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We present a novel linear-scaling approach based on semidefinite programs (SDPs) to compute
the density matrix for effective one-electron theories. Traditional methods constrain the density
matrix to represent a Slater determinant and hence rely on parameterization or purification. We
eliminate the need for such a constraint by performing an energy minimization over all the convex
combinations of density matrices representing Slater determinants. By not relying on purification,
the SDP approach not only eliminates accumulation error present in some methods but also reduces
the amount of truncation error. Sparsity in the Hamiltonian can be exploited to make the SDP
approach scale linearly with system size. Crossovers in computational time with a cubically scaling
algorithm are demonstrated for one-dimensional hydrogen chains ranging from H50 to H1500.

I. INTRODUCTION

Conventional formulations of electronic structure
methods based on effective one-electron theories like
Hartree-Fock, density functional and tight-binding the-
ories scale cubically with system size. This scaling is due
to the diagonalization of the effective one-electron Hamil-
tonian matrix which is an O(r3) operation. However,
there are methods which achieve linear scaling by com-
puting the one-electron reduced density matrix (hence-
forth referred to as the density matrix) directly [1–5].
All of these methods constrain the density matrix to rep-
resent a Slater determinant by either parameterization
or purification [1, 6]. We present a novel approach based
on semidefinite programs (SDPs) [7, 8] which eliminates
the need for such a constraint by performing an energy
minimization over all the convex combinations of density
matrices representing Slater determinants. This enables
us to compute an optimal ensemble density matrix for a
molecular system with a band gap with no accumulation
error and minimal truncation error.

II. THEORY

Density-matrix-based linear-scaling methods, applica-
ble to effective one-electron theories, aim to solve the fol-
lowing minimization problem over the set of Hermitian
matrices (Hr) for an effective one-electron Hamiltonian
H of a given N -electron system in a basis of size r:

minimize
D∈Hr

E(D) = Tr(HD), (1)

subject toTr(D) = N, (2)

D2 = D. (3)

The trace constraint in Eq. (2) ensures that the density
matrix corresponds to the correct number of electrons N .
The idempotency constraint in Eq. (3) ensures that the
density matrix D corresponds to a Slater determinant
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pre-image. It would be desirable to be able to obtain
the global minimum for this minimization, but one can
never be sure that an obtained minimum is global due to
the fact that this minimization is non-convex and hence
has multiple local minima. Since the objective function
and the other constraints are linear and hence convex,
the idempotency constraint is solely responsible for the
non-convexity. We can, however, relax the minimization
from the non-convex set of idempotent density matrices
to the convex set of ensemble N -representable density
matrices [9, 10] which is the set of density matrices rep-
resentable by at least one ensemble N -electron density
matrix and is also the convex hull of idempotent density
matrices. Therefore, we relax the non-convex non-linear
program in Eqs. (1-3) to the following convex semidefi-
nite program (SDP) whose solution yields the global min-
imum:

minimize
D,Q∈H

r

+

E(D) = Tr(HD), (4)

subject toTr(D) = N, (5)

D +Q = I, (6)

where Q = I − D is the one-hole density matrix. The
notation D,Q ∈ H

r
+ means that D and Q belong to the

set of positive semidefinite Hermitian matrices.
In order to obtain a linear-scaling algorithm to solve

Eqs. (4-6), we must exploit the sparse structure of the
density matrix which is typically more significant in a lo-
cal basis. Since local bases are typically non-orthogonal,
we will first have to generalize the SDP for a non-
orthogonal basis as follows:

minimize
D,Q∈H

r

+

E(D) = Tr(S−1HS−1D), (7)

subject toTr(S−1D) = N, (8)

D +Q = S, (9)

where D, Q, H and S represent the density, hole den-
sity, Hamiltonian and overlap matrices in a given non-
orthogonal local basis. However, since matrix inversion
scales cubically, it would be desirable to eliminate S−1

from the minimization. Such an elimination can be per-
formed by defining D̄ such that D = SD̄S [11] and re-



2

formulating Eqs. (7-9) as follows:

minimize
D̄,Q̄∈H

r

+

E(D̄) = Tr(HD̄), (10)

subject toTr(SD̄) = N, (11)

S(D̄ + Q̄) = I, (12)

where D̄, Q̄ ∈ H
r
+ is equivalent to D,Q ∈ H

r
+. There-

fore, solving the above SDP (D̄-SDP) allows us to obtain
the globally optimal solution for a non-orthogonal ba-
sis. Solution of D̄-SDP by a first-order algorithm scales
as O(r3) [12, 13]. In order to formulate a linear-scaling
algorithm we exploit the sparsity of D̄ and Q̄ in the lo-
cal basis. Specifically, in the present work we reduce D̄
and Q̄ to smaller blocks whose size is independent of sys-
tem size. For example, if D̄ and Q̄ are expected to be
block diagonal, then the positive semidefinite constraint
can be expressed by enforcing positive semidefiniteness
on each of the diagonal blocks. However, even for more
general sparsity patterns where non-zero blocks are scat-
tered throughout the D̄ and Q̄, positive semidefiniteness
of selected blocks can be shown to be necessary though
not sufficient for D̄ and Q̄ to be positive semidefinite.
Exploitation of the sparsity in the enforcement of the
semidefinite constraints allows us to obtain an approx-
imate energy by solving a SDP with only the non-zero
matrix blocks as the variables, which we shall call linear-
scaling SDP (LS-SDP). Solution of LS-SDP would scale
as O(r), provided the size of the largest non-zero matrix
blocks rb is substantially less than r (rb ≪ r) and the
number of such blocks scales as r.
Before presenting an example for a particular sparsity

