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We report the measurement of the deca-heptuplet s-partial-wave scattering length a of two bosonic
isotopes of the highly magnetic element, dysprosium: a = 112(10)a0 for 162Dy and a = 92(8)a0 for
164Dy, where a0 is the Bohr radius. The scattering lengths are determined by the cross-dimensional
relaxation of ultracold gases of these Dy isotopes at temperatures above quantum degeneracy. In
this temperature regime, the measured rethermalization dynamics can be compared to simulations
of the Boltzmann equation using a direct-simulation Monte Carlo (DSMC) method employing the
anisotropic differential scattering cross section of dipolar particles.

PACS numbers: 34.50.-s, 03.65.Nk, 67.85.-d

I. INTRODUCTION

In the study of ultracold atomic collisions, the scat-
tering length a is a simple parameter that character-
izes the contact-like pseudo-potential approximation of
the van der Waals potential [1][2]. By abstracting away
microscopic details, this number encapsulates the essen-
tial physics needed to predict the cross section of atoms
whose collision channel is dominated by an s partial wave.
Knowledge of a allows one to predict the mean-field en-
ergy of a Bose-Einstein condensate (BEC). Manipulat-
ing a via a Fano-Feshbach resonance provides interaction
control [3], which can increase evaporation efficiency for
BEC production [4–6] or provide access to strongly in-
teracting gases and gases that emulate interesting many-
body Hamiltonians [7].

Given the importance of the s-wave scattering length,
it is desirable to know its value for the highly magnetic
and heavy open-shell lanthanide atom dysprosium (Dy),
whose three high-abundance bosonic isotopes have re-
cently been Bose-condensed [6, 8]. However, Dy has a
highly complex electronic structure: an open f -shell sub-
merged beneath closed outer s-shells. The four unpaired
f electrons give rise to a total electronic angular mo-
mentum J = L + S = 8, with an orbital angular mo-
mentum L = 6 and electronic spin S = 2. (Bosonic
Dy has no nuclear spin I = 0 and hence has no hyperfine
structure.) The complexity of Dy’s electronic structure—
possessing 153 Born-Oppenheimer molecular potentials,
electrostatic anisotropy, and a large dipole moment (µ =
9.9326952(80) Bohr magnetons [9])—renders calculating
collisional parameters challenging [10]. Therefore, as
with all but the lightest atoms, determination of the
scattering length must rely on experimental measure-
ments [1].

One well-known technique often used to probe the
collisional properties of ultracold atoms is the cross-
dimensional relaxation method [11]. Such experiments
usually begin with a cloud of atoms in thermal equilib-
rium. Then extra energy is suddenly added to the cloud

along one of the trap axes to create an energy imbalance.
This may be accomplished by diabatically increasing the
trap frequency in that direction. One can then extract
the elastic cross section of the colliding particles by mea-
suring the rate at which this energy redistributes among
all three trap axes.

For bosonic alkali atoms, whose collision interaction
is dominated by s-wave scattering at ultracold temper-
atures, i.e., below the d-wave centrifugal energy barrier,
the elastic cross section is directly related to the scat-
tering length [1]. However, the scattering in ultracold
bosonic Dy gases is strongly affected by the magnetic
dipole-dipole interaction (DDI). In contrast to the short-
ranged, isotropic van der Waals interaction, the DDI is
long-ranged and highly anisotropic:

Udd(r) =
µ0µ

2

4π

1− 3 cos2 θ

|r|3
, (1)

where µ0 is the vacuum permeability, r is the relative
position of the dipoles, and θ is the angle between r and
the dipole polarization direction. Scattering due to the
DDI has been calculated to be universal in the ultracold
regime, meaning that it does not depend on the micro-
scopic details of the colliding particles [12]. Such scat-
tering can be characterized by a single parameter, the
dipole length scale

ad =
µ0µ

2m

8πh̄2
, (2)

where m is the single-particle mass [12, 13]. The univer-
sal nature of the DDI has been observed for both elas-
tic [14–17] and inelastic collisions [18]. The remaining
non-universal part of scattering resides in the scattering
length, whose value varies from atom to atom.

