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We analyze an entanglement-based quantum key distribution (QKD) architecture that uses a lin-
ear chain of quantum repeaters employing photon-pair sources, spectral-multiplexing, linear-optic
Bell-state measurements, multi-mode quantum memories and classical-only error correction. Assum-
ing perfect sources, we find an exact expression for the secret-key rate, and an analytical description
of how errors propagate through the repeater chain, as a function of various loss and noise para-
meters of the devices. We show via an explicit analytical calculation, which separately addresses
the effects of the principle non-idealities, that this scheme achieves a secret key rate that surpasses
the TGW bound—a recently-found fundamental limit to the rate-vs.-loss scaling achievable by any
QKD protocol over a direct optical link—thereby providing one of the first rigorous proofs of the
efficacy of a repeater protocol. We explicitly calculate the end-to-end shared noisy quantum state
generated by the repeater chain, which could be useful for analyzing the performance of other non-
QKD quantum protocols that require establishing long-distance entanglement. We evaluate that
shared state’s fidelity and the achievable entanglement distillation rate, as a function of the number
of repeater nodes, total range, and various loss and noise parameters of the system. We extend our
theoretical analysis to encompass sources with non-zero two-pair-emission probability, using an ef-
ficient exact numerical evaluation of the quantum state propagation and measurements. We expect
our results to spur formal rate-loss analysis of other repeater protocols, and also to provide useful
abstractions to seed analyses of quantum networks of complex topologies.

Shared entanglement underlies many quantum in-
formation protocols such as quantum key distribution
(QKD) [1], teleportation [2] and dense coding [3], and
is a fundamental information resource that can boost re-
liable classical and quantum communication rates over
noisy quantum channels [4, 5]. Optical photons are ar-
guably the only candidate for distributing entanglement
across long distances. They however are susceptible to
loss and noise in the channel, which is the bane of prac-
tical realizations of long-distance quantum communica-
tion. The maximum entanglement-generation rate over
a lossy optical channel with no classical-communication
assistance is zero when the total loss exceeds 3 dB [6].
With two-way classical-communication assistance, the
rates achievable for entanglement generation, as well as
those for reliable quantum communication and secret-
key generation (i.e., QKD) over a lossy optical chan-
nel must decay linearly with the channel’s transmittance
(i.e., exponentially with optical fiber length), regardless
of the specific protocol used, for loss exceeding ∼ 5
dB [7], while the rate plunges to zero at a maximum
loss threshold that is determined by the excess noise in
the channel and detectors. In order to generate entan-
glement over long distances at high rates, intermediate
nodes equipped with quantum processing power must be
interspersed along the lossy channel. Quantum repeat-
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ers are one example of such nodes that can help cir-
cumvent the aforesaid linear rate-transmittance fall-off of
the unassisted lossy channel—henceforth referred to as
the Takeoka-Guha-Wilde (TGW) bound [7]. However,
not all quantum devices, for example quantum-limited
phase-sensitive amplifiers, can serve as effective interme-
diate nodes for improved quantum communication per-
formance over the unassisted pure-loss channel [8].

Several quantum repeater protocols have been pro-
posed, most of which use entanglement swapping by Bell-
state measurements, and quantum memories, of some
form (see [9] for a recent review). The basic quantum
repeater protocol probabilistically connects a string of
imperfect entangled qubit pairs by using a nested en-
tanglement swapping and purification protocol, thereby
creating a single distant pair of high fidelity [10]. If used
for QKD, those final distant entangled pairs are meas-
ured by Alice and Bob in randomly-chosen mutually-
unbiased bases, followed by sifting, error-correction and
privacy amplification over a two-way authenticated clas-
sical channel, to generate a shared secret.

The original repeater protocol [10] relied on purify-
ing multiple long-distance imperfect shared entangled
pairs (into fewer pairs of high fidelity)—a procedure
known as entanglement distillation. As an alternative
to entanglement distillation, several forward-quantum-
error-corrected protocols have been proposed and ana-
lyzed [11, 12], which can afford a better rate performance
at the expense of more frequent memory-based repeaters
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capable of universal quantum logic. Some of the more
recently proposed forward-coded protocols do not even
need any matter quantum memories, but come at the
expense of requiring fast quantum logic and feedforward
at all-optical center stations, as well as a potentially huge
overhead in terms of the number of photons used for error
correction [13, 14].

There is therefore a lot of interest in simpler ap-
proaches to quantum repeaters that do not use entan-
glement purification or quantum error correction. The
seminal work in this area was the DLCZ protocol [15],
which uses single-photon interference to create entangle-
ment between distant atomic ensemble quantum memor-
ies. This entanglement is swapped via linear optics and
single-photon detections and finally converted into two-
photon entanglement at the two endpoints using the same
basic ingredients. The DLCZ protocol triggered a lot
of experimental and theoretical activity [9]. It has two
key shortcomings from a practical point of view. First,
the achievable entanglement distribution rate is very low.
Second, its reliance on single-photon interference means
that interferometric stability over long distances is re-
quired. A lot of subsequent work has focused on ad-
dressing these two points. One promising approach that
addresses the first point is multiplexing. Refs. [16] and
[17] proposed the use of spatial and temporal multiplex-
ing respectively. The second point can be addressed by
using two-photon interference instead of single-photon in-
terference. Proposals based on two-photon interference
include Refs. [18–21]. The reader is also encouraged to
see Ref. [9] for a detailed review of Refs. [16–18, 20, 21]
and related work.

A more recent proposal by Ref. [22] promises
high entanglement distribution rates by combining two-
photon interference and spectral multiplexing. It uses
photon-pair sources, multi-mode quantum memories [24,
25], linear-optic Bell-state measurements [26, 27], and
classical-only error correction. This protocol does not
rely on purification, and does not require hierarchical
connection of the elementary links (i.e., multiple connec-
tions can proceed simultaneously), and thus the memory
coherence time requirements and the system’s clock
speed are not driven by long-distance classical commu-
nication delays. The protocol allows the fidelity (of the
end-to-end shared entangled state) to deteriorate as the
chain lengthens, and finally uses classical error correction
on a long sifted sequence of correlated pairs of classical
data generated by measurements by Alice and Bob, to
extract quantum-secure shared secret keys.

Despite the practical appeal of the architecture pro-
posed in [22], a rigorous calculation of its achiev-
able rate-vs.-loss performance—both entanglement-
distillation and secret-key generation rates—in the pres-
ence of various loss and noise detriments, and showing
that it can fundamentally outperform the TGW bound
has yet to be done, and is the primary purpose of this pa-
per. To our knowledge, we provide one of the first explicit
calculations of the rate-vs.-loss function of any quantum

repeater protocol, and hence a rigorous achievability
proof that this repeater protocol can beat the TGW
bound, even with lossy and noisy components. Our com-
pact scaling results could help abstract off the rate-loss
function of a linear repeater chain to seed future network
theoretic analyses of quantum networks of more complex
topologies. We hope that our work will incite similar de-
tailed rate-loss analysis of other repeater protocols, which
will enable quantitative resource-performance tradeoff-
studies and comparisons of the various protocols.

A big challenge that faces practical designs of long-
distance quantum repeater architectures is the quantit-
ative understanding of how the shared entangled state
evolves across concatenated swap operations across mul-
tiple repeater nodes, which would enable calculating the
rates of various quantum communication protocols that
may consume the generated shared entanglement. Some
recent studies were done to analyze linear chains of
quantum relays [28] and memory-based repeaters [22, 29],
which have either used extensive numerical simulations,
or proposed semi-analytic or approximate theoretical
models. Another paper did an elaborate analysis of vari-
ous prominent quantum repeater protocols from the per-
spective of evaluating the minimal required parameters to
obtain a nonzero secret key at a given range [30]. Finally,
a recent study of a relay architecture constructed using
spontaneous parametric downconversion (SPDC) sources
and concatenated entanglement swapping [31] suggests
the need of quantum memories to beat the TGW bound.

In this paper, we present a complete analytical char-
acterization of the evolution of the end-to-end shared-
entangled state in a concatenated quantum repeater
chain and evaluate its performance for QKD. We ana-
lyze the scheme proposed in [22]. We analyze QKD us-
ing the aforesaid repeater chain as an example applica-
tion, and obtain an exact expression for the secret key
rate as a function of loss, number of swap stages, and
various loss-and-noise parameters of the channel and de-
tectors. We account for fiber loss, detector dark counts,
detector inefficiency, multi-pair emission rates of the en-
tanglement sources, and loss in loading (readout) into
(from) the quantum memories. We find a compact scal-
ing law for how the quantum bit error rate (QBER)—
the probability that Alice and Bob obtain a mismatched
sifted key bit despite measuring their halves of the en-
tangled state in the same bases—scales up with increas-
ing number of swap levels. This analytical scaling has
practical importance, since an experimentally measured
QBER on a single elementary link can be used to pre-
dict the QBER (and hence the key rates) practically ob-
tainable over a long-distance channel that is construc-
ted with multiple elementary links made with identical
imperfect devices. Our calculation involves a detailed
analysis of the Bell-swap operations by modeling imper-
fect single-photon detectors with appropriate positive-
operator-valued-measure (POVM) elements, and solving
a variant of the logistic map, a non-linear difference equa-
tion whose solutions are known to be chaotic in gen-
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eral [32]. Our calculations show that the aforesaid re-
peater chain, even if built using lossy and noisy devices,
attains an overall rate-loss scaling for QKD that outper-
forms the TGW bound—the best performance achievable
by any QKD protocol that does not employ quantum
repeaters. To be precise, if η ∈ (0, 1] is the end-to-
end transmittance of the Alice-to-Bob channel, we show
that by dividing up the channel into an optimum num-
ber of repeater nodes, the secret key rate achieved by
the repeater chain, R = Aηξ. The pre-factor A and the
power-law exponent ξ, 0 < ξ < 1 are constants that are
functions of various loss and noise parameters of the sys-
tem. This beats the TGW bound’s rate-loss scaling, i.e.,
R ≤ log[(1+η)/(1−η)] ≈ 2.89η bits/mode, for η � 1 [7].
Furthermore, since we calculate the exact quantum state
after every swap stage, our results can be used to calcu-
late any other quantity of interest, such as fidelity (see
Appendix D 1), for other applications of long-distance
shared entanglement.

We also do an exact evaluation of the repeater chain
numerically—using an efficient routine that employs
sparsified matrix representations of bosonic operations—
which enables us to go beyond sources with zero two-pair
emissions, i.e., p(2) > 0. Even for sources with p(2) > 0,
our analytical prediction of QBER propagation through
the repeater chain is shown to hold, albeit with a p(2)-
dependent modification to a pre-factor. Using the above
phenomenological model of QBER propagation, we show
that positive two-pair probability p(2) is shown to de-
teriorate the rate-distance function, but in the following
way—at any given value of p(2), there is a maximum
number Nmax(p(2)) ≈ 1+c/p(2) of elementary links such
that for N < Nmax links, the rate-loss envelope achieved
by the repeater chain remains almost identical to what is
achieved by a p(2) = 0 source (c is a constant), and thus
continues to beat the TGW bound’s scaling limit. How-
ever, for a chain with N links with N ≥ Nmax(p(2)), the
key rate becomes worse at all range L compared to when
fewer than N elementary links are employed. Conversely
for a given N , as long as p(2) is less than the inverse of
the function Nmax(p(2)), the rate-loss envelope remains
practically unaffected.

The paper is organized as follows. We begin with a de-
scription of the repeater architecture, and set notations,
in Section I. In Section II, we state our main results, fol-
lowed by a high-level description of the key steps of our
theoretical analysis. All the detailed proofs are deferred
to the Appendices. We then summarize our main numer-
ical results in Section III, and an empirical analysis of the
effect of source imperfections on the scaling of the secret
key rate. Finally, we conclude the paper in Section IV,
with thoughts on open questions and future work.

I. THE REPEATER ARCHITECTURE

The architecture [22] is depicted schematically in
Figs. 1, 2, and 3. The total Alice to Bob range, L km of

Figure 1. (Color online) Schematic of quantum repeater ar-
chitecture [22].

lossy fiber, is divided into N = 2n elementary links.