pattern, let us compare the LS-SDP formulation to other
linear-scaling methods. Being a density-matrix mini-
mization, it is not affected by the accumulation error of
spectral projection methods like the trace-correction [14]
and trace-resetting [15] methods. Furthermore, experi-
ence shows that successive iterations of the spectral pro-
jection methods reduce the sparsity of the density matrix.
If the density matrix is pruned at every iteration to retain
sparsity, there is an increase in truncation and accumu-
lation errors which prevent the methods from converging
in a non-orthogonal basis.
Density-matrix minimization methods [16–18], most of

which are based on the Li-Nunes-Vanderbilt [19] method,
enforce idempotency by utilizing McWeeny’s purification

transformation, D̃ = 3D̄SD̄ − 2D̄SD̄SD̄ [20, 21], in the
energy expression as follows:

E(D̄) = Tr[H(3D̄SD̄ − 2D̄SD̄SD̄)]. (13)

Changing the energy expression in this fashion introduces
global minima which are spurious solutions and corre-
spond to −∞ energies. This forces one to start with an
initial guess whose eigenvalues lie in [-0.5, 1.5] in order to
obtain finite-energy solutions, which are local minima for
this modified energy expression. In the SDP formulation
spurious solutions are not introduced, and by convexity
any local minimum is the global minimum that solves

FIG. 1. Performing an energy minimization over blocks of
size rb ≪ r enables a O(r) computation of the density matrix.
The SDP constrains (r − rb + 1) blocks of dimension rb from
D̄ and an equivalent number of blocks from Q̄ to be positive
semidefinite.

the problem. Furthermore, the SDP solver [12] allows
us to start with a random matrix as the initial guess.
Finally, the energy expression in Eq. (13) has a higher
number of matrix multiplications than Eq. (10), which
not only increases the computational cost but also either
reduces the sparsity or increases the truncation error for
the same level of sparsity. By not employing any purifi-
cation, the LS-SDP formulation retains the linear energy
expression which is the optimal choice for reducing the
truncation error or retaining as much sparsity as possible.
Among density matrix minimization methods, only the
curvy-steps [22, 23] approach enforces idempotency using
a exponential parametrization, and hence does not for-
mally introduce any spurious non-idempotent solutions.
However, since idempotency is a non-convex constraint,
global optimization is not ensured.
As an example of LS-SDP, we present a formulation

which exploits a banded sparsity structure, i.e. X̄ i
j = 0

for |i − j| > rb which is common in large linear sys-
tems. Each non-zero block is of size rb along the diagonal
and is overlapping with other blocks as shown in Fig. 1.
The number of these blocks is r − rb + 1 per banded
matrix. That makes solving the resulting SDP scale as
2(r − rb + 1)r3b which is O(r) provided rb ≪ r.
Approximately enforcing positive semidefiniteness on

D̄ and Q̄ by enforcing the constraint only on the non-
zero blocks is a relaxation which should yield a lower
bound on the exact energy. However, this also has the
effect of constraining elements which are farther than rb
from the diagonal to be zero, which when applied alone
would yield an upper bound on the exact energy, for the
same reason that the Li-Nunes-Vanderbilt [19] and re-
lated methods yield an upper bound. This is because
any rb < r can be seen as imposing additional constraints
on the structure of D̄ and Q̄, which will force the mini-
mum to be higher than the minimum obtained without
those additional constraints. Therefore, the net effect is
that the energy obtained is guaranteed to be neither a
lower bound nor an upper bound (unless H has a band
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≤ rb, in which case the “upper bounding effect” is elim-
inated and overall a lower bound to the exact energy is
guaranteed). In practice, we find that the relaxation of
N -representability constraints in Eq. (12) outweighs the
constraint of zeroing elements that are farther than rb
from the diagonal, yielding a value for the energy which
is lower than the exact energy.

