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We present the results of a theoretical study of dissociative electron attachment (DEA) of low-
energy electrons to CF2. We carried out electron scattering calculations using the complex Kohn
variational method at the static-exchange and relaxed Self-Consistent Field (SCF) level at the
equilibrium geometry and compare our differential cross sections to other results. We then repeated
these calculations as a function of the three internal degrees of freedom to obtain the resonance
energy surfaces and autoionization widths. We use this data as input to form the Hamiltonian
relevant to the nuclear dynamics. The multidimensional wave equation is solved using the Multi-
Configuration Time-Dependent Hartree (MCTDH) approach within the local approximation.

PACS numbers:

I. INTRODUCTION

In the processing of semiconductor devices, fluorocar-
bon plasmas are often used to etch silicon surfaces [1, 2].
The gases currently used in the plasma production of mi-
croelectronic devices have been shown to have a strong
greenhouse effect. CF3I and C2F4 have been proposed
as alternate feedstock gases [3]. Although the feed gas is
non-reactive, under electron bombardment it fragments
to produce reactive species such as CF, CF2 and CF3 rad-
icals and the corresponding ions. Electron collision cross
sections for these transient, reactive species are difficult
to measure experimentally. Therefore, ab initio theory
can be of value in estimating the cross sections that are
needed in large-scale simulations of these processing plas-
mas [4, 5]. It is important to identify not only the cross
sections but also the branching ratios into the various
fragment channels following dissociation. These quanti-
ties are critical in modeling the behavior of the feedstock
gases in a plasma environment [6].
One question that has arisen in these plasmas is the

source of F−. It had originally been predicted that dis-
sociative electron attachment to CF

CF + e− → (CF)−∗ → C + F−

would be efficient [7, 8]. Further calculations [9] showed
that although as found in the previous studies, the anion
curve crossed the neutral near the equilibrium geometry,
at the energies needed for dissociation [7, 8], the cross sec-
tion was extremely small and significant vibrational exci-
tation was needed to produce any significant F− product.
It was also proposed the dissociative electron attachment
to CF2

CF2 + e− → (CF2)
−∗ → CF + F−

might be efficient. R-matrix calculations were carried out
at several internuclear separations, but no dynamics for
the dissociation were calculated [8, 10]. These calcula-
tions indicate the existence of at least one anion reso-
nance 2B1 (2A

′′

) which crosses the neutral and predicted
the dissociative attachment cross section to be large.

Later calculations [11] computed differential cross sec-
tions that compared well to experiments. These calcula-
tions at the static exchange level found a single resonance
at low energy unbound at the equilibrium geometry of
the ground state. However, when a static-exchange plus
polarization calculation was performed, which correctly
balances the anion and target correlation, the anion was
found to be bound. This is in agreement with photode-
tachment spectroscopy experiments [12] that found the
CF−

2 anion to be bound. In addition, an experiment [13]
which measured the cross section for the dissociative elec-
tron attachment to CF2 found it to be no greater than
∼5·10−20cm2. More recently [14], an experimental study
of dissociative electron attachment to a number of fluo-
rocarbon radicals found that the process yielded F− with
low efficiency (less than 2%) except in the case of CF2

where no attachment was observed.
In this paper we present our calculations on the disso-

ciative electron attachment to CF2. We first describe the
electron scattering calculations performed to determine
the resonant states and construct the complex potential
energy surfaces. We compare our differential electron
scattering calculations with previous theoretical and ex-
perimental results. We discuss the computation of the
nuclear dynamics of CF−∗

2 . Finally, we present our re-
sults for the DEA cross section.

II. ELECTRON SCATTERING CALCULATIONS

We use the complex Kohn variational method [15] to
describe the electron scattering from the neutral. This
method has been described elsewhere so only a summary
will be presented. The (n + 1)-electron scattering wave-
function for fixed nuclei positions represented collectively
by the vector Q is written as:

Ψλ
el(r

n+1;Q) = Â

[
∑

λ′

φλ′

el (r
n;Q)Fλλ′

(~rn+1; k)

]

+
∑

µ

dλµΘµ(r
n+1;Q) (1)
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where rn+1 = (~r1, ~r2, ..., ~rn+1) is the (n+1)-electronic co-

ordinates vector and Â is the antisymmetrizing operator.
The first sum is denoted as the P -space portion of the
wave function and runs over the energetically open target
states. In this case, only one channel was open. The func-
tion φλ

el(r
n;Q) is the target n-electron ground state in

the irreducible representation λ with the nuclei clamped
at Q. The second term, denoted as the Q-space portion
of the wave function, contains the functions Θµ, which
are square-integrable n+ 1 configuration state functions
(CSFs) which are used to describe short-range correla-

tions and the effects of closed channels. Fλλ′

(~rn+1; k)
is the scattering electron’s wave function at position ~r
and momentum k, which is further expanded to match
asymptotic boundary conditions:

Fλλ′

(~r; k) =
∑

i

cλλ
′

i ui(~r) + (2)

∑

lm

[
fλ
l (kr)δll′δmm′δλλ′ + T λλ′

ll′mm′(k)h+λ
l (kr)

]
Ylm(r̂)/r

where the {ui} are square-integrable functions, {f
λ
l } and

{h+λ
l } are respectively the regular Ricatti-Bessel and the

outgoing Hankel functions and Ylm are the normalized
spherical harmonics. Angular momenta up to l = 6 and
|m| = 4 are included in the calculation.
By inserting the trial wave function into the complex

Kohn functional [15], the unknown coefficients in the trial

wave function, dλµ, cλλ
′

i and T λλ′

ll′mm′ can be optimized.

The terms T λλ′

ll′mm′ are the T -matrix elements that deter-
mine the eigenphase sums as a function of the electron’s
collision energy. The eigenphase sums were fit to the
Breit-Wigner form [16],

δ(
k2

2
) = arctan

(
Γ/2

ǫ− k2

2

)
+ δbkgd(

k2

2
); (3)

where ǫ,Γ are the corresponding parameters to be deter-
mined and δbkgd is the background phase shift taken to
be a slowly varying function of the electron energy.
We performed calculations at two levels. In all cal-

culations the carbon and flourine atoms were described
using a triple-zeta-plus-polarization (TZP) function basis
set [17] which is then augmented with one s with expo-
nent 0.01 and one p function with exponent 0.09. The
first calculation was carried out at the static exchange
level. At this level a SCF wavefunction is used for the
target wave function, φλ

el(r
n;Q). In the second level of

calculations, a static exchange plus polarization (SEP)
calculation was run with a relaxed SCF (RSCF) wave-
function, that is, including all symmetry preserving single
excitations from the occupied target orbitals into all un-
occupied orbitals, is used. This has been used in previous
studies [9] and found to yield a balanced description of
the neutral and anion. This leads to 9075 configurations
in 2A

′′

, the symmetry that includes the resonance.

We have chosen to work in the internal coordinate sys-
tem shown in Figure 1. The coordinates r1 and r2 rep-
resent the distance between the two fluorine atoms and
the carbon atom, and θ is the F–C–F angle.

r2

C

FF

r1

θ

Figure 1: Molecule in internal coordinates.

A. Differential cross section

The fixed-nuclei differential cross section is computed
and shown in Figure 2 in comparison to experiment and
other calculations. In order to compare to the previous
calculations, our results are shown without the Born cor-
rection. Since the experiment could not be performed
below 20◦ and the effect of the dipole moment will be-
come significant below 10◦ the differential cross sections
plotted should be reliable. As can been seen in the figure,
there is very good agreement between the two calcula-
tions and the experiment. The static exchange results of
the previous calculation [11] and our static exchange cal-
culations can not be distinguished on the figure so only
ours are shown. Adding polarization to the calculation
lowers the cross section in the forward direction. As the
energy increases the effect of polarization decreases. The
differences between the two calculations and the experi-
ment may be due to changes in the differential cross sec-
tion as a function of nuclear geometry. The calculations
shown are at fixed geometry. These results should be av-
eraged over the initial target vibrational wave function.
The effect is usually small, but in this case the resonance
becomes bound in the Franck-Condon region. In order
to see the magnitude of the change we repeated these
calculations for a range of angles and bond distances.
Figure 3 shows the effect of changes in these parameters.
As can be seen, the cross section in the forward direction
is quite sensitive to changes in the internuclear separa-
tion and the bend. These results show that the relaxed
SCF calculation gives a good description of the electron
scattering in the low energy region. Therefore, the cal-
culations of the resonant surfaces were done at this level.
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Figure 2: Differential cross section for electron scattering from
CF2 at (a) 3.0 eV and (b) 6.0 eV. The results at the static ex-
change level are shown with dashed lines (red on-line), while
the solid black lines show the results at the RSCF level. Re-
sults from previous calculations [11] and experiment [11] are
displayed with the dotted (blue on-line) lines and symbols
respectively.