The elementary links.—Entangled photon-pair sources
(E) at the two ends of each elementary link produce an
M -fold tensor product maximally-entangled Bell state,
i.e., |M±〉⊗M , |M±〉 , [|10, 01〉 ± |01, 10〉] /

√
2, where

M is the number of orthogonal frequency modes. The
sources then send halves of this entangled state towards
the link’s center. The other halves are loaded to multi-
mode atomic quantum memories (QM) at each end of
the elementary link [24, 25] (see Fig. 1). Each qubit
of the Bell pair is encoded in two time-resolved bins
({|10〉, |01〉}). Each qubit (over all M orthogonal fre-
quency modes) occupies Tq seconds, and undergoes lossy

transmission with transmittance λ = 10−(αL/2N)/10,
where α (in dB/km) is the fiber’s loss coefficient. At the
center of the link, linear-optic Bell-state measurements
(BSMs) [26] act on the M qubit pairs. The BSM com-
prises a 50-50 beam-splitter followed by a pair of single-
photon detectors (which acts in sequence on each of the
two time bins of the qubit) that can spectrally-resolve M
frequency modes. We assume however that the detectors
have no photon number resolution. The detection effi-
ciency and dark-click probability (per frequency mode
and time bin) for each detector is taken to be ηe and Pe,
respectively. A linear-optic BSM is successful with at
most 50% probability [27]. The sources E are assumed
to be deterministic [33, 34], i.e., they generate a copy of
|M±〉⊗M , every Tq seconds, over the M orthogonal fre-
quency modes. This suffices since any zero-photon emis-
sion probability can be subsumed into the detection effi-
ciency ηe, as we will see later. Non-zero two-pair emission
probability p(2) will be addressed in Section III. Upon
successful projection by the BSM on one of the Bell states
in at least one of the M frequencies, which happens with
probability Ps(1) = 1− (1−Ps0)M , the BSM communic-
ates the which-frequency-was-successful information to
both ends. Ps0 is the success probability for a single fre-
quency. We denote the (two-qubit four-mode) quantum
state of a successfully-created elementary link, ρ1.

Connecting elementary links.—The two memories at a
repeater node, upon receipt of a pair of which-frequency
information from the adjoining elementary links, trans-
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late their qubits to one pre-determined common fre-
quency. A BSM at a single frequency is then performed
on this pair [22]. The BSMs at the elementary-link cen-
ters all proceed simultaneously, and so do the repeater-
node BSMs. This is unlike the DLCZ protocol, where
BSMs are performed hierarchically, necessitating longer-
lifetime memories. We assume a universal synchronized
clock is available. The clock-rate of the system (T−1q )
is limited by the time it takes to perform the BSMs at
the elementary link centers (τBSM), those at the repeat-
ers (τ ′BSM), and the time for loading (readout) of the
qubits to (from) the memories, τmem. There is a latency
between entangled pair emissions and secret key gener-
ation, but the clock rate is not tied to this latency (see
Fig. 3 for the timing diagram). We denote the efficien-
cies and dark-click probability for each detector used for
the repeater-node BSMs, ηr and Pr, respectively. Let
λm denote the sub-unity efficiency in loading (and re-
trieving) the photonic qubit into (and from) the memor-
ies, and that of frequency shifting and filtering. If this
BSM is successful, two elementary links are connected to
form a two-qubit entangled state ρ2. Two copies of ρ2
are connected (probabilistically) to produce ρ3, etc. (al-
though, as noted above, the connections do not have to
proceed in this hierarchical manner). Given two identical
successfully-heralded copies of ρi−1, the probability that
a repeater-node BSM successfully heralds a ρi, is Ps(i),
and as we will see later, Ps(i) = Ps, ∀i ∈ {2, . . . , n+ 1}.

Error probabilities and key rate.—Say, Alice and Bob
make measurements on the two-qubit shared state ρi,
either in the computational basis (single-photon detec-
tion on each of the two modes of their respective qubits),
or the 45-degrees rotated basis (realized by a 50-50
beamsplitter action on the two modes of their respect-
ive qubits, followed by single-photon detection on each
mode). The detection efficiency and dark-click probabil-
ity of their detectors are denoted ηd and Pd. Alice and
Bob then share their detection outcomes over an authen-
ticated public channel. This detection of one copy of ρi
produces one of 16 possible outcomes. As an example,
the detection outcome “1, 0; 1, 1” means Alice gets a click
and a no-click outcome on her qubit, and Bob gets clicks
on detection of both modes of his qubit (it is instructive
to note here that the “1, 1” outcome is possible only if
Pd > 0). The sift probability P1 is the probability that
neither Alice nor Bob get zero clicks on both their de-
tectors (i.e., 9 of the 16 possible outcomes), given they
both measure their qubits in the same basis [47]. Upon
a successful sift, Alice interprets her sifted bit as: “0, 1”
→ 0, “1, 0” → 1, and “1, 1” → 0 or 1 with equal prob-
ability, whereas Bob interprets his sifted bit as: “0, 1”
→ 1, “1, 0” → 0, and “1, 1” → 0 or 1 with equal prob-
ability. One may wonder why Alice and Bob do not
simply discard all the two-click events as errors (in which
case the sift would happen conditioned only on 4 of the
16 possible measurement outcomes). Doing so exposes
them to a security vulnerability that was identified by
Lütkenhaus in [35]. Conditioned on a successful sift,

Figure 2. Concatenated linking of N = 2n elementary links.
Each black dot is one qubit, comprising two temporal modes
at one standard center frequency.

we denote Qi, the QBER, to be the probability that
the sifted bits Alice and Bob infer are different. The
error correcting code used to extract keys must code
around this error rate. If all detectors are noiseless (i.e.,
Pe = Pr = Pd = 0), Qi = 0, 1 ≤ i ≤ n + 1. The over-
all success probability in creating the shared state ρn+1,

Psucc = Ps(n + 1) (Ps(n))
2
. . . (Ps(2))

2n−1

(Ps(1))
2n

=
PN−1s Ps(1)N , N = 2n. Let us assume Alice and
Bob make the aforesaid measurement and sifting on K
identical copies of the qubit-pair ρn+1, i.e., a shared state
created by connecting N = 2n elementary links. In the
limit of large K, and assuming an optimal error correct-
ing code, Alice and Bob can extract P1PsuccR2(Qn+1)/2
unconditionally-secure secret key bits per qubit pair.
Therefore, the secret-key rate is given by,

R = P1PsuccR2(Qn+1)/2Tq secret-key bits/s, (1)

where the factor of 2 in the denominator accounts for the
probability that Alice and Bob use the same basis choice,
R2(Q) = 1+2(1−Q) log2(1−Q)+2Q log2(Q) is the secret-
key rate of BB84 in bits per sifted symbol [36], with Q
the error probability in the sifted bit. Fig. 3 shows a
pictorial description of the entire process described in this
section. Refs. [37, 38] generalized (1) for the case when
Alice and Bob use a d-dimensional encoding (d > 2), and
g mutually-unbiased measurement bases, 2 ≤ g ≤ d+ 1.

II. THEORETICAL ANALYSIS OF THE
QUANTUM REPEATER CHAIN

In Section II A, we will summarize our results on the
full analytical characterization of the end-to-end shared
entangled state ρi, 1 ≤ i ≤ n + 1, generated by the re-
peater chain (which could be useful in analyzing other
non-QKD applications as well). We summarize explicit
formulas for Psucc, P1, and Qn+1, using which we calcu-
late the secret key rate using Eq. (1). In Section II B, we
show that the key rate RN (L) vs. the Alice-to-Bob range
L when N equal-length elementary links are employed, is
described approximately by a three-segment plot. Using
this characterization of RN (L), we derive the rate-vs.-
distance envelope R(L) attained by the repeater chain
when an optimal number of elementary links is employed
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Figure 3. (Color online) Timing diagram for the operation of the repeater architecture. At times t = kTq, k = 0, 1, . . .,
the sources synchronously generate and send M -mode EPR halves towards centers of elementary links (which ideally take
time L/2Nc to arrive at the links’ centers assuming c to be the speed of light in fiber), while they load the other entangled
halves into local quantum memories. The elementary link BSMs takes time τBSM, and the (classical) which-frequency-succeeded
information takes time L/2Nc to arrive back at the repeater nodes. At this point, each repeater node (synchronously) attempts
a local BSM at a common frequency across the two qubits held in the two memories linked to the elementary links on its two
sides, which takes time τ ′BSM. The one-bit classical results of these BSMs take up to τend = L/c seconds to reach Alice and Bob.
Synchronously with the repeater-node BSMs, Alice and Bob measure the qubits in their respective quantum memories, which
takes time τd ≤ τ ′BSM, we assume. Once the one-bit (success or failure) outcomes from all the repeater nodes arrive at Alice
and Bob, they begin their classical processing. This involves first discarding the instances when they did not use matching
measurement bases, those when they did use the same bases but did not get a successful sift event, and those when not all
repeater nodes succeeded. Thereafter they use error correction to sieve out shared secret bits.

for any given total range, and show that the rate achieved
by the repeater protocol is given by R(L) = Aηξ, where
η = e−αL, and ξ < 1, hence proving that it beats
the TGW bound’s scaling limit—the best rate-loss scal-
ing achievable without assistance of quantum repeaters
(which translates to, ξ = 1). Throughout Section II, we
provide proof sketches, deferring all detailed calculations
to the Appendices.

A. Shared state propagation and secret-key rate

Theorem 1 Assuming Alice and Bob make a measure-
ment on ρi in the same basis,

1. Sift probability. The probability Alice and Bob use
the same measurement bases is 1/2. Conditioned

on them using the same bases, the probability of
a successful sift (i.e., them deeming their meas-
urement outcomes usable for further processing)
is given by, P1 = (q1 + q2 + q3)2, where q1 =
(1 − Pd)Ad, q2 = (1 − Ad)Pd, q3 = PdAd, Ad ≡
ηd + (1 − ηd)Pd, are defined in terms of loss and
noise parameters of Alice’s and Bob’s detectors.

2. QBER. Conditioned on a successful sift, the error
probability Qi, i.e., the probability that Alice and
Bob obtain mismatched bits, is given by,

Qi =
1

2

[
1− td

tr
(trte)

2i−1
]
, 1 ≤ i ≤ n+ 1, (2)

where te = (1 − 2w1)/(1 + 2w1), tr = (1 −
2wr)/(1+2wr), and td = ((q1−q2)/(q1 +q2 +q3))2

are functions of loss-noise parameters of detect-
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ors in the elementary links, memory (repeater)
nodes, and Alice-Bob, respectively. The paramet-
ers tx become one when the respective detectors
(x = e, d, r) have zero dark-click probability, i.e.,
Px = 0 (but may have sub-unity detection effi-
ciency, i.e., ηx < 1). 2w1 = 2ce/(ae + be), is
the relative probability of classical correlations to
that of pure Bell states in the elementary link state,
ρ1. 2wr = 2c/(a + b) is the fractional probability
spillovers to the classically-correlated states at each
repeater connection. See Proposition 2 for defini-
tions of ae, be, ce, a, b and c in terms of various loss
and noise parameters.