The goal of this work is to measure a, which includes
the small dipolar contribution [2], by accounting for the
DDI in the total Dy-Dy elastic cross section. This is
achieved by comparing the measured cross-dimensional
relaxation of an ultracold gas of Dy to numerical simula-
tions in which the DDI’s contribution to the cross section
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is well understood [19]. The simulation of the nonequi-
librium dynamics of ultracold dipolar gases in realistic
experimental situations is made possible by a recently de-
veloped direct-simulation Monte Carlo (DSMC) method
that solves the Boltzmann equation with the full dipolar
differential scattering cross section [20]. This numerical
method has proven successful in describing the rether-
malization of a cloud of fermionic erbium atoms driven
out of equilibrium [21]. Here we apply these simula-
tion tools to bosonic 162Dy and 164Dy undergoing cross-
dimensional relaxation and extract the deca-heptuplet s-
wave scattering length a for both isotopes in their maxi-
mally stretched ground state |J = 8,mJ = −8〉.

II. THE CROSS-DIMENSIONAL RELAXATION
EXPERIMENT

Preparation of ultracold Dy gases is discussed in a pre-
vious work [6]. Dysprosium atoms in an atomic beam
generated by a high-temperature effusive cell are loaded
into a magneto-optical trap (MOT) via a Zeeman slower,
both operating at 421 nm. For further cooling, the atoms
are loaded into a blue-detuned, narrow-linewidth MOT
at 741 nm. We typically achieve trap populations of
4 × 107 162Dy or 164Dy atoms at T ≈ 2 µK. The atoms
confined within this narrow-line, blue-detuned MOT are
spin-polarized in |J = 8,mJ = +8〉. They are subse-
quently loaded into a single-beam 1064-nm optical dipole
trap (ODT). Once in the ODT, the atoms are transferred
to the absolute electronic ground state |J = 8,mJ = −8〉
by radio-frequency-induced adiabatic rapid passage. We
then perform forced evaporative cooling in two differently
optimized crossed optical dipole traps (cODT) formed
by three 1064-nm beams. The first cODT is very tight
for efficient initial evaporation, and the second cODT is
larger to avoid inelastic three-body collisions. The final
trap consists of two beams crossed in the horizontal and
the vertical directions. The horizontal beam is elliptical
with a horizontal waist of 65(2) µm and a vertical waist
of 35(2) µm. The vertical beam has a circular waist of
75(2) µm. These beam profiles are chosen so that the
trap is oblate, with the tight axis along gravity −ẑ, to
avoid trap instabilities due to the DDI [22, 23]. Through-
out the evaporation, the atomic dipoles are aligned along
ẑ by a constant vertical magnetic field Bz = 1.581(5) G.
We verified for both isotopes that there are no Fano-
Feshbach resonances within a range of 100 mG centered
at this field [24]. This ensures that our measurement of
a corresponds to the background value.

The aforementioned cODT configurations are opti-
mized for BEC production. We utilize the same traps
in this work, but do not evaporatively cool the gas quite
to degeneracy. In this thermal but ultracold temperature
regime, the collisional dynamics of dipolar particles can
be modeled by the Boltzmann equation. We apply the
same evaporative cooling sequence for 162Dy and 164Dy,
and we obtain 2.7(1)×105 (2.6(1)×105) atoms for 162Dy

(164Dy), both at 550(10) nK and T/Tc ≈ 1.7.

To prepare for the cross-dimensional relaxation experi-
ment, we first raise the trap depth by adiabatically ramp-
ing up the power of both beams by a factor of 2 in 0.2 s
to 1.2(1) W for the horizontal beam and 1.9(1) W for the
vertical. A tighter, deeper trap prevents evaporation af-
ter the cloud is compressed, and the new trap frequencies
are [ωx, ωy, ωz] = 2π×[151(2), 70(5), 393(1)] Hz. We then
rotate the magnetic field in the ŷ-ẑ plane to the desired
angle β, where β is the angle between the field orienta-
tion and ẑ. We ensure that the magnitude of the field
remains unchanged after the rotation to within 10 mG of
the initial value through rf-spectroscopy measurements
of Zeeman level splittings. We repeat the experiment at
three different angles β = [0.0(2)◦, 44.7(5)◦, 90.0(2)◦], as
the dipole alignment angle should affect the thermaliza-
tion time scale. A valid theory that accounts for both
the anisotropic DDI and the s-wave interaction should
extract consistent scattering lengths from measurements
made at different β.