B. Resonance surface

The computation of the eigenphase sums as a function
of incident electron energy reveals one low-lying shape
resonance. In Figure 4 the eigenphase sum show the res-
onance feature of CF2 in

2A′′ symmetry up to an electron
collision energy of 0.2 Hartrees (5.44 eV). Figure 4a dis-
plays the effect of changing the C-F bond, while keeping
the angle fixed at the equilibrium geometry, θ = 104.8◦

and the other C-F bond at 2.4 a0. As can been seen in
the figure, the resonance moves to lower energy and be-
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Figure 3: (a) Effect of changing the C–F bond distance on the
differential cross section θ = 104.8◦, one C–F bond fixed at
r1 = 2.4 a0 and the second at r2 = 2.3 a0 dashed line (red on-
line), r2 = 2.4 a0 solid black line and r2 = 2.6 a0 dotted line
(blue on-line). (b) Molecule bending effect on the differential
cross section for r2 = 2.4 a0 and angle θ fixed at 100◦ dashed
line (red on-line), 104.8◦ solid black line, and 110◦ dotted line
(blue on-line).

comes bound as the bond distance is increased. Figure 4b
shows the effect of bending at fixed bond distances. The
eigenphase sums shown in the figure were calculated at
the bond distances fixed at r1 = r2 = 2.0 a0, where the
resonance is not bound. As can be seen in the figure, the
resonance energy position is much less sensitive to the
bend angle. The potential energy used in our calcula-
tions is expressed in the (r1, r2, θ) coordinates spanning
the domain [1.6 a0, 8.0 a0] × [1.6 a0, 8.0 a0] × [80◦, 160◦].

For comparison, a one dimensional cut of the potential
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Figure 4: (a) Effect of changing the C–F bond distance on
the eigenphase sum θ fixed at 104.8◦ and one C–F bond fixed
at r1 = 2.4 a0 and r2 = 1.4 a0 black solid line, r2 = 1.6
a0 dotted line (red on-line), r2 = 1.8 a0 dashed line (green
on-line), r2 = 2.0 a0 dot-dashed (blue on-line) and r2 = 2.3
a0 dot-dot-dashed (magenta on-line). (b) Molecule bending
effect on the eigenphase sums for r1 = r2 = 2.0 a0 and angle θ
fixed at 90◦ dashed line (red on-line), 104.8◦ solid black line,
and 120◦ dotted line (blue on-line).

energy surfaces of the ground state of the neutral CF2

and the anion CF−

2 at the static-exchange level and the
RSCF level are shown in Figure 5 as a function of r2 with
r1 fixed at 2.4 a0 and the angle θ fixed at 104.8◦. The dis-
sociation energy for the ground state is found to be 0.25
Hartrees (6.8 eV) in fair agreement with the measured
value in [18]. The anion surface at the RSCF crosses the
neutral at a bond distance smaller than the equilibrium
bond distance of the neutral.

As a function of angle, both for the ground state of the

1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
C--F Bond Distance (a

0
)

-0.05

0

0.05

0.1

E
ne

rg
y 

(H
ar

tr
ee

s)

Figure 5: One dimensional cut of the potential energy surfaces
of the ground state of the neutral CF2 solid black line and the
ground state of the anion CF−

2
at the static-exchange level

dotted line (red on-line) and the relaxed SCF level dashed
line (green on-line) as a function of r2 with r1 fixed at 2.4 a0
and the angle θ fixed at 104.8◦.

neutral and the anion surfaces show little change. One-
dimensional cuts for several angles are shown in Figure 6a
for the neutral and Figure 6b for the anion at the RSCF
level as a function of r2 with r1 fixed at 2.4a0. There
is a much stronger variation with change in the bond
distance. One-dimensional cuts for several values of r1
are shown in Figure 7a for the neutral and Figure 7b for
the anion at the RSCF level with the angle θ fixed at
104.8◦.

Similar behavior is seen for the autoionization width,
shown in Figure 8. There is little variation with angle,
but a stronger change with internuclear separation.

III. NUCLEAR DYNAMICS

We solve for the nuclear dynamics of the metastable
negative ion state in the local complex potential model.
The approximation used in this model has been discussed
in detail elsewhere [19] and will only be outlined here.
The nuclear wave equation is given by:

[Etot − Ĥ(Q)]ξν(Q) = ην(Q), (4)

where the Hamiltonian operator is given by:

Ĥ(Q) = T̂Q + Vel(Q), (5)

The kinetic energy operator T̂Q for a total momentum
operator J = 0 is given in the (r1, r2, θ) coordinate sys-
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Figure 6: Potential energy surfaces of the ground state of the
neutral CF2 (a) and the anion CF−

2
(b) as a function of r2,

r1 fixed at 2.4 a0 for three values of θ: 90.0◦ black solid line,
104.8◦ dotted line (red on-line) and 120.0◦ dashed line (green
on-line).