3. Successful connection probabilities. The success
probability Ps(i), to prepare ρi from two copies of
ρi−1, is given by: Ps(1) = s1 = ae + be + 2ce, and
Ps(i) = s = a + b + 2c, for 2 ≤ i ≤ n + 1. The
overall success probability, Psucc = PN−1s Ps(1)N ;

Psucc =
1

4s

[
4s
(
1− (1− 4s1)M

)]2n
. (3)

Proof. (sketch)—The proof of Theorem 1 involves
a detailed analysis of how the quantum states ρi
evolve through successive connections of elementary links
(sketched in Fig. 2) and finding the exact solution of a
variation of the so called logistic map, whose solutions
are chaotic in general. With the Qi as defined above, it
is easy to see that the following recursive relation holds:

(1− 2Qi+1) =
tr
td

(1− 2Qi)
2, 1 ≤ i ≤ n. (4)

The pre-factor tr/td in the above error-propagation law
equals one if the detectors at the memory nodes have zero
dark clicks (Pr = 0⇒ tr = 1) and if the detectors used to
measure the end points of ρi have zero dark clicks (Pd =
0 ⇒ td = 1). The constant tr is only a function of the
fractional probability transferred to classical correlations
(2c) to that which goes to one of two Bell states (a +
b), when two pure Bell states are connected by a linear-
optic BSM with lossy-noisy detectors (see Proposition 2).
We note that the constant tr/td does not depend upon
the parameters that specify the quality of the elementary
link, but Q1, the QBER of the elementary link, does
depend upon the elementary-link parameters.

We now describe the steps leading up to the proof
of the expressions in Theorem 1. We will defer several
details to Appendices A, B, C, D, and E. We assume
without loss of generality that the sources always pro-
duce the state |M+〉⊗M . In reality, the sources may pro-
duce |M+〉 or |M−〉 in each mode probabilistically, but if
the signs are known a posteriori (as in an SPDC source),
they can be accounted for in post processing at the error-
correction stage. In fact, as long as the sources produce
any one of the four Bell-basis states in each Tq second, if
it is known which one was produced, it can be accoun-
ted for in classical post-processing. Let us first consider
calculating ρi, the two-qubit state after successfully con-
necting 2i−1 elementary links.

Proposition 2 The quantum state ρi obtained after i
connection levels, 1 ≤ i ≤ n+ 1, is given by,

ρi =
1

si

[
ai|M+〉〈M+|+ bi|M−〉〈M−|+ ci|ψ0〉〈ψ0|

+di|ψ1〉〈ψ1|+ di|ψ2〉〈ψ2|+ ci|ψ3〉〈ψ3|] , (5)

where |ψ0〉 = |01, 01〉, |ψ1〉 = |01, 10〉, |ψ2〉 = |10, 01〉,
|ψ3〉 = |10, 10〉, |M±〉 = [|ψ2〉 ± |ψ1〉] /

√
2, si = ai + bi +

2(ci+di) is a normalization constant, and the coefficients
of the state ρi+1 are recursively given as:

ai+1 =
1

s2i

[
aa2i + (a+ b)aibi + bb2i

]
, (6)

bi+1 =
1

s2i

[
ba2i + (a+ b)aibi + ab2i

]
, (7)

ci+1 =
1

s2i

[
c(ai + bi)

2 + 2(a+ b)ci(ai + bi + 2di)

+4c(di(ai + bi) + c2i + d2i )
]
, (8)

di+1 =
1

s2i
[4cci(ai + bi + 2di) + 2(a+ b)(di(ai + bi)

+c2i + d2i )
]
, with (9)

si+1 = ai+1 + bi+1 + 2(ci+1 + di+1), (10)

where the parameters,

a =
1

8

[
P 2
r (1−Ar)2 +A2

r(1− Pr)2
]
, (11)

b =
1

8
[2ArPr(1−Ar)(1− Pr)] , (12)

c =
1

8
Pr(1− Pr) [Pr(1−Br) +Br(1− Pr)] , (13)

with Ar = ηrλm + Pr(1 − ηrλm), and Br = 1 − (1 −
Pr)(1 − ηrλm)2, are functions of the system’s loss and
noise parameters. For i = 1 (the elementary link), we
have the initial conditions, a1 = ae, b1 = be, c1 = ce, and
d1 = 0, with s1 = ae+be+2ce, where ae, be, ce are defined
exactly as a, b, c, with (Pe, Ae, Be) replacing (Pr, Ar, Br)
in Eqs. (6), (7), (8), where Ae = ηeλ + Pe(1 − ηeλ)
and Be = 1 − (1 − Pe)(1 − ηeλ)2, defined similar to
Ar, Br. Here, λm is the efficiency of loading (read-
ing) the photonic qubits into (from) the memories, and
λ = e−αL/2N is the channel transmittance of half of an
elementary link.

Proof. (sketch) A detailed proof is given in Appendix A,
where we calculate the state ρi (i.e., the coefficients
ai, bi, ci, di) explicitly for all i explicitly in terms of the
loss and noise parameters. The key steps are: (i) to real-
ize that λ and λm can be subsumed in the detector effi-
ciencies ηe and ηr of the BSMs, respectively, thereby ren-
dering all qubit transmissions lossless, (ii) realizing that
a single-photon detector of efficiency η and dark-click
probability P—when the impinging light is guaranteed
to have no more than 2 photons—is accurately described
by the POVM elements (see Fig. 14 in Appendix F),
F0 = (1− P )Π0 + (1− P )(1− η)Π1 + (1− P )(1− η)2Π2
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and F1 = I − F0, with Πi = |i〉〈i|, i = 0, 1, 2 being
projectors corresponding to the vacuum, single photon
and two photon outcomes of an ideal photon-number-
resolving measurement, and, (iii) carrying out the math-
ematics of the linear-optic BSM operation on ρ⊗2i while
accounting for the appropriate post-selections as derived
in Ref. [27].

Once we have the state ρi, defined recursively in terms
of ρi−1, we calculate the success probabilities, Ps(i) =
4si, where si = s = a + b + 2c, ∀i ≥ 2. The success
probability of creating ρ1, Ps(1) = 1− (1−Ps0)M , where
Ps0 = 4s1, where s1 = ae + be + 2ce, is the probability of
successful creation of an elementary link ρ1 in one of the
M frequencies (see Appendix B for details).

We next prove that the sift-probability P1 = (q1 +q2 +
q3)2,∀i, where q1 = (1 − Pd)Ad, q2 = (1 − Ad)Pd, and
q3 = PdAd, with Ad = ηd + (1 − ηd)Pd (which are all
functions of the loss and noise parameters of Alice’s and
Bob’s detectors). An intuitive explanation is as follows:
q2 is the probability that the noisy detectors ‘flip’ the
outcome (|10〉 detected as (no-click, click), or |01〉 de-
tected as (click, no-click)); q1 is the probability that the
detectors do not flip the outcome (|01〉 detected as (no-
click, click), or |10〉 detected as (click, no-click)); and q3
is the probability that the detectors generate the (click,
click) outcome (regardless of whether |10〉 or |01〉 are de-
tected. Since the flip, no-flip, and click-click probabilities
are symmetric in the inputs |01〉 and |10〉, and each half
of ρi has exactly one photon (in two modes), regardless of
the relative fractions of |01〉 and |10〉 in Alice’s and Bob’s
share of the joint state, the probability of a successful sift
is the probability they both get one of the above three
events, hence P1 = (q1 + q2 + q3)2. See Appendix C for
a more detailed argument.

The final step is to obtain the error probability

Qi =
1

P1

(
Tr
[
ρi(M0101 +M1010 +

1

2
{M1101 +M1110 +M0111 +M1011 +M1111})

])
where P1 = Tr[ρi(M0101 + M0110 + M1001 + M1010 +
M1101 +M1110 +M0111 +M1011 +M1111)], and Mijkl ≡
Fi⊗Fj ⊗Fk⊗Fl. It is simple to argue that Qi is a func-
tion only of 2ci/si (see Appendix D for detailed proof).
The intuitive argument is that a bit error only arises from
2ci/si, the fractional probability of the classical correla-
tion terms in ρi, whereas (ai + bi) is the sum fractional
probability of the two Bell states |M+〉 (ai) and |M−〉
(bi), with si = (ai + bi) + 2ci. Even if the BSM res-
ults accidentally in a |M−〉 to be formed, there would
be no bit error. In order to calculate ci, we calculate
ci + di ≡ yi and ci − di ≡ ui by adding and subtract-
ing Eqs. (8) and (9), and writing recursions for yi and
ui. The solution to yi comes out as, yi = (si − zi)/2,

with zi = (s2/(a + b))((1 + 2w1)(1 + 2wr))
−2i−1

, where
wr = c/(a+ b) and w1 = ce/(ae + be). The solution to ui
requires us to solve the following variant of the chaotic

logistic map: wi+1 = wr + 2(1 − 2wr)wi(1 − wi), where
wi = ui/zi. We derive the exact solution of this quadratic
recursion (see Appendix E for proof), and are thus able
to evaluate Qi = [1 − td(1 − 2ci/si)]/2, which simplifies
to the form shown in Eq. (2) of Theorem 1.

It is easy to account for a probabilistic entanglement
source to account for a finite probability of vacuum in
each time slot (the numerical calculations in Section III
further accounts for a non-zero two-pair generation prob-
ability). Such a probabilistic entanglement source can be
modeled as generating ρ = (1−p)|0〉〈0|+p|M±〉〈M±| in
each frequency mode and in every Tq second slot. Since
ρ can be regarded as the quantum state obtained by
passing |M±〉 through a beamsplitter of transmittance
p, we can ‘push’ p through the BSM at the centers of
elementary links, and apply our formulas after replacing
ληe by ληep, and accordingly modifying the parameters:
ae, be, and ce.

Finally, even though all the above analysis was done for
N = 2n elementary links (with n an integer), we believe
that the final formula for Q and rate also hold for any
integer N . In other words, with an end-to-end optical
fiber channel with N elementary links, N ∈ Z+,

RN (L) = P1PsuccR2(Q(N))/2Tq key bits/s, (14)

where, Q(N) = 1
2

[
1− (td/tr) (trte)

N
]
. Since R(Q) =

1−2h2(Q), with h2(x) = −x log2(x)− (1−x) log2(1−x)
the binary entropy function, the maximum range for
which QKD is possible at a non-zero rate is determined
by when Q(N) exceeds Qth, where h2(Qth) = 1/2 and
Qth ≈ 0.1104. One can invert Q(N) to derive the max-
imum range as a function of number of elementary links
N , and all the detector loss and noise parameters:

Lmax =

(
20N

α

)
×

log10

ηe
(√

2(1− 2Pe)H − 2(1− 2Pe)
)

4Pe

 , (15)

where H = 1 + tr/
[
(1− 2Qth) trtd

] 1
N

and α is the fiber’s

loss coefficient, expressed in dB/km units.

B. Rate-vs.-loss performance of the repeater chain

We defined RN (L) to be the secret key rate achiev-
able with N equal-length elementary links dividing up

the total range L. Let us define R
(0)
N (L) to be the secret

key rate achieved with all the dark click probabilities set
to zero, i.e., Pe = Pr = Pd = 0. It is reasonable to ex-
pect that non-zero dark click probabilities can only de-
crease the secret key rate (See Appexdix F 1 for a more

detailed discussion), and hence, RN (L) ≤ R
(0)
N (L). As-

suming this to be true, the secret-key rate RN (L) can
be upper bounded, to a very good approximation, by
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Figure 4. (Color online) A ‘three-piece’ upper bound to the
rate-vs.-distance RN (L) achieved by a repeater chain consist-
ing of N elementary links over the range L km. We assume
the following parameters: N = 4, Pe = Pr = Pd = 3 × 10−5,
ηe = ηr = ηd = 0.9, M = 1000, λm ≡ 1 dB, α ≡ 0.15 dB/km,
Tq = 50 ns.

a three-segment rate plot (see Fig. 4): a constant-rate
segment, a linear rate-vs.-transmittance segment, and a
zero-rate segment. More specifically, we prove that:

Theorem 3 The rate-vs.-distance function RN (L),
achieved by a repeater chain comprising N equal-length
elementary links, can be upper bounded as:

RN (L) ≤ R(UB)
N (L) =

 Rmax, for 0 ≤ L ≤ L′,
η
(
ABN

)
, for L′ < L < Lmax,

0, for L ≥ Lmax,
(16)

with L′ = − log(η′)/α, η′ = (2/Mη2e)N , and Rmax =
A (η2rλ

2
m/2)N , where the constants A and B are given

by, A = η2d/(η
2
rλ

2
mTq) and B = η2rλ

2
mη

2
eM/4, assum-

ing non-zero detector dark-click probabilities cannot im-
prove the key rate achievable by this repeater protocol,

i.e., RN (L) ≤ R(0)
N (L).