The last preparatory step involves uniformly increas-
ing the temperature of the cloud to prevent dipolar
mean-field interaction energy from affecting time-of-flight
(TOF) thermometry. While the contact interaction is
negligible above Tc, the DDI energy requires accurate
modeling. We find that even a thermal cloud of Dy in
equilibrium expands anisotropically near degeneracy, in-
dicating that the DDI affects TOF expansion. However,
we observe isotropic expansion after heating the cloud
to about 1.2 µK. We parametrically heat the cloud by
modulating the power of the horizontal ODT for 0.4 s
at 400 Hz, nearly resonant with ωz. After the heating,
we hold the cloud for 0.4 s to ensure thermal equilib-
rium, which we verify by observing isotropic expansion
at 20 ms TOF. This sets the initial state of the cross-
dimensional relaxation experiment with a peak atomic
density of n0 = 3.7(1) × 1013 cm−3 and T/Tc = 2.6 for
both 162Dy and 164Dy at β = 0◦. The 162Dy densities
at β = 45◦ and β = 90◦ are lowered by 5% and 16%, re-
spectively. For 164Dy, we observe no decrease in density
at β = 45◦ but a 27% decrease at β = 90◦. These losses
are likely due to Fano-Feshbach resonances encountered
during the magnetic field rotation [25].

To drive the cloud out of equilibrium, we increase the
power of the vertical ODT by a factor of 2 with a 1-ms lin-
ear ramp. The resulting trap frequencies are [ωx, ωy, ωz]
= 2π×[175(3), 103(5), 393(1)] Hz. The induced change
in the trapping potential can be considered diabatic since
the ramp time is much shorter than the trap oscillation
periods in the two directions, x̂ and ŷ, that are primarily
affected by the vertical beam. During the compression
process, the majority of the energy is added to the most
weakly confined direction ŷ, which is along the imaging
beam. The trap frequency along x̂ is also slightly in-
creased by the vertical beam. The extra energy then
redistributes among all three dimensions as the atoms
undergo elastic collisions in the trap, and we record the
rethermalization process by measuring Tx and Tz after
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holding the cloud for variable durations [26]. To extract
the s-wave scattering length, we compare the measured
rethermalization dynamics to the numerical simulations
described in the next section.

III. NUMERICAL SIMULATION

In non-dipolar (or sufficiently weak dipolar) Bose
gases, the scattering length is simply related to the
rethermalization time-constant by τ = α/n̄σv̄rel, where
n̄ is the averaged atom number density, σ = 8πa2 is the
elastic collision cross section, vrel =

√
16kBT/πm is the

averaged relative velocity, and α is the mean number of
collisions per particle required for rethermalization [19].
In a strongly dipolar gas, a more complicated relation-
ship exists between the rethermalization time constant
and the scattering length because α becomes a function
of polarization.

To simulate our experiments, we solve the Boltzmann

equation using the DSMC algorithm outlined in Ref. [20].
The goal of the computation is to simulate the nonequi-
librium dynamics of Dy gas with the single free parameter
a. We expect the results of the DSMC algorithm to be
quantitatively accurate at temperatures well above quan-
tum degeneracy, but below the Wigner threshold, which
for bosonic Dy corresponds to the d-wave centrifugal bar-
rier ∼250 µK [10, 27].

