
(20)
1 . Devia-

tions from the d-SPWA become small around the decoupling
energy. We also observe that around this energy scattering
becomes almost transparent.

the transition amplitude W
(0)
01 illustrating the resonantly

enhanced transition between the channels at a CIR.
Although Fig. 7 depicts the case of s-wave interactions

it provides the typical scenario when a CIR happens in
the presence of more than one open channel. However,
the first exception where there is no resonantly enhanced
transition between the channels at a CIR, occurs for d-
waves when the particles are incident in the first excited
channel as we will demonstrate in Sec. IVB 2. But before
doing so, we will provide a general brief discussion of the
influence of higher partial waves.

1. The impact of higher partial waves

The analysis of s- and p-waves scattering carried out in
the ℓ-SPWA was justified because of the negligible phase
shifts of allowed higher partial waves in the presence of
a free-space resonance of ℓ = 0 and 1, respectively. This
particular simplification does of course depend on the

considered interatomic potential, and in case of Lennard-
Jones 6-10 potential this certainly holds. Nevertheless,
when considering the CIRs associated to a higher partial
wave, e.g. d-wave for the present discussion, we have to
take into account the non-vanishing s-wave scattering in
the case of collisions between indistinguishable bosons.
This observation led to the idea of partial wave coupling
due to closed channels of the confinement, as firstly dis-
cussed in [24]. The corresponding physical K matrix of
this problem based on Eq. (3) is now expanded in terms
of Fo

ℓℓ,F
o

ℓ′ℓ′ ,F
o

ℓℓ′ and F
o

ℓ′ℓ, which serve as a basis for the
two partial wave K matrices. Therefore, it is not feasible
to obtain a version of Eq. (16) valid for two partial waves,
since an inversion as needed in Eq. (12) by means of
a repeated application of the Sherman-Morrison method
would yield a physicalK matrix with several hundreds of
summands and is thus prohibitive. We therefore have to
rely on a more qualitative analysis and take the intuition
from the transparent results obtained in the ℓ-SPWA.

However, the coupling between the two contributing
partial waves ℓ and ℓ′, mediated by the closed channels, is
conveniently described by the corresponding off-diagonal
element Uℓℓ′(ǫ) of the closed channel coupling matrix U.
Similar to the previous case in Sec. IVA2, where the
vanishing diagonal elements Uℓℓ were used to identify the
decoupling energies for which the scattering process ex-
hibits strong free-space character within the confinement,
we generalize it here in the presence of a ℓ′-ℓ wave sys-
tem. Our first observation is that there exist also en-
ergies for which the off-diagonal elements of U vanish,
i.e. Uℓℓ′(ǫD) = 0 and the confinement-induced coupling
between the partial waves is absent. For the case of a
coupled s-d-wave system, this energy in the first excited
channel is ǫD ≈ 1.65. In particular this also implies that
the position of the d-wave CIR is solely determined by
the d-SPWA, i.e.

RC20(ǫD) = RC2(ǫD), (28)

where the resonance coefficients RCℓ(ǫ) and RCℓℓ′(ǫ) [20]
are described in Appendix B.

For the case of s- or p-waves, the coupling to the closed
channels has a discrete shift symmetry, i.e.

Uℓℓ(ǫ +N) = Uℓℓ(ǫ), with N ∈ N, (29)

which is equivalent to saying that the asymptotically de-
fined transversal modes have no influence on the coupling
through the closed channels in the lowest possible partial
wave for each respective class of exchange symmetry. The
origin of this symmetry is clearly the equidistant modes of
the transversal harmonic oscillator in combination with
the particularly simple nodal structure of the local frame
transformation for s- and p-wave interaction for the case
m = 0. This changes from the d-wave on. Since this fea-
ture does not depend on the coupling of partial waves, it
can already be understood in the d-SPWA, where a CIR
occurs when āℓ = RCℓ(ǫ) is fulfilled. By inserting Eq. (4)
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in Eq. (B1) one obtains

1

ā2ℓ+1
ℓ

= −i
2ℓ
∑

p=0

(

2
√

ǫ + 1
2

)2ℓ−p
c(ℓ,ℓ)p ζH

(

− p− 1

2
, ǫc

)

,

(30)
which depends on the total collision energy ǫ for partial

waves other than ℓ = 0 and ℓ = 1, since c
(1,1)
0 = c

(1,1)
2 = 0.