Proof. See Appendix F 1. The proof proceeds by upper

bounding R
(0)
N (L) individually by Rmax and by η

(
ABN

)
.

The third segment is trivial since RN (L) = 0 for L ≥
Lmax, as we showed earlier.

The third segment in Eq. (16) disappears when Pe =
Pr = Pd = 0, since Lmax → ∞. It is straightforward to
solve for the envelope of the points {XN}, N = 1, 2, . . .,

where the first two segments of R
(UB)
N (L) intersect (see

Fig. 4), and to prove that this envelope R(UB)(L), is an
upper bound to the actual rate-loss envelope R(L):

Theorem 4 Assuming RN (L) ≤ R
(0)
N (L) holds for all

N ≥ 1, the rate-vs.-distance function R(L) achieved by
the repeater chain, once optimized over the choice of the

number of elementary links N as a function of the range
L, can be upper bounded as:

R(L) ≤ R(UB)(L) = Aηt, (17)

where the power-law exponent t is given by,

t =
log
(
η2rλ

2
m/2

)
log (2/Mη2e)

. (18)

Proof. See Appendix F 2 for the proof. We first show

that RN (L) ≤ R
(0)
N (L),∀N implies R(L) ≤ R(0)(L),

where R(0)(L) is the overall rate-distance envelope, when
Pe = Pr = Pd = 0. We then derive an upper bound to
R(0)(L) by using the result in Theorem 3.

The above upper bound already suggests a power-law
scaling of the true rate-loss envelope R(L). It is ac-
tually possible to derive the zero-dark-click-probability
rate-distance envelope R(0)(L) exactly, and as we show
next, it is indeed given by a power law in the total Alice-
to-Bob channel transmittance, η.

Theorem 5 The rate-vs.-distance R(0)(L) achieved by a
repeater chain when all detector dark-click probabilities
are zero and an appropriate number of elementary links
are used for a given range L, is exactly given by:

R(0)(L) = Aηξ, (19)

where A = η2d/(η
2
rλ

2
mTq), and the exponent ξ is given by:

ξ =
log
[
β
(
1− (1− γz)M

)]
log z

, (20)

where z is the unique solution of the following transcend-
ental equation in the interval (0, 1):(

1− (1− γz)M
)

log
[
β(1− (1− γz)M )

]
= γMz log z (1− γz)M−1 , (21)

with, β = η2rλ
2
m/2, and γ = η2e/2.

Proof. See Appendix F 3.
In Fig. 5, we plot RN (L) as a function of L for N = 2n

elementary links, with n = 0, 1, 2, 3, 4. All the sys-
tem parameters (listed in the figure caption) are kept
the same for each plot. We also plot the three-piece

upper bounds R
(UB)
N (L) (dotted blue lines), the envel-

ope of those upper bounds R(UB)(L) = Aηt (solid blue
line), the rate-loss envelope R(0)(L) = Aηξ with all de-
tector dark-click probabilities set to zero (black dashed
line), and the true (numerically-evaluated) rate-loss en-
velope R(L) (black thin solid line). Fig. 5 also shows
the TGW bound corresponding to using all M frequency
modes (dash-dotted orange line) and the rate obtained
by an ideal parallel BB84 implementation (perfect single-
photon sources, and detectors) over all M modes, R =
ηM/Tq bits/s (dash-dotted green line). These two plots
show that this repeater protocol’s rate-loss performance
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Figure 5. (Color online) Secret key rates RN (L) as a func-
tion of range L for N = 1, 2, 4, 8 and 16 elementary links.
The rate-distance envelope is seen to outperform what is
theoretically achievable by any repeater-less QKD protocol
that uses the same time-slot length (Tq) and number of fre-
quency channels (M), for L & 260 km. The figure also
shows the exact zero-dark-click-probability rate-distance en-
velope, R(0)(L) = Aηξ, where ξ = 0.284 (black dashed
line). The envelope of the three-piece rate-distance upper
bounds, RUB(L) = Aηt is also shown (solid blue line), where
t = log(η2rλ

2
m/2)/ log(2/Mη2e) = 0.227. The parameters used

are: Pd = Pr = Pe = 3 × 10−5, ηd = ηr = ηe = 0.9, λm = 1
dB (memory loss), M = 1000 (frequency modes), α = 0.15
dB/km (fiber loss), Tq = 50 ns.

fundamentally outperforms what is achievable without
the assistance of quantum repeaters. Following are the
main observations from Figs. 5, and 6:

Effect of losses to the rate-loss envelope—As noted
in Theorem 5, the exact power-law exponent ξ of the
true zero-dark-click-rate rate-loss envelope R(0)(L) has a
complicated dependence on the system’s loss paramet-
ers. On the other hand, the rate-loss envelope of the
3-piece upper bounds to RN (L) has a simple expression,

R(UB)(L) = Aηt, with A =
η2d

η2rλ
2
mTq

and t =
log(η2rλ

2
m/2)

log(2/Mη2e)
,

which makes its exponent t useful to study the effects of
various losses in the absence of dark clicks. Note that
both the numerator and denominator in the expression
for t are negative for typical parameters. When the ef-
ficiency of the repeater node ηrλm decreases, t increases
(thus making the rate-loss scaling worse; t = 1 being
the TGW limit, performance attainable without repeat-
ers). Note that (ηrλm)2 can be roughly interpreted as the
probability of success (for the two memories and two de-
tectors) at a repeater node. On the other hand, Mη2e can
be roughly interpreted as the probability of success (for at
least one of M spectral modes and the two detectors) at
the center of an elementary link. When Mη2e increases, t

Figure 6. (Color online) This figure captures the effect of de-
tector dark click probability on the rate-loss scaling. It is seen
that, for a given number of elementary links N , increasing
the dark click probabilities drastically reduces the maximum
range Lmax, however, the overall rate-distance envelope of the
repeater chain remains largely unaffected over a significant,
and practically feasible, range of detector dark click probab-
ility values (see the rate-loss-envelope traces as Pd is varied
from 10−8 to 10−4).

decreases (thus making the rate-loss scaling better). Fi-
nally, note that the efficiency of Alice’s and Bob’s de-
tectors ηd does not affect the rate-loss scaling, but η2d
is an overall multiplier to the rate via the pre-factor A
(as expected, due to a η2d multiplicative reduction in the
number of usable time slots for key generation).

Effect of dark click probability—To examine the effect
of detector dark-click probabilities to the secret key
rate, we set Pd = Pr = Pe. The effect of Pd to RN (L)
is captured primarily by the maximum range Lmax,

i.e., the third segment of R
(UB)
N (L) in Eq. (16). The

envelope of the three-piece upper bounds, R(UB)(L), is
however completely unaffected by Pd, since the envelope
is the locus of the corner-points {XN}, N = 1, 2, . . .,
while being unaffected by the corner-points {YN}. We
numerically fit the exact rate-distance envelope to the
power law R(L) = Aηζ , and show that the exponent
ζ remains largely unaffected over a significant (and
practically feasible) range of Pd (see Fig. 6(a)). In other
words, ζ(Pd) ≈ ξ, the exact power-law exponent when
Pd = 0, given in Eq. (20), over a significant range of
Pd (see Fig. 6(b)). The maximum range Lmax achieved
by a given number of elementary links N , however,
drastically decreases with increasing Pd (see Fig. 6(a)).
In the regime that Pd � 1 and the deviations from ideal
detection efficiency (εd ≡ 1 − ηd) and memory efficiency
(εr ≡ 1− ηrλm) are small, one can show that, to first or-
der in Pd, εd, εr, we have tr ≈ tr/td ≈ 1−4Pd. This yields
a simpler expression for the maximum range, Lmax ≈
(20N/α) log10

[(√
2(1 + (1− 2Qth)−1/N )− 2

)
/4Pe

]
,

which shows that the first-order dependence of Lmax

to detector dark clicks is via a subtractive term,
−(20N/α) log10(4Pe), which makes Lmax to go to
infinity as Pe → 0, as expected.

Optimal choice of the number of repeaters—For a given
Alice-to-Bob range L, it should be divided up into an op-
timum number of equal-length elementary links, in order
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to maximize the key rate. At a short range, using too
many repeaters diminishes the end-to-end key rate, due
to the 50% heralding efficiencies of the linear-optic BSMs
at the repeater nodes. Employing higher-efficiency BSMs
(by injecting ancilla single photons for instance [39]) will
increase Rmax in Fig. 4, and will hence increase N∗(L)
at any given range L.

Beating the TGW bound—The secret key rate of any
QKD protocol that does not use quantum repeaters

is upper bounded by the TGW bound, R
(UB)
TGW(η) =

log ((1 + η)/(1− η)) bits per mode [7], η being the total

channel transmittance. R
(UB)
TGW(η) ≈ 2.88η, when η �

1 (high loss). The BB84 protocol—both the single-
photon based and the weak coherent state implement-
ation employing decoy states—as well as continuous-
variable (CV) QKD with a Gaussian input modulation,
attain key rates, R ≈ η bits/mode [40], thereby leav-
ing little room for improvement by any other protocol.
With M orthogonal frequency channels available, and a
qubit duration of Tq seconds, a parallel implementation of
an ideal QKD protocol on each of those frequency chan-

nels cannot exceed a key rate of MR
(UB)
TGW(η)/Tq bits/s, a

plot shown in Fig. 5 (see dash-dotted orange line). The
rate-loss function R(L) attained by our repeater architec-
ture distinctly outperforms this fundamental repeater-
less rate-loss limit, as is also clear from the power law
dependence R(L) = Aηζ with ζ < 1, whereas the TGW
limit corresponds to ζ = 1.

Choice of the number of frequency modes—An import-
ant part of the design of the repeater architecture is
choosing M , the number of frequency modes that the ele-
mentary links use for multiplexing. In Fig. 7, we plot the
power law exponent ξ of the zero-dark-click rate-loss en-
velope R(0)(L) = Aηξ, as a function of M . In order to ob-
tain a desired performance improvement over the TGW
bound’s scaling limit (i.e., ξ = 1), the lower the detector
efficiencies ηe and ηr, the higher is the level of frequency
multiplexing needed. Note that ξ does not depend upon
the efficiency ηd of Alice’s and Bob’s detectors (see The-
orem 5). Furthermore, as is intuitively clear, and appar-
ent from comparing the ξ(M) plots for ηe = 0.5, ηr = 0.9
and ηe = 0.9, ηr = 0.5, that it is more important for the
repeater-node detectors to have high efficiency as com-
pared to the detectors at the middle of the elementary
links, since frequency multiplexing “helps” the latter de-
tectors. Next, we note that there is a minimum number of
frequency modes Mmin needed for this repeater protocol
to be useful (i.e., barely beat the TGW bound’s scaling
limit), which increases as ηe and ηr decrease. An inter-
esting, yet intuitive thing to note, is that the blue solid
and the black dashed (as well as the red diamonds and
the magenta dash-dotted) curves pairwise come close to
one another as M increases. This happens because when
M becomes sufficiently large, the probability of successful
creation of an elementary link Ps(1) = 1−(1−Ps0)M ≈ 1,
which has a weak dependence on ηe, and hence ξ depends
more strongly on the losses at the repeater nodes, i.e.,
ηr. The exact expression for the power-law exponent of

Figure 7. (Color online) Here we plot the power law exponent

ξ of the zero-dark-click rate-loss envelope R(0)(L) = Aηξ, as
a function of the number of frequency modes M . In order
to obtain a desired performance improvement over the TGW
rate-loss scaling (ξ = 1), lower are the detector efficiencies ηe
and ηr, higher is the level of frequency multiplexing needed.

R(UB)(L) — which is a lower bound to the true exponent

ξ, i.e., t =
log(η2rλ

2
m/2)

log(2/Mη2e)
= 1+2 log2(1/ηrλm)

log2M−[1+2 log2(1/ηe)]
< ξ —

provides a useful guideline for the choice of M , as well
as illustrates the aforesaid effect (of the dependence of
the power-law exponent being primarily on ηr when M
is high enough).