To briefly summarize, the simulation uses Nt test-
particles that undergo classical time dynamics within
the trapping potential, where the i-th test-particle has a
phase-space coordinate (ri,pi). Interactions are included
by binning test-particles into spatial volume elements be-
fore evaluating the collision probability for every pair of
test particles in accordance with Boltzmann’s collision
integral [28]. This computational procedure is capable of
including the complete details of the dynamic trapping
potentials relevant to the experiment. The crucial ingre-
dient in our simulations is the DDI differential scattering
cross section derived analytically in the first-order Born
approximation in Ref. [19]. For bosons this is given by

dσ

dΩ
(prel,p

′
rel) =

a2d
2

[
−2

a

ad
− 2(p̂rel.ε̂)2 + 2(p̂′rel.ε̂)2 − 4(p̂rel.ε̂)(p̂′rel.ε̂)(p̂rel.p̂

′
rel)

1− (p̂rel.p̂′rel)
2

+
4

3

]2
, (3)

where p̂rel and p̂′rel denote the relative momenta before
and after the collision [20]. The vector ε̂ denotes the di-
rection of the magnetic field, to which all dipoles are
aligned. The scattering cross section is a function of
two length scales: the s-wave scattering length a and
the dipole length scale ad.

We compute a time-dependent temperature from the
momentum-space widths of the phase space distribu-
tion. Away from equilibrium, this temperature can be
anisotropic:

kBTj =
σ2
pj

m
, (4)

where σpj =
√
〈p2j 〉 for direction j, and angle brack-

ets denote an average over test-particles 〈f (r, p)〉 =
1
Nt

∑
i f (ri, pi), i.e., σpj is the standard deviation of pj .

Alternatively, one could define temperatures from the
spatial distribution rather than the momentum space,
but since the experiment measures TOF expansion im-
ages, we focus on the momentum space images to enable
direct comparison between theory and experiment.

A. Direct comparison between simulation and
experiment

We observe qualitative agreement between a direct
comparison of experiment and simulation, some exam-

ples of which are shown in Fig. 1. The simulations use a
variety of different scattering lengths to provide a visual-
ization of the rethermalization dependence on scattering
length. All curves in the simulations of Fig. 1 employ the
same initial condition and ODT parameters. They differ
only in the value of the s-wave scattering length.

We believe the temperature oscillations evident in
Fig. 1 arise from collective modes excited by the dia-
batic trap compression. These oscillations are unusual
in cross-dimensional rethermalization experiments, and
they are due to the fact that the dysprosium gas, be-
ing highly magnetic, lies closer to the hydrodynamic
collisional regime than ultracold gases of less magnetic
atoms. That is, elastic collisions occur far more fre-
quently than in weakly dipolar gases due to the pres-
ence of both s-wave and dipolar contributions to the
elastic cross section, where the dipolar contribution is
σDDI = 2.234a2d and ad ≈ 195a0 [12]. Indeed, our sim-
ulations show that the oscillations arise from the DDI:
the oscillations vanish—and the rethermalization time
increases—as the dipolar length is artificially decreased
at fixed trap frequency. The criteria for the hydrody-
namic regime is l � R, where l = 1/nσtot is the mean-
free-path, σtot is the total elastic collision cross section,
and R ∼ (kT/mω2

y)1/2 is the characteristic size of the
gas along the weakest trap axis [1]. Before compres-
sion, l/R ≈ 1.5, indicating that the collision and trap-
ping frequencies are comparable for this highly magnetic
gas. Indeed, the oscillation frequency of Tx is similar to
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FIG. 1. (Color online) A qualitative comparison between the
experimentally measured rethermalization of 162Dy versus re-
sults from the DSMC simulation. In (a) and (b) we show the
rethermalization dynamics for β = 0◦, and (c) and (d) for
β = 90◦. In each plot the data points with error bars corre-
spond to experimental measurements. In addition, there are
multiple solid lines (each with a different color). These solid
lines correspond to simulation results, and the color corre-
sponds to the value of the scattering length used for simu-
lation. The phase offset between the data and simulation is
likely due to experimental uncertainty in the trap parameters.
We employ a two-step fitting method to extract estimates of
the scattering length in a manner immune to these phase off-
sets; see Sec. III B. Uncertainty in these data and in those of
Fig. 2 are given as 1σ standard errors. Statistical fluctuations
dominate systematic uncertainties in these data.

that of 2ωx, while the oscillation of Tz is similar to 2ωy,
the most weakly confined direction and also the direc-
tion most tightly compressed when the ODT power is
abruptly increased.

These temperature oscillations would be eliminated by
bringing the dipolar gas out of the hydrodynamic regime
by reducing the trapping frequencies. However, we can-
not reduce the trap frequencies since large trap depths
are required to avoid plain evaporation of the gas after
rethermalization [29]. An analytic understanding of the
collective excitations that give rise to the temperature os-
cillations in this dipolar thermal gas are challenging and
beyond the scope of the present work [30].