This rather technical observation of a channel dependent
coupling to the closed channels may indeed become rel-
evant when experimentally trying to observe a d-wave
CIR for collision energies ǫ > 1, since the correspond-
ing energy dependent scattering length required to be
comparable with the confinement length scale is reduced
by the additional energy dependent factor in Eq. (30),
which will likely make the d-wave CIR less difficult to be
observed at energies ǫ & 1. Having clarified this we can
now focus our discussion of the transmission suppression
in the regime of multiple open channels.

2. Strong suppression in the first excited channel

Let us start the discussion on the strong transmission
suppression in the first excited channel by a qualitative
analysis of the d-SPWA from which we will gain some
insight. A sufficient and necessary condition for the oc-
currence of a transmission blockade in the first excited
channel (1 ≤ ǫ ≤ 2) is of course a vanishing of the el-

ement T
(2)
CIR,n, for either n = 0 or 1, respectively. In-

deed this happens in the d-SPWA for T
(2)
CIR,0 at an en-

ergy ǫb = 1.75. At the same energy T
(2)
CIR,1 has to acquire

an extremal value equal to unity. These two observations
imply that a CIR at ǫb will lead to a blockade for particles
which are incident in the lowest transversal mode, while
for particles incident in the first excited channel, the CIR

will result in complete transparency, i.e. T
(2)
CIR,1 = 1.

Taking additionally into account s-wave scattering
which couples to the d-wave this will influence the above-
observed phenomena. The corresponding results are pre-
sented in panels (a) and (c) of Fig. 8, where the two

transmission coefficients T
(20)
0 and T

(20)
1 are shown ver-

sus ǫ and the notation 20 is used here to avoid confusion
with Eq. (9) but to emphasize that the background con-
tribution from the s-wave is properly taken into account.
Here, the individual resonances lying within the shaded
vertical stripes result from changing the C10 parameter.
Due to the narrow width of the d-wave resonance only a
relatively small window on the energy axis is relevant to
the collisional process since the energy dependent scat-
tering length rapidly decays back to a very small value,
resulting in a transmission close to unity. From these two
panels one readily observes that the d-SPWA for the CI

unitarity bound T
(2)
CIR,0/1, which is shown by the black

dashed curve, is a rough approximation to the coupled
d-s-wave system. However, by probing the CI unitarity
bound for the coupled system we see that this approxi-

mation qualitatively captures the observed values of the
transmission coefficients at a CIR.

Furthermore, we observe in panels (b) and (d) of the
same figure, that around ǫb the d-SPWA becomes more
reliable, which may be related to the decoupling of the
partial waves, i.e. U02 ≈ 0 also for energies in that region.
Nevertheless, the blockade expected in channel one from
the d-SPWA, as well as the transparency in channel two
are not observed. This however is totally expected since
the non-negligible s-wave energy dependent scattering
length in the background prevents these extremal values.
But still, for an extended region of energies 1.6 ≤ ǫ ≤ 1.8,
the portion transmitted when incident in the ground
channel is less than 1%. Similar, the transmitted part
when incident in the first excited channel is above 99%.
Furthermore, the vanishing of the transmission coefficient

in the ground channel, i.e. T
(20)
0 = T

(20)
00 + T

(20)
01 ≈ 0

in particular also implies that T
(20)
01 ≈ 0, which in turn

leads to W
(20)
01 ≈ 0. This means that in this region of en-

ergies the scattering processes preserve the channels, i.e.
elastic collisions dominate since the transition probabil-
ity between the two open channels is negligible. We em-
phasize that this behavior corresponds to a blockade for
particles in the ground state while excited particles are
effectively non-interacting regardless the fact that there
are two open channels. This observation might lead to in-
teresting implications for the corresponding many-body
system, like a mixture of a Tonks-Girardeau gas and a
non-interacting gas.

C. Distinguishable particles

Let us start by briefly stating some single channel re-
sults, for which a similar analysis as in the case of indis-
tinguishable particles was carried out before. As intro-
duced in Eq. (9), the appropriate scattering observable
for distinguishable particles (DP) is the transmission co-
efficient where both scattering amplitudes, one even and
one odd, are present. The fact that the Hamiltonian of
distinguishable particles still commutes with the parity
operator permits us to treat collisional events within the
framework of the K-matrix approach. Therefore, here-
after we will employ the Ansatz from Eq. (9) with two
single partial waves, namely s- and p-wave, yielding

T
(s,p)
nn′ =

∣

∣

∣
δnn′ + i

(

K
1D,phys
oo,s

[

11− iK1D,phys
oo,s

]−1
)

nn′

+ i
(

K
1D,phys
oo,p

[

11− iK1D,phys
oo,p

]−1
)

nn′

∣

∣

∣

2

, (31)