C. Entanglement distillation rates

The actual end to end shared quantum state after suc-
cessfully connecting 2i−1 elementary links is given by (see
Appendix D 1 for proof):

ρi =
1

si

[
ai|M+〉〈M+|+ bi|M−〉〈M−|+ ci|ψ0〉〈ψ0|

+ di|ψ1〉〈ψ1|+ di|ψ2〉〈ψ2|+ ci|ψ3〉〈ψ3|] , (22)

where |ψ0〉 = |01, 01〉, |ψ1〉 = |01, 10〉, |ψ2〉 = |10, 01〉,
|ψ3〉 = |10, 10〉, |M±〉 = [|ψ2〉 ± |ψ1〉] /

√
2, si = ai + bi +

2(ci + di), and the coefficients given as:

ai =
1

2

[
1 +

(
a− b
a+ b

)i−1(
ae − be
ae + be

)]
zi,

bi =
1

2

[
1−

(
a− b
a+ b

)i−1(
ae − be
ae + be

)]
zi,

ci =
si
4

[
1− zi

si(1− 2wr)
[(1− 2wr)(1− 2w1)]

2i−1
]
,

di =
si
4
− zi

2

[
1− 1

2(1− 2wr)
[(1− 2wr)(1− 2w1)]

2i−1
]
,

with w1 = ce/(ae+be), wr = c/(a+b), s1 = ae+be+2ce,
si = s = a+ b+ 2c, 2 ≤ i ≤ n+ 1, and zi given by,

zi =

(
s2

a+ b

)(
1

(1 + 2w1)(1 + 2wr)

)2i−1

, i ≥ 2, (23)
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Figure 8. (Color online) Fidelity of the 2n-link state, ρn+1 for
2n = N = 1, 2, 4, 8, 16, 32, with respect to the pure EPR state
|M+〉. We used Pe = Pr = Pd = 3×10−5, ηe = ηr = ηd = 0.9,
M = 1000, λm ≡ 1 dB, and α ≡ 0.15 dB/km.

with z1 = ae + be. The expressions for ai, bi, ci, and di
reduce to ae, be, ce, and 0, respectively, for i = 1.

The fidelity of the N = 2n elementary link state
ρn+1 ≡ ρAB(N) with respect to |M+〉, 〈M+|ρi|M+〉,

FN (L) = (an+1 + dn+1)/s. (24)

In Fig. 8, we plot FN (L) as a function of the range L
for N = 1, 2, 4, . . . , 32 elementary link concatenations.
Note that the plots show the fidelity of the actual heral-
ded state (the probability Psucc of generating ρABn+1 suc-
cessfully is not being accounted for). It is seen that
the maximum range Lmax for the secret-key generation
rate RN (L) roughly corresponds to a state fidelity of
FN (L) ≈ 0.86 for all N .

If Alice and Bob have many copies of the state
ρAB , with no restriction on their actual quantum meas-
urements and post-processing, and only using one-way
classical communication over the public channel, the
rate at which they can generate shared entanglement
ED(ρAB)—measured in ebits (clean EPR pairs) per copy
of ρAB initially shared—is lower bounded by the coher-
ent information I(A〉B) = H(B) − H(AB), also known
as the hashing bound [41]. The hashing bound for the
N -link shared rate ρAB(N) can be evaluated to yield:

IN (A〉B) = 1−H
(
cn+1

s
,
cn+1

s
,
an+1 + dn+1

s
,
bn+1 + dn+1

s

)
,

where H(·) is the Shannon entropy function. Since
ρAB(N) is heralded with probability Psucc, and since each
qubit occupies Tq seconds, the achievable entanglement-
distillation rate is given by:

EN (L) = PsuccIN (A〉B)/Tq, (25)

which is plotted in Fig. 9 for N = 1, 2, . . . , 16. It is
instructive to compare this with the expression for the
secret-key-generation rate:

RN (L) = P1PsuccR2(Qn+1)/2Tq, (26)

where R2(Qn+1) = 1 − 2H(Qn+1, 1 − Qn+1). When
Pd = Pr = Pe = 0 (all detector dark click rates are
zero), ai = a, and bi = ci = di = 0, and there-
fore ρi = |M+〉〈M+| for all 1 ≤ i ≤ n + 1. Thus
the QBERs, Qi = 0, resulting in R2(Qn+1) = 1, and
IN (A〉B) = 1. Therefore, EN (L) and RN (L) differ
only by a factor of P1/2 = η2d/2, as intuitively ex-
pected. Clearly, the same is true for the zero-dark-
click rate-distance envelopes, E(0)(L) and R(0)(L), i.e.,
E(0)(L) = (2/η2rλ

2
mTq) η

ξ, where ξ is given by Eq. (20).
Similar to the secret-key-generation rates, when the dark
click probabilities are non-zero (however small), there is a
finite maximum range for entanglement distillation with
N links, but the rate-loss envelope E(L) is only slightly
affected. In Fig. 9, we plot EN (L) for N = 1, 2, . . . , 16 for
Pd = Pe = Pr = 3× 10−5, along with the zero-dark-click
envelope E(0)(L), showing that the rate-distance envel-
ope is practically the same for this dark click level.

The maximum range for secret-key generation res-
ults from the condition R2(Qn+1) = 0, which
gives the expression for LQKD

max given in Eq. (15).
The maximum range for entanglement distillation
derives from the condition IN (A〉B) = 0, i.e.,

H
(
cn+1

s , cn+1

s , an+1+dn+1

s , bn+1+dn+1

s

)
= 1. Unlike the

key-generation rate, which depends cleanly on one para-
meter: the QBER, the entanglement distillation rate de-
pends in a more complicated fashion on the shared state
ρABn+1, through the parameters an+1, bn+1, cn+1, dn+1,
and hence an analytic formula for the maximum range
Lent−dist
max is not possible to obtain. The maximum

ranges for entanglement distillation, evaluated numeric-
ally, work out to be somewhat higher compared with the
those for secret-key generation, for identical system para-
meters. For the parameters considered in Figs. 5 and 9,
for N = 1, 2, 4, 8, 16, we get (rounded to a km):

LQKD
max = [401, 716, 1267, 2208, 3772], (27)

Lent−dist
max = [411, 761, 1389, 2488, 4367]. (28)

In evaluating the above range numbers for the QKD
case, we assumed zero dark click rates for the Alice-Bob
detectors (i.e., Pd = 0, Pe = Pr = 3 × 10−5), in order
for an unbiased comparison, i.e., for both cases above,
Alice and Bob start with many copies of the noisy EPR
state ρABn+1. It is instructive to note that an achievable
shared entanglement generation rate is automatically an
achievable secret-key generation rate. Therefore, our res-
ults show that the QKD protocol we analyzed is (ever so
slightly) suboptimal, in the sense that if Alice and Bob
held many copies of the noisy EPR pairs ρABn+1 in perfect
quantum memories, and applied an ideal entanglement
distillation protocol [41], and then converted those EPR
pairs to shared secret key bits, the resulting secret-key
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rates, and the maximum ranges would be slightly higher
compared to what we got. It is remarkable however how
close to that ultimate limit a QKD protocol even with a
simple measurement and post-processing can get.

Figure 9. (Color online) Achievable entanglement distillation
rate (measured in pure EPR pairs per second) using an N -
link repeater chain, for N = 1, 2, 4, 8, 16, 32. We used Pe =
Pr = Pd = 3× 10−5, ηe = ηr = ηd = 0.9, M = 1000, λm ≡ 1
dB, α ≡ 0.15 dB/km, and Tq = 50 ns long qubits.

III. THE EFFECT OF TWO-PAIR EMISSIONS

The entire theoretical analysis in Section II, as well
as all the calculations in the Appendices, assume that
the entangled photon pair sources have a zero prob-
ability of multi-pair emission, which is usually not the
case in practice, particularly when one employs spon-
taneous parametric downconversion (SPDC) to gener-
ate entangled pairs. The purpose of this section is to
extend our analysis to sources whose two-pair probab-
ility, p(2) > 0. Even though one could in principle at-
tempt a fully analytical calculation of the entangled state
propagation through the repeater chain (along the lines
of our derivations in Appendix A), such a calculation
would be extremely tedious. We instead set up an ex-
act numerical calculation of the quantum states of the
elementary link and the states resulting from successful
BSM connections, where we evolve the quantum states
in the Fock basis, and use the sparse matrix toolbox of
MATLAB to create time-efficient subroutines for beam-
splitters, partial trace operations, and photon-number-
resolving detectors. We continue to assume however that
all detectors in the system have single-photon resolution.

We use this numerical code to evaluate RN (L) for a
particular form of source with p(2) > 0 (see Eq. (29)).
We find that for a given p(2), up to a certain maximum
number of elementary links, the rate-distance perform-

ance remains almost identical to what is attained by an
ideal (p(2) = 0) source (i.e., that evaluated in Section II).
However, the rate becomes close-to-zero at any range,
when N ≥ Nmax(p(2)) (see Fig. 10). Our numerical cal-
culations also show that the scaling law in Eq. (4) for
error-propagation through the repeater chain continues
to hold—with an appropriate p(2)−dependent modifica-
tion to the pre-factor (tr/td)—even for non-ideal sources
(see Fig. 12).

This Section is organized as follows. In subsec-
tion III A, we will show the empirical effect of p(2) on the
rate-loss behavior of the repeater architecture. In subsec-
tion III B, we will develop a phenomenological model for
QBER scaling (an extension of Eq. (4) when p(2) > 0),
which we will use in turn to develop an approximate
model to understand the functional form of Nmax(p(2)).

A. Rate-loss behavior with non-ideal sources

In Fig. 10, we plot the secret key rates RN (L) for
N = 1, 2, 4, 8 elementary links (n = 0, 1, 2, 3) with all
parameters held constant, p(1) = 0.9 and several choices
of p(2) ranging from 0.001 to 0.015. We model the non-
ideal entanglement source as generating the state [43],

|ψ〉 =
√

1− p(1)− p(2) |00, 00〉+
√
p(1) |M+〉

+
√
p(2)/3 (|20, 02〉 − |11, 11〉+ |02, 20〉) , (29)

where |M+〉 = [|10, 01〉 + |01, 10〉]/
√

2. This particular
form of the entangled photon-pair state, and in particu-
lar the form of the 4-photon term, is motivated by para-
metric down-conversion sources [44]. If p(2) is small, the
exact form of the two-pair term does not seem to af-
fect the results, notwithstanding that our simulation is
easily able to take into account any particular form of
the two-pair term, depending upon the physical model
of the actual source of entanglement. Finally, we assume
that the higher-order multi-pair emission terms (3-pair or
higher) have significantly lower probabilities compared to
the two-pair term, and that p(2) effectively captures the
effect of multi-pair emissions to the secret-key rates. One
other difference in the rate-loss behavior compared with
the p(2) = 0 theoretical analysis in Section II is that the
QBER can be now non-zero even when the detector dark
click rates are zero. This is because errors in the sifted
bit may now be caused by the multi-pair events generated
by the entanglement sources.