tem by:

T̂Q = −
1

2µ1
∂2
r1 −

1

2µ2
∂2
r2 +

(
1

2µ1r21
+

1

2µ2r22

)
ĵ2 − (6)

1

2mC
∂r1∂r2 +

1

mC

(
1

r1
∂r2 +

1

r2
∂r1

)
∂θ sin(θ)

−
1

2mCr1r2

[
cos(θ)ĵ2 + ĵ2 cos(θ)

]
,

where µ1 = µ2 =
(

1
mF

+ 1
mC

)
−1

defines the reduced

masses associated with r1 and r2 with mC and mF being
the masses of the carbon and fluoride atoms respectively.
The operator ĵ2 in Eq. (6) represents the angular mo-
mentum operator squared. (Note that we use atomic
units ~ = me = 1 throughout). The complex potential
Vel(Q) relevant to the resonant CF−

2 anion is defined by

Vel(Q) = Eel(Q) + ǫres(Q)−
i

2
Γ(Q). (7)

The driving term ην(Q) in Eq. (4) is known as the “en-
try amplitude” and it expresses the capture probability
of the incoming electron by the molecular target in the
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Figure 7: Potential energy surfaces of the ground state of the
neutral CF2 (a) and the anion CF−

2
(b) as a function of r2, θ

fixed at 104.8◦ for four values of r1: 1.6 a0 black solid line, 1.8
a0 dotted line (red on-line), 2.4 a0 dashed line (green on-line)
and 2.8 a0 dashed-dot line (blue on-line).

discrete vibrational state χν(Q) into the resonant state
associated with the complex potential of Eq. (7). In our
model, it is expressed as

ην(Q) =

(
Γ(Q)

2π

)1/2

χν(Q). (8)

Finally, ξν(Q) is the nuclear wave function we seek
to determine. We use the time-dependent formulation
established by McCurdy and Turner [20]. The problem
thus reduces to solving the time-dependent Schrödinger
equation.





Ĥ(Q)Φnuc(Q, t) = i∂tΦnuc(Q, t);

Φnuc(Q, 0) = ην(Q)
(9)

We use the computational technique based onMCTDH
formalism discussed in detail in [21]. In the context of
this theory, the nuclear wave function for the negative
ion of CF2 is expressed in the internal coordinates as

Φnuc(r1, r2, θ, t) =

Nr,Nr,Nθ∑

i,j,k

Aijk(t)wi,j,k(r1, r2, θ, t),

(10)
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Figure 8: (Color online) Autoionization width: (a) as a func-
tion of r2, r1 fixed at 2.4 a0 for three values of θ 90.0◦, black
solid line, 104.8◦, dotted line (red on-line) and 120.0◦, dashed
line (green on-line). (b) as a function of r2, θ fixed at 104.8◦

for four values of r1, black solid line, 1.6 a0, dotted line (red
on-line) 1.8 a0, dashed line (green on-line) 2.4 a0 and dashed-
dot line (blue on-line) 2.8 a0.

where

wi,j,k(r1, r2, θ, t) = ρ1i (r1, t)ρ
2
j(r2, t)Θk(θ, t). (11)

Each single-particle function appearing in Eq. (11) is in
turn expanded in terms of a function basis set chosen to
correspond to that of a Discrete Variable Representation
(DVR) for computational efficiency. Here, Nr1 = Nr2 =
30 and Nθ = 8. The single-particle functions associated
with the variables r1 and r2 are expressed in terms of sine-
DVR (300 grid points each) and the angle θ is represented
by the Legendre-DVR (66 grid points).

IV. COMPUTATIONAL RESULTS

The wavepacket for the ground neutral state is com-
puted by relaxation, that is, propagation on the neu-
tral adiabatic potential energy surface in negative imag-
inary time. By applying Eq. (8), we determine the ini-
tial wavepacket needed to solve the system of equation
Eq. (9).

At the grid boundaries, an appropriate complex ab-
sorbing potential (CAP) is included to ensure that
wavepacket is not reflected back into the grid causing
undesired interferences. The form of the CAPs adopted
in this study is given by the form

−iW (R) = −iC|R−RCAP |
bS(R −RCAP ), (12)

where S is the Heaviside step function and the values of
the parameters C, b and RCAP used in this propagation
are 0.01, 3.0 and 5.0 a0, respectively. Propagation is
carried out for a duration of 1000 fs.