K
1D,phys
oo,s and K

1D,phys
oo,p denote the corresponding K ma-

trices for the s- and p-wave, respectively. We note, that
likewise also both K matrices with two contributing par-
tial waves could be used, to describe a system where s-,
p-, d- and f -waves are significant. From the scalar, i.e.
single channel version of Eq. (31), an effective physical
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K matrix can be constructed which is explicitly given by

K1D,phys
oo,eff =

K1D,phys
oo,s −K1D,phys

oo,p

1 +K1D,phys
oo,s K1D,phys

oo,p

, (32)

The construction is accomplished by simply demanding
that the transmission coefficient takes the usual form of
T = (1 + K2

eff)
−1 [24]. As in our previous study, this

effective K matrix is clearly separated in numerator and
denominator, which gives rise to transparency and res-
onance coefficients TCℓℓ′ and RCℓℓ′ , respectively. These
coefficients are given by

RC
(dp)
ℓ′ℓ (ǫ) =

−1

2
√

ǫ+ 1
2

2ℓ′+1

√

1

i(Uℓ′ℓ′ + αℓU2
ℓ′0U

2
ℓ0)

(33)

TC
(dp)
ℓ′ℓ (ǫ) =

−1

2
√

ǫ+ 1
2

× 2ℓ′+1

√

∆ℓU2
ℓ0

U2
ℓ′0 − i∆ℓ(Uℓ′ℓ′U2

ℓ0 + UℓℓU2
ℓ′0 − 2U2

ℓ′0U
2
ℓ0)
,

(34)

where the superscript (dp) abbreviates “distinguishable
particles” to separate the notation from the one used in
Eqs. (B4) and (B6) for indistinguishable particles. Here,
ℓ and ℓ′ belong to different, namely even and odd, sym-
metries. The explicit form of these coefficients is very
similar to the ones introduced in [20] but, unlike them, do
not contain off-diagonal elements of the matrix U, which
indicates the absence of couplings between even and odd
partial waves due to the confinement, becoming evident
when comparing Eq. (33) from above with Eq. (B4),
corresponding to indistinguishable particles. If we inter-
pret Uℓ′0Uℓ0 as the trace over the open channels, which
indeed can be shown rigorously in a lengthy calculation
for a problem involving multiple open channels, we see
that the term proportional to αℓ in Eq. (33) is this trace
squared, contrasting Eq. (B4) where a analog squared
trace over the closed channels is present. The same ar-
gument also holds for the transparency coefficients Eqs.
(34) and (B6), showing that the mechanism relating the
partial waves is different for indistinguishable and distin-
guishable particles, respectively. Whereas the former are
coupled through the closed channels, the latter are con-
nected via the frame transformation in the open channels.
Even though, there is an obvious structural similarity
between the corresponding resonance and transparency
coefficients for distinguishable and indistinguishable par-
ticles the physical mechanism coupling the partial waves
is very different. Since the parity in z-direction is a good
quantum number the local frame transformation is not
allowed to couple partial waves with ∆ℓ±1. The appear-
ing “mixing term” proportional to αℓ in the coefficients

TC
(dp)
ℓ′ℓ and RC

(dp)
ℓ′ℓ originates thus from the coherent su-

perposition of the partial s- and p-wave contributions
assumed in Eq. (31).
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FIG. 9. Transmission coefficient T
(s,p)
0 versus potential depth

V0 of a spherical square well. Black solid lines: with s- and
p-wave interactions; red dashed line: s-wave approximation;
blue dotted line: p-wave interactions. The dual CIR is clearly
seen to happen where the individual transmission coefficients
of s- and p-wave interactions are equal, as well as the shift
of the p-wave CIR due to the non-negligible s-wave scatter-
ing. The inset shows the scaled s- (red solid) and p-wave
(blue solid) energy dependent scattering lengths versus the
potential depth. The crossings with the DP transparency co-
efficients (dashed lines) determines the position of the dual
CIR.