At a given p(2), there is a maximum number of
elementary links up until which the rate-loss envelope
achieved by the repeater architecture remains almost
identical to what is achieved by a p(2) = 0 entangle-
ment source. When N ≥ Nmax(p(2)), the rate R(L) = 0,
∀L ≥ 0. Seen differently, the rate-distance plots in
Fig. 10 come crashing down from higher to lower values
of N values (number of elementary links) one at a time as
p(2) is increased from 0 (with p(1) = 0.9 held constant),
while the rate-distance plots for the lower N values stay
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Figure 10. (Color online) Secret key rate R (bits/s) vs. distance L (km), evaluated for n = 0, 1, 2, 3 (N = 1, 2, 4, 8 elementary
links), for sources with two-pair emission probability p(2) ranging from 0.001 to 0.055. At any given value of p(2), there is a
certain number of elementary links up until which the rate-loss envelope achieved by the repeater architecture remains almost
identical to what is achieved by a p(2) = 0 entanglement source. However, as soon as N ≥ Nmax(p(2)), the rate goes to zero an
any range. The parameter values used are: Pd = Pr = Pe = 10−6, ηd = ηr = ηe = 0.9, λm = 1 dB (memory loss), M = 1000
(frequency modes), α = 0.15 dB/km (fiber loss), and Tq = 50 ns. The plots show that, for these parameters, for p(2) = 0.035,
it is best to have a single elementary link between Alice and Bob over the entire range. The rate-loss tradeoff for 2 elementary
links is worse at all range values. Similarly, at p(2) = 0.013, using 4 elementary links does not yield a better rate compared
to what is attained with 2 elementary links, at all range values. Interestingly however, the rate-distance plots come crashing
down from higher N values to lower (number of elementary links) one at a time as p(2) is increased, while the rate-distance
tradeoffs for the lower N values stay almost at their p(2) = 0 levels. Note that the N = 1 plot has no perceivable change from
p(2) = 0.001 to p(2) = 0.055. Similarly, the N = 2 plot has no perceivable change from p(2) = 0.001 to p(2) = 0.019.
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Figure 11. (Color online) The purpose of this figure is to gauge
the p(2) values where a certain length N (and higher) of the
repeater chain becomes ineffective, as depicted in Fig. 10. We
choose two fixed maximum range values: one a number close
to zero (10 km) to assess Nmax(p(2)), and the other a little
below the range of a single elementary link (590 km). We
divide an overall range L of (a) 10 km and (b) 590 km, into
N = 1, 2, 4 and 8 elementary links, and plot the end-to-end
QBER for each case, as a function of the two-pair-emission
probability p(2). The black horizontal line corresponds to
Qth = 0.1104. The secret key rate goes to zero, when the
end to end QBER exceeds Qth. It is instructive to tally the
p(2) values where Qn+1 crosses the Qth line for n = 0, 1, 2, 3,
with the plots in Fig. 10. We assume, ηe = ηr = ηd = 0.9,
Pe = Pr = Pd = 10−6, α = 0.15dB/km, and λm = 1dB.

unaffected, i.e., almost at its p(2) = 0 level, until p(2)
becomes high enough to make the next lower value of N
unsustainable. As an example, the N = 1 plot has no
perceivable change from p(2) = 0.001 to p(2) = 0.055.
Similarly, the N = 2 plot has no perceivable change from
p(2) = 0.001 to p(2) = 0.019.

B. Phenomenological model for QBER scaling and
maximum usable number of elementary links

Before we develop a phenomenological model for
Nmax(p(2)), let us get a feel for the dependence by ex-
tracting estimates of Nmax(p(2)) from the rate-loss plots
shown in Fig. 10. A good estimate can be obtained by
assessing the value of p(2) when an N -link concatena-
tion becomes next to useless, one way to quantify which
is when the maximum range for the N -link concatena-
tion becomes less than 10 km. Another way to quantify
Nmax would be to use the value of p(2) for which the N -
link concatenation’s maximum range falls below the max-
imum range obtained with N = 1 (that range threshold
could be used as 590 km for the parameters used in
Fig. 10, since the maximum range with N = 1 is 600
km).

Figure 12. (Color online) (a) Schematic showing the chain
with 1, 2, 4, and 8 links. Qi is the QBER if Alice and Bob
were to make measurements across a 2i-link chain. (b) Qi+1

vs. two-pair-emission probability p(2), for different numbers
of swaps (i = 0, 1, 2, 3) at a fixed distance of L = 50 km
(a short range is chosen to ensure that for all four cases the
elementary-link quality is very good for the entire p(2) range
we consider, so that we cleanly capture the effect of p(2) on the
QBER). (c) Here we plot the ratio ri = (1−2Qi+1)/(1−2Qi)

2

as a function of p(2), which shows that the ratio ri remains
unchanged over i = 1, 2, 3, hence suggesting that the QBER
scaling law in Eq. (4) holds even when p(2) > 0. For all plots,
we assume, ηe = ηr = ηd = 0.9, Pe = Pr = Pd = 10−6,
M = 1000, α = 0.15dB/km, λm = 1dB, and Tq = 50ns.

In Fig. 11(a) and (b), we plot the end-to-end QBER
when a fixed overall range L (of 590 km, and 10 km, re-
spectively) is divided up into 1, 2, 4 or 8 elementary links.
The color convention is the same as the one used for the
secret key rate plots in Fig. 10. The black horizontal
lines correspond to Qth = 0.1104. The secret key rate
goes to zero when the end to end QBER exceeds Qth. It
is instructive to tally the p(2) values where Qn+1 crosses
the Qth line for n = 0, 1, 2, 3, with the plots in Fig. 10.
The p(2) value when the 8-elementary-link chain’s max-
imum range is 590 km, is 0.0054, and that when it is 10
km is 0.0084, both of which match well with the plots
(c) and (d) of Fig. 10. Similarly, the p(2) value when the
4-elementary-link chain’s maximum range is 590 km, is
0.0116, and that when it is 10 km is 0.0195, which match
well with plot (g) of Fig. 10. Finally, the p(2) value when
the 2-elementary-link chain’s maximum range is 590 km,
is 0.0347, and that when it is 10 km is 0.0577, which
match well with plots (j), (k) and (l) of Fig. 10. In the
table in Fig. 11(c), we record the values of p(2), using
the 10 km estimate rule, corresponding to Nmax = 8, 4
and 2. Our goal for the remainder of this section, will be
to extract a phenomenological model for Nmax(p(2))—by
quantifying how the QBER propagation law in Eq. (4)
must be modified when p(2) > 0—that closely matches
the estimates in Fig. 11(c).

QBER propagation—In Fig. 12(a), we depict our L-
km-range, N = 2n elementary-link construction, for n =
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Figure 13. (Color online) (a) Plot of 1−2Q1, where Q1 is the
QBER of one elementary link (of range Lelem = L/N , chosen
in the range 50 km to 550 km), as a function of p(2). It is
seen that, 1− 2Q1 & tdte− 1

2
p(2). (b) Plot of te, the ‘quality’

of one elementary link, as a function of Lelem, for Pe = 10−6,
ηe = 0.9, and α = 0.15 dB/km. For Lelem < 400 km, te is
seen to remain close to 1.

3. The Alice-to-Bob range L is divided up into N = 2n

elementary links, and Qi is defined as the error probabil-
ity if Alice and Bob were to measure the state ρi (which
is formed after successfully connecting 2i−1 elementary
links, each of length L/N), 1 ≤ i ≤ n+ 1. In Fig. 12(b),
we plot Qi as a function of p(2), when p(1) = 0.9 is held
fixed, with p(0) = 1−p(1)−p(2), for N = 2n, with n = 3.
At each value of i ∈ {0, 1, 2, 3}, the respective QBER
Qi+1 seems to grow almost linearly with p(2) when p(2)
is small, for chosen system parameters as mentioned in
the caption of Fig. 12. In Fig. 12(c), we plot the ratio,
C(p(2)) = (1−2Qi+1)/(1−2Qi)

2 for i = 1, 2, 3, as a func-
tion of p(2). For the ideal source (p(2) = 0), we proved
that the QBER ratio C(p(2)) = tr/td, which is inde-
pendent of i; see Eq. (4). For the aforesaid loss and noise
parameters, tr/td = 1− ε, with ε = 1.39× 10−5. We see
here numerically, that C(p(2)) is independent of i, even
for an imperfect source, for any value of p(2) ∈ [0, 0.055].
The ratio has a good fit to the line, C ≈ (tr/td)− 4p(2)
for the above range of p(2). The p(2)-dependence of C
deviates from linear as p(2) becomes higher. This is quite
interesting, as this gives us a way to predict the end-to-
end QBER on long repeater chains by making a phys-
ical measurement on one noisy elementary link, if similar
devices are used to construct each elementary link.

QBER of one elementary link—In Fig. 13(a), we plot
1 − 2Q1, with Q1 the QBER of one elementary link (of
range Lelem = L/N , chosen in the range 50 km to 550
km), as a function of p(2). It is seen that,

1− 2Q1 & tdte −
1

2
p(2). (30)

This linear approximation seems good for Lelem . 400
km, and for p(2) < 0.02. We next put this together with
the linear approximation of the constant in the QBER
scaling law, i.e.,

1− 2Qi+1 &

(
tr
td
− 4p(2)

)
(1− 2Qi)

2, i ≥ 1. (31)

Simplification of the recursion in Eq. (31) yields,

1− 2Qi ≥
(
tr
td
− 4p(2)

)20+21+...+2i−2

(1− 2Q1)2
i−1

=

(
tr
td
− 4p(2)

)2i−1−1

(1− 2Q1)2
i−1

, (32)

which combined with Eq. (30) yields

1− 2Qi &

(
tr
td
− 4p(2)

)2i−1−1 (
tdte −

1

2
p(2)

)2i−1

.

(33)
Taking logarithms, rearranging the terms, and noting
that each of the three terms log(1 − 2Qi), log(tr/td −
4p(2)), and log(tdte − 1

2p(2)) are negative, we get the
following:

2i−1 &
|log(1− 2Qi) + log(tr/td − 4p(2))|∣∣log(tdte − 1

2p(2)) + log(tr/td − 4p(2))
∣∣ . (34)

Note now that Qi ≡ Q(N) is the QBER if Alice and Bob
were to make an end-to-end measurement on N = 2i−1

elementary links (see Fig. 12(a)). Hence the condition
on 2i−1 to be the maximum total number of elementary
links (i.e., N = Nmax) for which a barely non-zero key
rate can be obtained, is that Q(N) = Qth.

Phenomenological model for Nmax—Substituting
log(1 − 2Qi) = log(1 − 2Qth) ≈ −0.25, log(1 − x) ≈
−x − x2/2, and tr = td = te = 1 (in order to capture
the Nmax(p(2)) dependence, and do so in the low-noise
regime of the elementary links) in Eq. (34), and ignoring
the O(p(2)2) terms, we obtain the following approximate
lower estimate to Nmax,

Nmax & (8/9) +
1/18

p(2)
, (35)

which is roughly a shifted inverse-proportional depend-
ence in p(2). The above interpretation of Nmax is that
it is the maximum number of length Lelem elementary
links that can be connected before the concatenation be-
comes useless for QKD (while using N < Nmax links is
capable of attaining the p(2) = 0 rate-distance function
RN (L) derived in Section II). The ‘quality’ of the ele-
mentary link is captured by the parameter te—defined
for the p(2) = 0 analysis in Section II—which is 1 when
the dark click probability of the detectors at the cen-
ter of the elementary link, Pe = 0. In Fig. 13(b), we
plot te as a function of the length of the elementary link
Lelem ≡ L/N , for Pe = 10−6, ηe = 0.9, and α = 0.15
dB/km. For Lelem < 400 km, te is seen to remain close
to 1. This justifies substituting te = 1 in order to ar-
rive at Eq. (35). The table in Fig. 11(c) shows that the
Nmax(p(2)) lower estimate we obtained indeed matches
pretty well with the exact values obtained numerically
shown in Figs. 11(a–b). We must note here, that we do
not consider the effect of the number of modes M on
Nmax (which we hold fixed for the above development).
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IV. CONCLUSIONS

Long-distance entanglement distribution at high rates
is of paramount importance to many quantum com-
munication protocols, the realization of which requires
building a network of quantum repeaters. Several
quantum repeater protocols have been proposed [9–
11, 14, 15, 22], all of which use some source of entan-
glement, some form of quantum memories, and linear-
optics-based Bell-state measurements. We analyzed the
architecture proposed in [22], which is a repeater pro-
tocol that has a superior classical communication over-
head, and does not rely on purification of noisy shared
entangled pairs [42]. We believe that our analysis tech-
nique would carry over to other repeater architectures in
a straightforward manner.