B. Two-step fitting procedure

We find the frequency of the temperature oscillations
to be reasonably well reproduced by the simulations.
However, the phase and amplitude seem to be highly sen-
sitive to values of the initial and final trap frequencies as
well as to the details of the ODT power ramp and are
not closely replicated in the simulations. The correspon-
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FIG. 2. (Color online) Fits to 162Dy data with β = 0◦. The
data points in (a) and (b) are the experimental measurements,
and the solid line shows the best fit using Eq. (5). In (c) and
(d) we show χ2 versus fit parameter. We vary either τ1z [in
(c)] or τ1x [in (d)] while allowing all other parameters to be
re-optimized. The blue bar along the bottom axes of (c) and
(d) show the 1σ uncertainties (where χ2 increases by 1 [31])
in τ1z and τ1x, respectively. Results for other β and for 164Dy
are qualitatively similar.

dence between simulation and data can be improved by
varying the simulated trap frequencies, total atom num-
ber, initial temperature, and ODT ramp powers within
experimental errors, but doing so for all data sets is com-
putationally intensive.

Instead, we use a two-step fitting procedure to effi-
ciently extract estimates of a from the data sets based
on the observation that simulating the full equilibra-
tion evolution from first principles—oscillations of the
temperature in addition to the exponential increase in
temperature—is unnecessary to achieve the goal of this
work. The most direct influence that a has on the gas is
through the scattering rate given by Γ ∼ n̄σv̄rel, which
directly contributes to the rate of equilibration in the gas.
By contrast, the temperature oscillations in the gas are
more closely related to details of the trapping frequencies
than to the precise value of the s-wave scattering length.
We may therefore extract the time constant associated
with the s-wave cross section using a simpler model that
is more robust to uncertainties in trap parameters and
then use the full Boltzmann equation simulation to re-
late this fit parameter to the value of a.

We compare simulation and experiment through the
function:

T̃x,z(t) = T̃f+(T̃i−T̃f )e−t/τ1x,1z+Ãe−t/τ2x,2z sin
[
2ω̃t− δ̃

]
,

(5)
where this function is fit to the experimental data (see
Fig. 2) and to the simulation results along the x and the
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FIG. 3. (Color online). Analyses of 164Dy data. The dots show the value of τ1x,1z extracted by fitting the functional form
Eq. (5) to the simulation results. The dark grey band denotes a 1σ uncertainty on the simulated τ1x,1z, and the larger grey
band includes experimental uncertainty. See text for details. The horizontal dashed lines show the upper/lower bounds at 1σ
uncertainty of τ1x,1z found by fitting the same functional form Eq. (5) to the experimental data. The blue bar along the bottom
axis of each figure shows the 1σ estimation of a/ad, i.e., where the grey area lies between the 1σ experimental bounds. Figures
(a) and (b) correspond to β = 0◦, (c) and (d) show β = 45◦, and (e) and (f) show β = 90◦.

z axes separately. The fits are restricted to times after
the end of the diabatic compression ramp. The following
are free parameters: T̃i and T̃f are closely related to the
initial and final temperatures, respectively; τ1x,1z is the

time constant for rethermalization; and Ã, τ2x,2z, ω̃, and

δ̃ are the parameters of a damped sinusoid at the first
harmonic of ω̃.

Our fitting function reproduces both experimental
and simulation results with a reduced-χ2 of order
unity. We search for values of the free-parameters
which generate a local minimum in the error function =∑
j

[
T̃x,z(tj)− Tx,z(tj)

]2
where Tx,z(tj) is derived from

either the experimental measurement or the simulation.
There exist multiple local minima, but we are careful to
choose the local minimum which lies nearest to the phys-
ically meaningful values of T̃i, ω̃, etc.