The arguments for the single channel case made above
are illustrated in Fig. 9. Here, the black solid line

shows the transmission coefficient T
(s,p)
0 versus V0, the

depth of a spherical square well potential which was used
in order to model the two-body interactions of the DP.
For comparison there are also the corresponding trans-
mission coefficients shown for the pure s- (red dashed)
and p-wave (blue dotted) interaction, respectively. It is
clearly observed that a dual CIR corresponding to com-
plete transparency [19, 20] appears when the transmis-
sion coefficients of s and p are equal, i.e. by Eq. (32)
this means that the quasi 1D wavefunctions induced by
s and p wave interaction possess phase shifts of equal
magnitude but differ by a sign yielding thus destructive
interference. As in [19], this potential is used to mimic
the possibility of having large values of ās and āp simul-
taneously, illustrating the peculiar quasi 1D feature of
total transparency while strongly interacting with two
partial waves. However, by inspecting the resonance and

transparency coefficients RC(dp) and TC(dp) we see, that
it is not necessary to have large values for both energy
dependent scattering lengths, i.e. a sufficient condition
is one of them being large and the other one possessing
a small but non-negligible value, as it was already dis-
cussed in [20] for indistinguishable particles. In addition,
the inset shows the intersection of the s- and p-wave en-
ergy dependent scattering length depicted by the red and
blue solid lines with the corresponding transparency coef-

ficients TC
(dp)
10 (red dashed line) and TC

(dp)
01 (blue dashed
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line), respectively.

FIG. 10. (a) Transmission coefficient T
(s,p)
0 versus the scaled

energy ǫ (b) transmission coefficient T
(s,p)
1 when incident in

the first excited channel. Similar to Fig. 3, individual curves
correspond to different choices of the C10 parameter in order
to have resonances in every energetic interval i−4 ≤ ǫ ≤ i. In
addition we show in both panels (a) and (b) the corresponding

CI unitarity bounds T
(p)
CIR,n (black dotted curve) for n = 0, 1.

Let us now address the multichannel scattering proper-
ties, based on Eq.(31). We note, that an expanded repre-
sentation for multiple open channels, similar to Eq. (16),
in the single mode regime, is straightforwardly derived
and thus not presented here. By considering a realistic
short range potential as before, i.e. Lennard-Jones 6−10
we have to distinguish two cases. Firstly, the s-wave CIR
in the presence of p-wave interactions and vice versa.

An inspection of the corresponding energy dependent
scattering lengths in the former case shows that the p-
wave energy dependent scattering length in the vicin-
ity of a s-wave free space resonance is negligible, as it
is the case for the indistinguishable s − d-coupled case.

Therefore, also for distinguishable particles, RC
(dp)
01 (ǫ) ≈

RC
(dp)
0 (ǫ) := RC0(ǫ), i.e. the s-SPWA is a very good

approximation. Hence, the transmission coefficient ver-
sus energy would result in a behavior very much like the
one shown in Fig. 2. However, we note, that this sim-
plification follows from our choice of LJ-type potential,
which, as already said before, is the adequate choice to
describe the interactions of neutral atoms. Nevertheless,
in the vicinity of a free-space p-wave resonance the s-

wave energy dependent scattering length possesses a non-
negligible value and thus its contribution has to be taken
into account. The result on the transmission is shown in
Fig. 10, where we consider the cases of incidence in the
two lowest channels for the case of four open channels.
To obtain the different curves, the C10 parameter is ad-
justed, such that there is a free-space resonance of p-wave
character at a particular energy. Focusing on the case of
p-wave CIRs for distinguishable particles, the black dot-

ted line represents T
(1)
CIR,1 in Fig. 10(a), while T

(1)
CIR,2 is

depicted in Fig.10(b), showing that the neglect of a back-
ground s-wave energy dependent scattering length leads
to increasing deviations for more open channels from the
unitarity bound. However, we generally observe that the
transmission is a mixture of s- and p-wave scattering. For
the s−wave part this is best seen by the zero energy value
T1 = 0 and the ǫ = 1 value of T2 which is also zero. For
the p−wave part we observe a transmission coefficient at
threshold which is less than unity and strongly depends
on the C10 parameter. These are two features we find to
be present in the p-SPWA. Therefore the contributions
from both exchange symmetries strongly contribute to
the scattering physics of distinguishable particles.