We exactly solved for the quantum state after con-
necting a given number of elementary links in a concat-
enated quantum-repeater chain that uses frequency mul-
tiplexing to create two-qubit four-photon elementary link
states, and heralded linear-optic Bell-state measurements
(BSM) at a pre-determined frequency across two qubit
memories at repeater nodes. We exploited the fact that
if we start with an ideal single-pair entanglement source,
the post-selected state after a successful BSM remains
in a subspace spanned by only single photon terms, and
we recursively evaluated the end-to-end entangled state
using a POVM to model lossy-noisy single-photon de-
tectors. This calculation required us to exactly solve a
variant of the logistic map from chaos theory. Using our
expression for the quantum state, we determined quantit-
ies such as the success probability of entanglement swap-
ping at any given swap level, the error rate of the raw
bits obtained by Alice and Bob in a QKD application if
they were to measure this state in the same bases, and the
sifting probability. One can find any other quantity of in-
terest from the quantum state, such as the entanglement
of formation or the fidelity with a maximally entangled
state (see Appendix D for the exact expression of fidelity
of the N -elementary link end-to-end state). Our analysis
took into account all major imperfections of the detectors
(such as sub-unity detection efficiencies, and dark click
probabilities) and the channel (such as transmissivity and
thermal noise, where the latter can be included into an
effective dark-click probability term). We also evaluated
an exact scaling law for how the quantum bit error rate
(QBER) evolves from one swap level to the next, which
is of great practical importance since it gives us a way to
predict the QBER on long repeater chains by making a
physical measurement on one noisy elementary link.

We evaluated the rate-vs.-loss envelope attained by
this repeater-chain architecture, and showed that the
secret-key rate achieved can be expressed as R = Aηξ,
where η is the overall Alice-to-Bob channel transmit-
tance, and A and ξ < 1 are constants that depend upon
various loss and noise parameters of the system. This
in turn proved that the repeater chain’s performance
beats the TGW bound, a fundamental rate-loss upper

bound that no QKD protocol can exceed without the use
of quantum repeaters [7], which imposes a linear rate-
transmittance decay (i.e., ξ = 1). This, to our know-
ledge, is one of the first rigorous proofs of the efficacy of
any quantum repeater protocol.

We then extended our theoretical analysis to the case
when the entangled photon pair sources have a non-zero
two-pair emission probability, p(2). For this, we used
an efficient numerical model we developed for simulating
bosonic states, linear-optic unitaries, and noisy measure-
ments. We found that when p(2) > 0, the rate-distance
tradeoff plots—with N elementary links dividing up the
entire range L km—are almost unaffected (i.e., remain
almost at their p(2) = 0 levels at any range L), for all N
up to below a maximum value Nmax, where Nmax(p(2))
decreases as p(2) is increased. If Nmax(p(2)) or more
elementary links are used, the key rate is worse at all
range L compared to when fewer elementary links are
used. Finally, we developed a phenomenological model
for Nmax(p(2)) by an empirical extension of the aforesaid
QBER scaling law for the p(2) > 0 case. One of the most
commonly employed optical entanglement sources uses
spontaneous parametric downconversion (SPDC) devices
heralded by single photon detectors [43]. SPDC sources
have a high enough non-zero p(2) to render them inef-
fective as sources for the repeater protocol as described
in this paper. In a subsequent paper [23], we show how
photon number resolving detectors can be employed to
obtain an improved sifting performance by post-selecting
out erroneous multi-photon events stemming from non-
zero p(2), and thereby making it possible to retrieve the
good rate-vs.-distance scaling.

One can in principle replace the linear-optic entangle-
ment swapping scheme with more advanced schemes with
improved heralding efficiencies, such as the one proposed
in Ref. [45] that injects entangled states into a beamsplit-
ter network and heralds the total number of clicks from
an array of photon-number-resolving detectors, one that
uses inline squeezers to beat the 50%-efficiency limit of a
linear-optic BSM [46], and another proposal that can at-
tain 75% or higher heralding efficiencies via linear-optics
and injection of (un-entangled) single-photons [39]. Our
theoretical technique can be readily used to analyze the
repeater-chain when the BSMs are replaced by one of
the aforesaid schemes. At each swap stage, after the
post-selection by the BSM, the projected shared state
will still lie in the span of the 4-mode 2-qubit ‘dual-rail’
basis, but there will be two extra coefficients to track,
since the advanced BSMs can identify all four Bell states
(as opposed to only two by the linear-optic scheme [27]).
It is quite likely that the final expression for Qi, and the
error-propagation law will still depend upon td, tr, and
te, where the latter two are the same functions of the
fractional probability transfer to classical correlations at
each swap stage (which should be smaller compared to
when the linear-optic BSM is used). Finally, our numer-
ical model allows us to evaluate these enhanced schemes
as well, and also introduce other non-idealities such as fi-
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nite memory times at the repeaters, non-linearities in the
fiber and memories, and temporal non-idealities of single
photon detectors such as timing jitter and after-pulsing
probabilities. The analysis of quantum repeater proto-
cols that use these advanced BSM schemes, a possible
extension where multiplexing extends across elementary
links (i.e. using more than one connection between ele-
mentary links), and protocols that may use quantum
purification at intermediate stages, are left for future
work. Furthermore, we hope that the compact rate-loss
scaling results we developed in this paper for a linear
repeater chain will help seed future network theoretic
analyses, for instance optimal rate regions for multi-flow
routing, traffic scheduling, and resource allocation, in
a quantum network with more complex topologies. Fi-
nally, we expect our work to incite similar rate-loss ana-
lysis of other quantum repeater protocols, which will en-
able quantitative resource-performance tradeoff-studies
and meaningful comparisons of different protocols.
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Appendix A: Proof of Proposition 2: Quantum state
of the elementary link, and entangled state

propagation through a sequence of swap stages

1. The elementary link

We first prove Proposition 2 for the case i = 1, and
derive the post-selected quantum state of the elementary
link. Let us first consider how we should model non-
ideal photodetectors. Ideally we would like to say that
each of the four detectors required for the BSM individu-
ally measures a Hermitian operator with eigen-projectors
{Π0,Π1,Π2}, the Πn = |n〉〈n| signifying the presence of
n photons. Next we note that we are allowed to limit
ourselves to a three-dimensional subspace of the Fock
space because we know we will never have more than

two photons at a detection site (since we limit the the-
oretical part of analysis to the case when the sources
have p(2) = 0 and assume that any thermal noise in
the channel is negligible at typical optical frequencies).
The detectors are assumed to have a sub-unity detec-
tion efficiency ηe—which may be thought of as arising
from a beamsplitter with transmissivity ηe just in front
of an ideal detector—and independently there may also
be a probability Pe for the detector to trigger in the ab-
sence of a photon. This means the “no click” and “click”
events in the individual detectors really correspond to a
two-outcome POVM {F0, F1}, with

F0 = (1− Pe)Π0 + (1−Ae)Π1 + (1−Be)Π2 (A1)

F1 = PeΠ0 +AeΠ1 +BeΠ2 . (A2)

where we take

Ae = 1− (1− Pe)(1− η) (A3)

Be = 1− (1− Pe)(1− η)2 . (A4)

The way to understand F0, the “no click” signal for in-
stance, is this: If there are no actual photons present, one
will get this outcome with probability 1 − Pe, the prob-
ability for no false alarm at the detector. On the other
hand, if there is a single photon present both it must
disappear and there still be no false alarm; hence a coef-
ficient (1−Pe)(1−η) in front of Π1. Finally, for the case
that two photons are present, both of them must be lost
and yet no false alarm must appear; hence a coefficient
of (1− Pe)(1− η)2.

We next note that we may incorporate the channel
transmittance λ (corresponding to propagation loss of
each of the halves of the Bell pairs from two ends of the
elementary link) directly into the detection efficiency ηe,
by defining an effective detection efficiency ηeλ while as-
suming the channel is lossless, rather than accounting for
the channel loss in our description of the quantum states
arriving at them. One can see this through a simple bo-
sonic mode-operator analysis including two stages of loss,
but the intuition should be clear. Consequently, at the
center of an elementary link we can assume the state it
will attempt to link is a clean |M+〉|M+〉, while the four
detectors in the BSM are working at efficiency

η = ηeλ . (A5)

This greatly simplifies the analysis by not having to treat
the states to be linked as mixed states.

For the purposes of the derivations in this subsection,
let us label the four spatial modes involved in an element-
ary link by a, b, c, and d, so that the initial quantum state
is more explicitly |M+

ab〉|M
+
cd〉. The BSM will be applied

to modes b and c. What this entails is that the modes
first impinge on a 50-50 beamsplitter, which enacts a
mode transformation

b†j −→
√

1

2

(
b†j + c†j

)
and c†j −→

√
1

2

(
b†j − c

†
j

)
.

(A6)
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The consequence of this is that the state presented to the
photo detectors is a massively entangled one:

| swap〉 =
1

4
[|10, 11, 00, 01〉 − |10, 01, 10, 01〉

+
√

2|10, 02, 00, 10〉+ |10, 10, 01, 01〉
−|10, 00, 11, 01〉 −

√
2|10, 00, 02, 10〉

+
√

2|01, 20, 00, 01〉+ |01, 11, 00, 10〉
−|01, 10, 01, 10〉 −

√
2|01, 00, 20, 01〉

+|01, 01, 10, 10〉 − |01, 00, 11, 10〉] (A7)

Ideally then, if one were to obtain a 1-2 coincidence
or a 3-4 coincidence in the detectors at the four dual-rail

modes, a successful entanglement swap would be declared
and a new state |M+

ad〉 would be ascribed to the photons
in quantum memory. However with noisy detectors, one
should use Lüders’ rule for the POVM above to get the
new state. For instance, suppose we were to detect a 1-2
coincidence in the detectors. Then, this is signified by
the POVM element

F1 ⊗ F1 ⊗ F0 ⊗ F0

= P 2
e (1− P 2

e )2Π0 ⊗Π0 ⊗Π0 ⊗Π0

+ P 2
e (1− P 2

e )(1−Ae)Π0 ⊗Π0 ⊗Π0 ⊗Π1 + . . .(A8)

and the new state for the a-d system will be

ρ′ad =
1

Prob(F1 ⊗ F1 ⊗ F0 ⊗ F0)
trbc

(√
F1 ⊗ F1 ⊗ F0 ⊗ F0 |swap〉〈swap|

√
F1 ⊗ F1 ⊗ F0 ⊗ F0

)
. (A9)

From here on out is just a question of brute-force cal-
culation. At the end of it, one finds:

ρ′ad =
1

8s1

{[
A2
e(1− Pe)2 + P 2

e (1−Ae)2
]
|M+

ad〉〈M
+
ad|

+ 2AePe(1−Ae)(1− Pe)|M−ad〉〈M
−
ad|

+ Pe(1− Pe)
[
Pe(1−Be) +Be(1− Pe)

]
×(

|01, 01〉〈01, 01|+ |10, 10〉〈10, 10|
)}

, (A10)

where, the success probability to herald an elementary
link ρ1, Ps0 = Prob(F1 ⊗ F1 ⊗ F0 ⊗ F0) = 4s1, where

s1 =
1

8

[
(Ae + Pe − 2AePe)

2

+Pe(1− Pe)(Be + Pe − 2BePe)] . (A11)

Thus one has mostly the swap expected. But with some
probability one gets an unexpected swap, and with some
probability an induced classical correlation between the
photons in the memory. By symmetry one has the same
result for a 3-4 coincidence, and for 1-4 and 2-3 coincid-
ences, one just interchanges the roles of |M+

ad〉 and |M−ad〉
in this expression. We therefore have the state of an
elementary link given by:

ρ1 =
1

s1

[
a1|M+〉〈M+|+ b1|M−〉〈M−|+ c1|ψ0〉〈ψ0|

+ d1|ψ1〉〈ψ1|+ d1|ψ2〉〈ψ2|+ c1|ψ3〉〈ψ3|] , (A12)

where |ψ0〉 = |01, 01〉, |ψ1〉 = |01, 10〉, |ψ2〉 = |10, 01〉,
|ψ3〉 = |10, 10〉, |M±〉 = [|ψ2〉 ± |ψ1〉] /

√
2, s1 = a1 + b1 +

2(c1+d1) is a normalization constant, and the coefficients

a1, b1, c1, d1 are given by:

a1 ≡ ae =
1

8

[
P 2
e (1−Ae)2 +A2

e(1− Pe)2
]
,

b1 ≡ be =
1

8
[2AePe(1−Ae)(1− Pe)] ,

c1 ≡ ce =
1

8
Pe(1− Pe) [Pe(1−Be) +Be(1− Pe)] ,

d1 ≡ de = 0,

where Ae = ηeλ+Pe(1− ηeλ) and Be = 1− (1−Pe)(1−
ηeλ)2.