III. APPLICATIONS

To demonstrate that the LS-SDP formulation scales
linearly with system size, we perform calculations on lin-
ear hydrogen chains with a 1 Å spacing between the hy-
drogen atoms in a minimal basis of Slater-type orbitals
expanded in six Gaussian functions denoted STO-6G.
Like the traditional density matrix minimization meth-
ods LS-SDP requires a band gap for linear scaling. We
use a modified form of the tight-binding Hamiltonian pro-
posed by Absar and Coleman [24, 25] defined as follows:

Hi
j =

1Ki
j +

N

r

∑

kl

2V ik
jl S

−1k

l (14)

1Ki
j = 〈i|ĥ|j〉 (15)

2V ik
jl =

1

2
(〈ij|kl〉 − 〈ij|lk〉). (16)

The one-electron Hamiltonian operator ĥ contains the
kinetic energy operator and electron-nuclei potential,
〈ij|kl〉 represents the electron-electron repulsion inte-
grals, and the indices i, j, k, and l denote the orbitals
in the one-electron basis set of rank r. More gener-
ally, any effective one-electron Hamiltonian from tight-
binding, Hartree-Fock or density functional theories can
be employed.
Figure 2 shows the central processing unit (CPU) time

required to solve the D̄-SDP (10) and LS-SDP formula-
tions as a function of basis functions (also equal to the
number of hydrogen atoms in this case), fitted to a cu-
bic polynomial and a line respectively. As is evident,
the computational cost required to solve LS-SDP indeed
scales linearly as compared to solving the D̄-SDP which
scales cubically as expected. We observe a cross-over
at about r = 1300, where solving the LS-SDP becomes
computationally less expensive than solving the D̄-SDP.
While the use of r overlapping blocks for an r× r matrix
is an intuitive blocking structure, a more sophisticated
blocking structure could be used to decrease significantly
the basis-set size at which the cross-over occurs. For ex-
ample, in the present example, a more efficient scheme
could be achieved by using r/n blocks where the integer n
is determined by selecting an off-set between the overlap-
ping blocks. Other more complicated sparsity patterns
could also be incorporated within the framework of the
outlined approach. Additional examples will be given in
future work.
Figure 3 shows the absolute error in energy per basis

function plotted as a function of the number of basis func-
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FIG. 2. The CPU times required to solve LS-SDP and D̄-
SDP, fitted to a line and a cubic polynomial respectively, are
shown as functions of the number of basis functions r. The
quality of the fit indicates that the LS-SDP method is O(r).
Although solving D̄-SDP is O(r3), it is guaranteed to obtain
the global minimum.

tions. The error is calculated with respect to the exact
energy obtained by solving D̄-SDP. Even for H1500 the
absolute error per basis function stays below 0.00035 a.u.
Although the error increases rapidly initially, it quickly
saturates to a nearly constant value, proving that the
LS-SDP method is O(r).
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FIG. 3. The absolute error in energy (calculated relative to
the exact energy obtained by solving D̄-SDP) per basis func-
tion is plotted as a function of the number of basis functions
r. By r = 400 the error saturates to a nearly constant value
independent of r, thus showing that solving LS-SDP is indeed
O(r) without loss of accuracy.
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IV. CONCLUSIONS

We have presented a novel linear-scaling SDP approach
to electronic structure theories that does not constrain
the density matrix to represent a Slater determinant ei-
ther by purification or parameterization. The present
work is important in the context of linear-scaling Hartree-
Fock and Kohn-Sham density functional theories for two
keys reasons: (1) the robustness of convex optimization
and (2) the interplay between idempotency and trunca-
tion error.
First, the SDP approach to linear scaling relaxes the

usual non-convex optimization of the 1-RDM, in which
the 1-RDM is forced to be an extreme point of the con-
vex set of the 1-RDMs, to a convex optimization of the
1-RDM, in which the 1-RDM can become any density
matrix that obeys the Fermi statistics of N electrons. A
convex optimization like SDP has advantages over non-
convex optimization including (i) computable conditions
that guarantee global optimality and (ii) a direct path to-
wards the minimum unlike the non-convex methods such
as the curvy-step method which restrict their steps to the
idempotent manifold.
Second, the SDP-approach permits a relaxation of the

idempotency constraint in the presence of truncation er-
ror. Previously developed linear-scaling methods require
exact idempotency of the 1-RDM even when a sparsity
structure (or assumption) is being imposed that affects
the idempotency. The SDP approach relaxes the idem-

potency criterion. In the absence of truncation error,
the solution 1-RDM will be idempotent, but in the pres-
ence of truncation error, the solution 1-RDM need not
be precisely idempotent. Therefore, practical solutions
from the SDP method will differ from the conventional
solutions by not being strictly idempotent. Advantages
include: (1) the non-idempotent solution 1-RDM can po-
tentially be a more accurate representation of the exact
idempotent 1-RDM (For example, upon matrix comple-
tion, that is upon completing the sparse representation of
the 1-RDM with its “deleted information, the solution 1-
RDM may in fact correspond to an idempotent 1-RDM)
and (2) the deviation of the 1-RDM from idempotency
can be used to assess the magnitude of the truncation
error.
We have demonstrated linear scaling and a crossover

in computational time compared to a O(r3) algorithm.
The LS-SDP does not suffer from an accumulation error
like the spectral projection methods and preserves spar-
sity because it does not use purification. Since better
algorithms to exploit sparsity and further improvements
in sparse SDP solvers can reduce the prefactor, the SDP
approach has potential to provide a highly efficient al-
ternative to existing linear scaling electronic structure
methods.
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