D. Threshold singularities

In Figs. 2, 3 and 10 we observe that at every channel
threshold the transmission spectra exhibit kinks. This
constitutes another aspect of inelastic collisions, the so-
called threshold singularities. More specifically, it is
known [42, 43] that when the total collision energy leads
to the opening of a new channel where new states be-
come available this leads to a non analytic behavior of
the scattering matrix elements.
In order to firmly address this point it is useful to first

consider the behavior of the individual elements consti-
tuting the K matrix when energetically approaching a
channel threshold from below or above the closed chan-
nel thresholds. Since the notion of transversal channels
is inherently connected in our framework with the lo-
cal frame transformation Uln [6] and its derived quantity
Uℓℓ′ , the channel threshold behavior will solely depend
on these quantities and their properties around a corre-
sponding threshold. We start this analysis with the local
frame transformation Uln, for which we find the following
expression for the limit from below

lim
ǫրN

Ulm =
(−1)d0

√
2l+ 1

[4(N −m)(N + 1/2)]1/4
Pl(

√

N −m

N + 1/2
),

(35)
which holds for all open channels m < N , where N
denotes the threshold to the lowermost closed channel.
From Eq. (35) we observe, that the elements of the lo-
cal frame transformation acquire a finite value at thresh-
old and are continuous across the threshold. Next we
inspect the limit to the channel threshold from above
for the element of the local frame transformation which
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corresponds to the least open channel, i.e. UℓN , which
will then become a closed channel when slightly further
decreasing the energy ǫ. For this element we find the
following expressions, which have to be distinguished for
even and odd partial waves

lim
ǫցN

UℓN = C+
ℓN lim

∆ǫց0

( 1
4
√
∆ǫ

+O(∆ǫ
3
4 )
)

, (36)

lim
ǫցN

UℓN = C−
ℓN lim

∆ǫց0

(

4
√
∆ǫ +O(∆ǫ

5
4 )
)

, with (37)

C+
lN =

√
2l + 1 l!

[(l/2)!]22l+
1
2 (N + 1

2 )
1/4

C−
lN =

√
2l+ 1 (l + 1)!

( l+1
2 )!( l−1

2 )!2l+
1
2 (N + 1

2 )
1
4

where Eqs. (36) and (37) refer to the case of even and
odd partial waves, respectively. C+

ℓN and C−
ℓN denote con-

stants depending on the number of open channels as well
as on the partial wave. Both equations exhibit a singular
behavior at threshold when approaching from above. In
the case of even partial waves, this singularity is a pole,
while for the odd partial waves the local frame transfor-
mation becomes singular by means of an infinite slope at
ǫ = N . In other words this simply means that the frame
transformation for odd partial waves exhibits kinks at
threshold though its derivative with respect to the energy
become divergent at threshold. Indeed, by differentiat-
ing Eq. (42) with respect to ∆ε the corresponding matrix
elements are diverging as ∆ε→ 0.
Next, let us consider the trace over the squared local

frame transformations Ull′ [20]. Here, we observe the
following behavior for approaching the threshold from
above

lim
ǫցN

Ull′(ǫ) = C
(ℓ,ℓ′)
N + lim

∆ǫց0
O(∆ǫ) ,with (38)

C
(ℓ,ℓ′)
N =

l+l′
∑

p=0

c
(ℓ,ℓ′)
p

(N − 1
2 )

p+1

2

ζ(−p− 1

2
), (39)

where the coefficients c
(ℓ,ℓ′)
p are defined in Eq. (5). In

Eq. (38) we observe, that for the limit from above the
elements of the matrix U smoothly approach the channel
threshold irrespective of the particle exchange symmetry.
However, the actual value attained does of course depend
on the partial wave ℓ, but there is no specific distinction
between even and odd partial waves. On the contrary
the limit from below exhibits a more intricate behavior
and is given by

lim
ǫրN

Uℓℓ′(ǫ) = C
(ℓ,ℓ′)
N + lim

∆ǫց0

(

ℓ+ℓ′
∑

p=0

c
(ℓ,ℓ′)
p

(N − 1
2 )

p+1

2

)

(∆ǫ)
p−1

2 ,

(40)
where we observe that except from the constant value
only terms contribute which have a fractional exponent
in the energy dependence, implying non-analytic behav-
ior when approaching the channel thresholds from below.

We note that by comparing the local frame transforma-
tion Uℓn and the elements of the closed channel coupling
matrix U, their limiting behavior is just reversed, i.e. one
approaches the limit in a singular manner from above,
while regular from below and vice versa.

For the case of even partial waves, it can be shown
by exploiting general results on the Wigner 3j-symbols

that the coefficients c
(ℓ,ℓ′)
0 are always non-vanishing. This

observation leads to the following asymptotic form

lim
ǫրN

Uℓℓ′(ǫ) = C
(ℓ,ℓ′)
N +

c
(ℓ,ℓ′)
0

√

N − 1
2

lim
∆ǫց0

(∆ǫ)−
1
2 , (41)

which means that the Uℓℓ′ ’s diverge at threshold as 1√
∆ǫ

.