We expect, based on physical grounds, that the damp-
ing time-scales τ1x,1z and τ2x,2z to be the free-parameters
most affected by the scattering length (through the cross
section). We now focus our attention on these two pa-
rameters. For concreteness, we continue with a descrip-
tion of our data analysis for the case of rethermalization
along the x-axis; an equivalent procedure applies along
the z-axis. Once we have found the parameters that best
fit Eq. 5 to our experimental data, we calculate a χ2

value for that fit and denote it χ2
min. To obtain the 1σ

uncertainty on τ1x and τ2x, we vary them while allowing

all other parameters to be re-optimized until χ2 rises to
χ2
min + 1 [31].
We find that the experimental data tightly constrain

the values of τ1x and τ1z, the parameters that charac-
terize the overall rethermalization of the gas following
the sudden squeezing of the trap. However, Fig. 1 shows
that the experimental data are insufficient to make pre-
cise measurements of τ2x and τ2z, which characterize the
damping of the collective oscillations. Two distinct diffi-
culties apply to the x-axis and z-axis separately: Along
the x-axis, the 1-ms separation between the data points is
comparable to the period of these oscillations, and quan-
titative analysis of the oscillations cannot be made due to
uncertainty from under-sampling. In contrast, along the
z-axis the oscillation frequency is well captured by the
data, but the amplitude is small compared to statistical
errors. Thus, we rely on our measurements of τ1x,1z for
our estimates of a. Note that while τ2x,2z do not help
to constrain the value of a, they are consistent with the
measured values of τ1x,1z: We expect and observe τ2x,2z
to be longer than τ1x,1z by approximately a factor of two
as well as both time scales to be of order 1/Γ [20].

To assign a scattering length a to each measured τ1x,1z,
we fit the simulated rethermalization to Eq. 5 to extract
a τ1x,1z for each value of a. The set of these τ1x,1z’s are
shown as dots in the panels of Figs. 3 and 4. The Monte-
Carlo nature of the simulation leads to an uncertainty
in the predicted values for τ1x,1z. The resulting 1σ un-
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FIG. 4. (Color online). Analyses of 162Dy data. The dots show the value of τ1x,1z extracted by fitting the functional form
Eq. (5) to the simulation results. The dark grey band denotes a 1σ uncertainty on the simulated τ1x,1z, and the larger grey
band includes experimental uncertainty. See text for details. The horizontal dashed lines show the upper/lower bounds at 1σ
uncertainty of τ1x,1z found by fitting the same functional form Eq. (5) to the experimental data. The blue bar along the bottom
axis of each figure shows the 1σ estimation of a/ad, i.e., where the grey area lies between the 1σ experimental bounds. Figures
(a) and (d) correspond to β = 0◦, (c) and (d) show β = 45◦, and (e) and (f) show β = 90◦. Data for β = 90◦ fail to constrain
τ1x due to the fast thermalization time scale for Tx and hence do not yield an estimate of a/ad.

certainties are shown as the smaller, darker grey bands
in these plots. This band is found by first fitting the
simulation dots to a functional form

τ1x,1z = c1/[c2 + c3(a/ad) + (a/ad)
2], (6)

which is motivated by the quadratic dependence on a/ad
in the cross section; see Eq. 3. We then use a bootstrap
method to estimate the error on the best fit. This is done
by assigning to each data point a common relative error
such that the χ2 of the fit reaches the 1σ confidence in-
terval value of the χ2-distribution with the appropriate
number of degrees of freedom [31]. The best-fit curve is
then scaled by the estimated relative error to produce
the 1σ uncertainty represented by the dark grey band.
One additional source of error on τ1x,1z arises from the
uncertainties in trap frequencies and atom number. This
error can be determined analytically using the relation
τ ∝ 1/n̄, where the mean density n̄ contains the rele-
vant experimental parameters. The combined 1σ error
is shown as the larger, light grey band in Figs. 3 and 4.
Once the relation between τ1x,1z and a/ad has been es-
tablished in Figs. 3 and 4, one can simply project a given
measured τ1x,1z, with its associated 1σ uncertainty, onto
the x-axis to obtain the best-fit a/ad value and its 1σ
uncertainty, as indicated by the horizontal and vertical
dashed lines in the figures.