A. Cross section

The wavepacket flux at the grid boundaries is used
to compute the DEA cross section. The energy-resolved
outgoing flux associated with the initial target vibra-
tional state ν through the CAP is therefore given by

Fν(E) =
1

(2π)2|∆(E)|2

〈
ξν

∣∣∣F̂
∣∣∣ ξν
〉
Q
, (13)

where F̂ is the flux operator and ∆(E) is the energy
distribution of the initial [22] In order to achieve a
time-dependent dynamics formulation of the process, the
bracket term in Eq. (13) is computed in terms of the time
domain integrals as:

〈
ξν

∣∣∣F̂
∣∣∣ ξν
〉
Q

= (14)

∫
∞

0

dt

∫
∞

0

dt′
〈
ην

∣∣∣∣e
i( ̂̃H

†

−E)tF̂ e−i( ̂̃H−E)t′
∣∣∣∣ ην
〉

Q

,

where the operator ̂̃H is given by

̂̃H = Ĥ − iW (R), (15)

representing the CAP-perturbed Hamiltonian of the sys-
tem defined in Eq. (5).
The cross section relevant to the DEA channel for an

initial neutral target in the vibrational mode ν may be
expressed based on the flux function as

σ
ν→DEA

(
k2

2
) = gsga

4π3

k2
Fν(

k2

2
), (16)

where gs is the statistical ratio of the electronic multiplic-
ity of the resonant state to the electron multiplicity of the
neutral target (here equal to 2) and ga is the arrangement
multiplicity (here equal to 1). The reader is referred to
Ref [22–25] for detailed treatment of the CAP-based flux
formalism.
In Figure 9, the DEA cross section at the RSCF level is

shown for a one-dimensional (θ and one C–F bond fixed),
two-dimensional (θ fixed) and three-dimensional calcula-
tions. In the one-dimensional calculation, the electron
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Figure 9: DEA cross section for F− production from CF2

with resonance parameters determined at the RSCF level,
one-dimensional - dotted line (blue on-line) - r1 as variable,
θ and r2 fixed; dashed line (red on-line) two-dimensional sur-
face - r1 and r2 as variables, θ fixed; full three-dimensional
surface black solid line

can be captured at low collision energy, however, the an-
ion state is not open for dissociation until the energy is
larger than 2 eV. It is the high-energy tail of the cap-
ture probability that has enough energy for dissociation.
The cross section calculated within the 1D model, is very
small (10−21 cm2) with regular oscillations due to energy-
dependent overlap between the vibrational wavefunction
of the target molecular and the continuum function of the
anion [26, 27]. In two dimensions, the peak of the cross
section occurs around 3 eV and with a peak height of
roughly 1 · 10−19cm2. However, when the bend is added
the cross section drops. Bending does not lead to dissoci-
ation, so as the wave packet spreads in that dimension it
can only autoionize. We obtain a peak value of 6 · 10−20

cm2 at around 2 eV. This is consistent with the estimate
given by Graupner et al. [13] which put an upper limit
on the DEA cross section of less than 5 · 10−20 cm2 for
energies less than 10 eV and the observations of Shuman
et al. [14] that observed no attachment in this system
over a similar energy range.
In the experiments [13] the temperature was 300 K.

The vibrational frequencies are: symmetric stretch,152
meV, asymmetric stretch, 138meV, and bend, 82
meV [28]. Therefore the symmetric and asymmetric
stretches are in the ground vibrational states. The lower
frequency bend has a population of 4% in ν = 1 and
96% in ν = 0. In order to assess the effect of vibrational
excitation, a calculation was carried out with excitation
in the bend. The results are shown in Figure 10. The
cross section increases with increasing vibrational excita-
tion, but by ν = 3 it is only a factor of ten higher. This
will not lead to any significant changes the dissociative

electron attachment rate.
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Figure 10: DEA cross section for F− production from CF2

as a function of initial vibrational excitation in the bending
mode, ν = 0 solid line (black on-line), ν = 1 dashed line (red
on-line), ν = 2 dotted line (green on-line), ν = 3 dot-dashed
line (blue on-line).

V. CONCLUSION

We have carried out theoretical calculations on DEA
of CF2. These calculations show that the resonance that
appears at the static-exchange calculations at the equilib-
rium geometry becomes bound when polarization effects
are included. The DEA cross section is found to be quite
small, in agreement with the most recent experiments.
This means, as previously speculated [8, 10], that DEA
of CF2, as was found with our previous studies of DEA
of CF can not be a source of F− in processing plasmas.
Further work is needed to study, for example, DEA of
CF3, to see if this system could be a source, although re-
cent experiments [14] indicate this is inefficient. Another
possible source is the ion-pair channel in the dissociative
recombination of CF+, the process:

CF+ + e− → C+ + F−

Further work is needed to test this possibility.
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