Similar to the case of even partial waves we again ex-
ploit general properties of the Wigner 3j-symbols to show

for the odd values of ℓ and ℓ′ that generally c
(ℓ,ℓ′)
0 ≡ 0,

but c
(ℓ,ℓ′)
1 6= 0. This leads to the general from for the

closed channel coupling, via

lim
ǫրN

Uℓℓ′(ǫ) = C
(ℓ,ℓ′)
N +

c
(ℓ,ℓ′)
1

(N − 1
2 )

lim
∆ǫց0

(∆ǫ)
1
2 (42)

From Eqs. (36)-(42) we observe a fundamental differ-
ence between even and odd partial waves. While the
elements Uℓℓ′ for even partial waves are discontinuous
across a channel threshold, the odd counterpart is con-
tinuous. However, we note that the limit from above in
the odd case approaches the value Cℓℓ′ with an infinite
slope, which is equivalent to say, that Uℓℓ′ is not Lipschitz
continuous across threshold.

The different threshold behavior for indistinguishable
bosons and fermions, i.e. even and odd partial waves, is
clearly observed in Fig. 11, where panels (a)-(c) depict
the case for ℓ = 0 where, as expected from the preceding
analysis, the transmission obtains a universal slope and
value around the thresholds, regardless of the magnitude
and the sign of the s-wave energy dependent scattering
length. This is due to the divergent behavior of Uℓℓ and
Uℓn across threshold. The trend exhibited in panels (a)-
(c) is observed also for the first few even partial waves
in ℓ-SPWA. On the other hand, in panels (d)-(f) we il-
lustrate the fermionic counterpart for ℓ = 1. Here, we
observe a richer structure of the threshold behavior due
to the finite values the quantities U11 and U1n acquire.
This circumstance renders the fermionic threshold behav-
ior less universal in the sense that the transmission value
obtained does depend on the energy dependent scatter-
ing length. On the other side, this finiteness observed
for odd partial waves allows for a CIR even at threshold.
Notably the same behavior is apparent in panels (d)-(f)
for odd partial waves other than p-wave in the ℓ-SPWA
picture.
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FIG. 11. (a) - (c) Transmission thresholds for the case ℓ = 0.
Close to threshold the transmission approaches unity with a
universal slope independent of the scattering length. This
universal behavior is present for all even partial waves in the
ℓ-SPWA. (d) - (f) Transmission around thresholds is shown
for a variety of p-wave scattering lengths, demonstrating the
dependence on the scattering length around threshold. Note
that all the relevant scattering lengths are energy dependent
quantities.

V. SUMMARY AND CONCLUSIONS

The focus of our present study is on the scattering
behavior of identical bosons and fermions as well as on
distinguishable point-particles confined to a harmonic
waveguide. The relevant coupling of different partial
waves as well as the explicit energy dependence of the
scattering properties are properly taken into account.
The K matrix formalism established in [6, 17, 20, 24, 27]
is employed to obtain the relevant scattering observables.
For higher partial wave interactions the explicit energy
dependence of the scattering lengths is properly taken
into account by including the free-space scattering re-
sults of Gao [32, 35, 44]. Using these results we are able
to present fully analytical results including an adequate
description for the interatomic scattering process.

We consider the scattering process under the assump-
tion of scale separation of the length associated with the

interatomic and trapping potential, respectively. This as-
sumption results in two regions of different symmetry, i.e.
spherical close to the origin and cylindrical in the asymp-
totic regime. The restriction that the total collision en-
ergy lies below the threshold of the first excited transver-
sal mode, as studied in previous works [4, 6, 20, 24] was
dropped and we thus allow for inelastic scattering de-
scribing transversal (de-)excitation processes. The rela-
tion between the quasi 1D scattering amplitude and the
physical K matrix found in [20] was employed again to
obtain analytical relations for the scattering observables.
This formalism allows for a unified treatment of inelastic
collisions within a harmonic waveguide for distinguish-
able and indistinguishable particles.