IV. RESULTS

As shown in Figs. 3 and 4, the measured τ1x,1z’s at
three different β angles produce six independent mea-
surements of the scattering length a for each isotope, ex-
cept for 162Dy at β = 90◦. In this case, the data fails to
yield a constraint on τ1x. We believe this is because we
fit to data after the 1-ms ODT ramp time, and 1 ms is
comparable to the thermalization time scale of Tx at this
β; see Figs. 1(d) and 4(e). The dependence of τ1x,1z’s on
β directly shows the anisotropic nature of the DDI: τ1x
decreases while τ1z increases as β is rotated from 0◦ to
90◦.

The measured a values are summarized in Fig. 5. The
measured values for each isotope are, in general, con-
sistent with each other. The dashed line represents the
weighted average of a/ad and the grey band represents
1σ uncertainty calculated using the procedure described
in Ref. [32]. The weighted average values of a/ad are
0.63(5) for 162Dy and 0.47(4) for 164Dy. In absolute
units, they correspond to s-wave scattering lengths of
a162 = 112(10)a0 for 162Dy and a164 = 92(8)a0 for 164Dy.
As a comparison, the mean scattering length [33, 34] is
73a0, as estimated using the value of C6 = 1890 (a.u.)
for Dy obtained via the calculations of Ref. [10].

These numbers are consistent with our previous ob-
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FIG. 5. (Color online). Summaries of the measured scatter-
ing lengths extracted from each individual experiment along
with the weighted average (dashed line) and its 1σ error (grey
band). Results for 162Dy and 164Dy are shown in (a) and (b),
respectively. The weighted averages and 1σ standard errors
are a/ad = 0.63(5) for 162Dy and a/ad = 0.47(4) for 164Dy.

servations regarding the different behaviors between the
two isotopes. First, the larger scattering length of 162Dy
could explain its higher evaporative cooling efficiency
compared to 164Dy. We were able to achieve BEC of
162Dy with an order-of-magnitude increase in the atom
number compared to 164Dy when using the same evap-
oration sequence [6]. Second, the smaller a/ad value of
164Dy suggests it is more susceptible to trap instabilities
due to the DDI. Previous theoretical and experimental
work show that a dipolar BEC is stable against collapse
in traps with dipoles aligned along the weakest trap axis
only if a/ad >∼ 2/3 [13, 22, 23]. The strongly dipolar gas
of 164Dy does not meet this condition, and indeed in an
earlier work we found 164Dy does not form stable BEC
in such a trap [8]. On the other hand, 162Dy’s scattering
length is close to the critical value, and we found 162Dy
BECs to be stable in such traps [6].

We are not able to employ the above cross-dimensional
relaxation procedure and analysis to measure the scatter-
ing length of the lower-abundance isotope 160Dy. This is
likely due to either the small trap population of the gas
or its small collisional cross section, or both. The slow
elastic collision rate leads to an unreasonably long rether-
malization timescale. Indeed, we observe that tempera-
tures along x̂ and ẑ do not reach equilibrium before trap

loss is observed, rendering Boltzmann simulations unre-
liable due to the violation of equipartition. Our previous
work [6] showed that while we could make a 160Dy BEC
by tuning to a Fano-Feshbach resonance, the condensate
population was only 103. No BEC could be made away
from a resonance, implying that 160Dy has a background
a insufficient for producing stable condensates, as would
typically be the case for a small and/or negative value
of a. Other techniques for measuring scattering lengths
might prove more effective for 160Dy [1].

V. CONCLUSIONS

We measured the rethermalization process of ultracold
dipolar 162Dy and 164Dy gases driven out of equilibrium.
The observed dynamics of the gases can be described
by DSMC simulations based on a Boltzmann equation
that incorporates the dipolar differential scattering cross
section. The agreement between experiment and theory
allows us to extract the deca-heptuplet s-wave scatter-
ing length for both isotopes in their maximally stretched
ground state. Knowledge of the scattering lengths of
162Dy and 164Dy now allows researchers to more ac-
curately calculate properties of these highly magnetic
systems. Such calculations are relevant to engineering
and interpreting Dy-based simulations of quantum many-
body physics.
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Note added after preparation: Using Fano-Feshbach
spectroscopy, T. Maier et al. [35] recently report a value
of a for 164Dy consistent with ours.
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