For the scattering of identical particles we investigated
the transmission coefficient for up to four open channels
where we find good agreement in the single partial waves
approximation (SPWA) with the numerical results de-
rived earlier [21]. For the ℓ-SPWA we also derived a quasi
1D unitarity bound (CI unitarity bound) which explains
the influence of the open channels on the allowed trans-
mission and transition coefficients around a CIR. The
universal aspects of the CI unitarity bound is demon-
strated encapsulating all the relevant information of the
interatomic interactions. However, the form of the CI
unitarity bound depends of the exchange particle symme-
try. For the case of higher partial waves that are coupled
we focus on the bosonic case where ℓ = 0 and 2 waves
are coupled through the confinement. Here we studied
the deviations from the d-SPWA to the case where the
second partial wave is taken into account. In particu-
lar we find that there is a region where the transmission
when incident in the ground channel almost vanishes,
while when incident in the first excited channel the par-
ticles are non-interacting to the same degree. We studied
this behavior for the free-space phase shifts as energy de-
pendent quantities by using the analytic results of Gao
[35] on the scattering phase shift for potentials possessing
a van der Waals tail, relating to recent experimental ob-
servation 133Cs [45], where d-wave shape-resonances were
found. Furthermore, similar to the decoupling from the
closed channels, described before by a vanishing element
Uℓℓ we also find regions where the coupling between the
partial waves vanishes, i.e. U02 vanishes. Over there, the
d-SPWA is a good approximation to the transmission at
a CIR. We note that also the corresponding fermionic
case can be treated within the same formalism. For the
case of distinguishable particles we derive resonance and
transparency coefficients for the (dual) CIR. Here we ob-
serve that the mechanism is way different from the case
of indistinguishable particles where in particular the dual
CIR was achieved by interference of partial waves coupled
through the closed channels, while in the distinguishable
case the coupling was accomplished by the open chan-
nels. A brief description of the origin and the type of the
appearing threshold singularities is provided.

From the perspective of many-body physics as shown
in Ref.[4] the corresponding Hamiltonian is effectively
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one-dimensional due the axially symmetric waveguide
whereas the two-body interactions are modeled by delta
functions multiplied by a single factor, namely the con-
stant coupling strength g1D containing all the relevant
CIR physics. By the same token, the findings of the
present study will result into additional corrections in
the g1D encompassing in this manner the impact of the
higher partial confinement-induced resonances of specific
exchange symmetry. This occurs due to the fact that
the quasi-one-dimensional two-body Hamiltonian is in
essence one dimensional in the limit of large distances.
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Appendix A: The physical K matrix

In order to analytically invert the contribution of the
closed channels to the physical K matrix, (11− iK1D

cc )−1,
we employ the following method. First, we recognize,
that the 3D K matrix, which is assumed to be diagonal,
can be written as

K3D =

L
∑

l=0

∆lele
T
l , (A1)

here ∆i = tan δi and ei denotes the i-th Cartesian basis
vector. Using now the relationK1D = UTK3DU between
the K matrices in the different regions in configuration
space, where U denotes the local frame transformation
[36–38], we obtain

K1D =

L
∑

l

∆lU
T
ele

T
l U =

L
∑

l=0

∆lflf
T
l , (A2)

where we have introduced the frame transformed basis

fi = UT
ei (A3)

For convenience we partition the frame transformed ba-
sis into two parts foi and f

c

i , corresponding to open and
closed channels, respectively and also introducing the ab-
breviations Fo

ij and F
c

ij to denote the dyads foi ⊗ f
o

j and
f
c

i ⊗ f
c

j , respectively. We note, that this definition gen-
eralizes the open and closed K matrices attributed to a
specific partial wave, since the diagonal elements of Fo

and F
c are given by

∆ℓ F
o

ℓℓ = K
1D
oo,ℓ (A4)

∆ℓ F
c

ℓℓ = K
1D
cc,ℓ (A5)

In particular we encounter the following frequently ap-
pearing relation

(K1D
oc,iF

c

jkK
1D
co,l)n,n′ =

=

∞
∑

η=nc

∞
∑

η′=nc

(K1D
oc,i)n,η(F

c

jk)η,η′(K1D
co,l)η′,n′

= ∆i∆l

∞
∑

η=nc

∞
∑

η′=nc

UinUiηUjηUkη′Ulη′Uln′

= ∆i∆lUinUln′

(

∞
∑

η=nc

UiηUjη

)(

∞
∑

η=nc

UkηUlη

)

= ∆i ∆l Uij Ukl (F
o

il)n,n′ , (A6)

where n, n′ range within the open channels and the Uij ’s
are the coupling elements derived earlier [20]. These en-
ergy dependent elements are defined according to

Uℓℓ′ =

∞
∑

n=no

UℓnUℓ′n, (A7)

which are given in Eqs. (4), (5) and (6) in closed form.
In a similar fashion to Eq. (A6), the following relation is
derived

K
1D
oc,i11K

1D
co,j = ∆i∆j UijF

o

ij (A8)

Appearing higher order products of the closed channel K
matrices are readily shown to satisfy

K
1D
cc,i ·K1D

cc,j ·K1D
cc,k = ∆i∆j∆k UijUjkF

c

ik (A9)

The relations (A6) to (A8) turn out to be very useful
when actually carrying out the analytical inversion of the
matrix (11− iK1D

cc ). Similar to the procedure in [24], the
inversion is done by first recognizing, that the expansion
of the 1D K matrix given in Eq. (A2) is written as a sum
over dyads, i.e. rank one matrices and then repeatedly
applying the Sherman-Morrison formula [46]. The result
of this procedure yields

(11 − iK1D
cc )−1 = 11 + αi(11 + αiβjiU

2
ij)F

c

ii

+ βjiF
c

jj + αiβjiUij(F
c

ij + F
c

ji), (A10)

where the coefficients α and β are given by

αi =
i∆i

1− i∆iUii
(A11)

βji =
i∆j

1− i∆j(Ujj − αiU
2
ij)

(A12)

These coefficients play a similar role as the couplings g1
and g2 defined in [24]. Inserting now the result of Eq.
(A10) into the equation for the physical K matrix and
using the relation αiβji = αjβij one ends up with

K
1D,phys
oo =

1

det(11− iK3DU)
×
(

∆ℓF
o

ℓℓ +∆ℓ′F
o

ℓ′ℓ′−

− i∆ℓ∆ℓ′
(

Uℓ′ℓ′F
o

ℓℓ + UℓℓF
o

ℓ′ℓ′ − Uℓℓ′(F
o

ℓℓ′ + F
o

ℓ′ℓ)
)

)

,

(A13)
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representing the physical K matrix interacting with two
partial waves ℓ and ℓ′. We note, that this formula only
holds for indistinguishable particles, i.e. both partial
waves have to be either even or odd. In addition, we
readily observe that the K matrix given in Eq. (A13) is
real and symmetric as expected.

Appendix B: The resonance and transparency

coefficients

This section is considered as a brief summary of notions
used here, which were introduced in [20] in order to keep
this presentation as self-contained as possible.

We remind that the formation of a CIR is described
by a diverging physical K matrix, i.e. the roots of
det(11− iKcc). As it can be seen clearly in Eq. (A13) this
divergence can only be achieved by a vanishing denom-
inator. Equivalently, this can be expressed by a diver-
gence of the couplings, given in Eqs. (A11) and (A12).
Explicitly this means that a ℓ-wave CIR occurs in the
SPWA when αℓ diverges, and similar, a ℓ′-wave CIR oc-
curs in the presence of ℓ-wave interactions, when βℓ′ℓ di-
verges. Parameterizing this divergence of αℓ in terms of

the energy dependent scattering length and energy, yields

āℓ(ǫ) = RCℓ(ǫ) (B1)

RCℓ(ǫ) =
−1

2
√

ǫ+ 1/2
× 2ℓ+1

√

1

iUℓℓ(ǫ)
, (B2)

and similar when the coupling between two partial waves
has to be taken into account

āℓ′(ǫ) = RCℓ′ℓ(ǫ) (B3)

RCℓ′ℓ(ǫ) =
−1

2
√

ǫ+ 1/2
× 2ℓ′+1

√

1

i
(

Uℓ′ℓ′ − αℓU
2
ℓℓ′

) (B4)

The so-called dual CIR, where the total transmission
becomes unity, is obtained within the same framework
by a vanishing numerator of the physical K matrix and
is due to the matrix nature of K in the case of multiple
open channels only expressible in terms of transparency
coefficients TCℓ′ℓ only in the case of a single open channel.
However, by analogous arguments as for the resonance
coefficients RC, introduced above, the parametrization of
a dual CIR is then given by

āℓ′(ǫ) = TCℓ′ℓ(ǫ) (B5)

TCℓ′,ℓ(ǫ) =
1

2
√

ǫ+ 1/2

× 2ℓ′+1

√

∆ℓU2
ℓ0

U2
ℓ′0 − i∆ℓ(Uℓ′ℓ′U2

ℓ0 + UℓℓU2
ℓ′0 − 2Uℓℓ′Uℓ0Uℓ′0)

,

(B6)

where we note that due to the needed destructive inter-
ference, the dual CIR is only possible when more than
one partial waves are taken into account.
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T. Esslinger, Phys. Rev. Lett. 94, 210401 (2005).
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