2. Connections through swap stages at the
quantum repeater nodes

Next we consider the case i ≥ 2. The proof proceeds as
follows. We first realize, by term-by-term evaluation of
connecting two copies of ρ1, that the state ρi never goes
outside the span of |ψ0〉, |ψ1〉, |ψ2〉, |ψ3〉. It is convenient
to express the state ρi as:

ρi =
1

si

[
r
(i)
1 |M+〉〈M+|+ r

(i)
2 |M−〉〈M−|+ r

(i)
3 |ψ0〉〈ψ0|

+ r
(i)
4 |ψ1〉〈ψ1|+ r

(i)
5 |ψ2〉〈ψ2|+ r

(i)
6 |ψ3〉〈ψ3|

]
, (A13)

where si =
∑6
l=1 r

(i)
l . Then, we realize that each sub-

sequent connection evolves the state as,

r
(i+1)
l =

6∑
j=1

6∑
k=1

Cj,k,lr
(i)
j r

(i)
k , (A14)
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with the matrix C given by (each term of which is calcu-
lated by brute-force algebra):

C(1, 1, :) = [a, b, c, 0, 0, c]

C(1, 2, :) = [b, a, c, 0, 0, c]

C(1, 3, :) = [0, 0, a+ b, 0, 2c, 0]

C(1, 4, :) = [0, 0, 0, a+ b, 0, 2c]

C(1, 5, :) = [0, 0, 2c, 0, a+ b, 0]

C(1, 6, :) = [0, 0, 0, 2c, 0, a+ b],

C(2, 1, :) = [a, b, c, 0, 0, c]

C(2, 2, :) = [b, a, c, 0, 0, c]

C(2, 3, :) = [0, 0, a+ b, 0, 2c, 0]

C(2, 4, :) = [0, 0, 0, a+ b, 0, 2c]

C(2, 5, :) = [0, 0, 2c, 0, a+ b, 0]

C(2, 6, :) = [0, 0, 0, 2c, 0, a+ b],

C(3, 1, :) = [0, 0, a+ b, 2c, 0, 0]

C(3, 2, :) = [0, 0, a+ b, 2c, 0, 0]

C(3, 3, :) = [0, 0, 4c, 0, 0, 0]

C(3, 4, :) = [0, 0, 0, 4c, 0, 0]

C(3, 5, :) = [0, 0, 2(a+ b), 0, 0, 0]

C(3, 6, :) = [0, 0, 0, 2(a+ b), 0, 0],

C(4, 1, :) = [0, 0, 2c, a+ b, 0, 0]

C(4, 2, :) = [0, 0, 2c, a+ b, 0, 0]

C(4, 3, :) = [0, 0, 2(a+ b), 0, 0, 0]

C(4, 4, :) = [0, 0, 0, 2(a+ b), 0, 0]

C(4, 5, :) = [0, 0, 4c, 0, 0, 0]

C(4, 6, :) = [0, 0, 0, 4c, 0, 0],

C(5, 1, :) = [0, 0, 0, 0, a+ b, 2c]

C(5, 2, :) = [0, 0, 0, 0, a+ b, 2c]

C(5, 3, :) = [0, 0, 0, 0, 4c, 0]

C(5, 4, :) = [0, 0, 0, 0, 0, 4c]

C(5, 5, :) = [0, 0, 0, 0, 2(a+ b), 0]

C(5, 6, :) = [0, 0, 0, 0, 0, 2(a+ b)],

C(6, 1, :) = [0, 0, 0, 0, 2c, a+ b]

C(6, 2, :) = [0, 0, 0, 0, 2c, a+ b]

C(6, 3, :) = [0, 0, 0, 0, 2(a+ b), 0]

C(6, 4, :) = [0, 0, 0, 0, 0, 2(a+ b)]

C(6, 5, :) = [0, 0, 0, 0, 4c, 0]

C(6, 6, :) = [0, 0, 0, 0, 0, 4c], (A15)

where the “: ” sign indicates all entries C(j, k, l) for 1 ≤
l ≤ 6. The rest is just writing out r

(i+1)
l explicitly, and

realizing that,

r
(i)
3 = r

(i)
6 , and (A16)

r
(i)
4 = r

(i)
5 , (A17)

and hence the fact that we can rename the coefficients as:
r
(i)
1 = ai, r

(i)
2 = bi, r

(i)
3 = r

(i)
6 = ci, and r

(i)
4 = r

(i)
5 = di.

Appendix B: Evaluating the success probabilities

It is easy to realize from the derivation of the states ρi
that the success probability (to connect two copies of ρi−1
to obtain one copy of ρi) is simply given by Ps(i) = 4si,
for i ≥ 2. The probability an elementary link is success-
fully created is Ps(1) = 1− (1− Ps0)M , where Ps0 = 4s1
is the probability of successful creation of an elementary
link ρ1 in one of the M frequencies at the center of the
elementary link, where s1 = ae + be + 2ce. It is simple
now to calculate the success probabilities Ps(i) by prov-
ing that si = s, ∀i ≥ 2. We thus have the following
proposition.

Proposition 6 The success probability of connecting two
copies of ρi−1 to produce a usable copy of ρi, Ps(i) = 4si,
where

si = a+ b+ 2c , s, 2 ≤ i ≤ n+ 1. (B1)

Proof. Denoting xi = ai + bi + ci + di, and yi = ci + di,
using Eqs. (6), (7), (8), (9), we have,

xi+1 =
1

s2i

[
(a+ b+ c)(x2i + y2i ) + 2cxiyi

]
, (B2)

yi+1 =
1

s2i

[
c(xi − yi)2 + 2(a+ b+ 2c)xiyi

]
, (B3)

with si = xi + yi by definition. It is easy to now see that
xi+1 + yi+1 = a+ b+ 2c ≡ s, for all i ∈ {2, 3, . . . , n+ 1}.
Note that Ps(1) = 1− (1−4s1)M , with s1 = ae+be+2ce
for the elementary link.

Appendix C: Evaluating the sift probability

In this Appendix, we derive P1, the probability that
Alice and Bob get a successful ‘sift’, i.e., they decide to
use their click outcomes for further processing to extract
a key when they measure their halves of the shared en-
tangled state ρn+1 (given N = 2n elementary links have
been connected successfully).

Let us first assume Alice and Bob share the state ρi,
and they make a measurement (in the same basis). We
proceed as follows.

Proposition 7 The sift probability P1 is the probability
that Alice and Bob both get clicks on at least one of each
of their detectors (i.e., neither gets a no-click event on
both detectors). Regardless of the value of i,

P1 = (q1 + q2 + q3)2, (C1)

where q1 = (1 − Pd)Ad, q2 = (1 − Ad)Pd, q3 = PdAd,
with Ad = ηd + (1 − ηd)Pd, functions of the detection
efficiency (ηd) and dark-click probability (Pd) of each of
the four single-photon detectors involved (two of Alice’s
and two of Bob’s).
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Proof. This can be shown rigorously by simply
evaluating P1 = Tr[ρi(M0101 + M0110 + M1001 +
M1010 +M1101 +M1110 +M0111 +M1011 +M1111)], and
Mijkl ≡ Fi ⊗ Fj ⊗ Fk ⊗ Fl, where the POVM elements
of a lossy-noisy single-photon detector, F0 and F1 are
defined above, using the expression of ρi in Eq. (D12).
Here we will sketch a more intuitive proof. Note that
ρi ∈ span(|ψ0〉, |ψ1〉, |ψ2〉, |ψ3〉), with |ψ0〉 = |01, 01〉,
|ψ1〉 = |01, 10〉, |ψ2〉 = |10, 01〉, |ψ3〉 = |10, 10〉, since

|M±〉 = [|ψ2〉 ± |ψ1〉] /
√

2. Therefore, Alice’s and Bob’s
reduced density operators always have exactly one
photon in one of two modes. Let us define q1 , P [noflip]
to be the probability that a |01〉 state is detected as
“(0, 1)” by the lossy-noisy detector, where (0, 1) stands
for (no-click, click). Clearly, q1 is also the probability
that |10〉 is detected as “(1, 0)”. In order for “no flip”
to happen, no dark click should appear in the mode
in the vacuum state (this happens with probability
1 − Pd), and that the photon in the other mode should
either be detected by the lossy detector (happens with
probability ηd, in which case it does not matter whether
or not a dark click appears), or the photon does not get
detected, and a dark click appears (which happens with
probability (1−ηd)Pd). Therefore, q1 = (1−Pd)Ad, with

Ad = ηd + (1 − η)Pd. Similarly, we define q2 , P [flip]
to be the probability that |01〉 is detected as “(1, 0)”
(or, |10〉 is detected as “(0, 1)”). For a “flip” event
to happen, a dark click should appear in the vacuum
mode (probability Pd), and the photon containing mode
should not be detected and a dark click must not appear
(happens with probability, (1− ηd)(1− Pd)). Therefore,
q2 = (1− ηd)(1− Pd)Pd = (1−Ad)Pd. Finally, define q3
to the probability that the “(1, 1)” detection is obtained
(either for a |10〉 or a |01〉 input). This is given by the
probability that a dark click appears in the vacuum
mode (Pd) and the probability that the single photon
generates a click, i.e., ηd + (1 − ηd)Pd = Ad. Therefore,
q3 = PdAd. Clearly, q1 + q2 + q3 need not add up to
1 in general, since one of two detectors may output
the “(0, 0)” outcome, which is when Alice and Bob
discard the measurement—a failed sift event. Therefore
(q1 + q2 + q3)2 is the probability that Alice and Bob
obtain a usable detection outcome, i.e., both of them
collectively obtain one of the nine detection outcomes:
(0, 1; 0, 1), (0, 1; 1, 0), (1, 0; 0, 1), (1, 0; 1, 0), (0, 1; 1, 1),
(1, 0; 1, 1), (1, 1; 0, 1), (1, 1; 1, 0), (1, 1; 1, 1). This is true
regardless of the actual fraction of |10〉 and |01〉 in
Alice’s and Bob’s states. Hence, P1 = (q1 + q2 + q3)2.

Appendix D: The QBER and secret key rate

In this Appendix, we will evaluate the explicit formula
for Qi, the quantum bit-error rate (QBER), which is the
probability that Alice and Bob obtain a mismatched raw
key bit, despite the fact that they make measurements
in the same bases on a successfully-created copy of ρi,
and that they both get exactly single-clicks (on the two

modes of their respective qubits). The first step in doing
so is to solve for the quantum state ρi more explicitly
than what the recursions in Proposition 2 give us.

1. Explicit solution for the quantum state, ρi

Recall that we proved above that si = a + b + 2c ,
s, 2 ≤ i ≤ n + 1, by defining xi = ai + bi + ci + di, and
yi = ci + di, and using Eqs. (6), (7), (8), (9), to obtain
xi+1 + yi+1 = a+ b+ 2c ≡ s, for all i ∈ {2, 3, . . . , n+ 1},
and that s1 = ae + be + 2ce for the elementary link. Let
us now proceed to calculate the coefficients ai, bi, ci and
di, all explicitly as a function of i, 1 ≤ i ≤ n+ 1, and the
system’s loss and noise parameters.

Proposition 8 ai + bi ≡ zi is given by,

zi = ν

(
z1
ν
× s

s1

)2i−1

, i ≥ 2, (D1)

where z1 = ae + be, s1 = ae + be + 2ce, ν = s2/(a + b),

and s , si, for i ≥ 2.

Proof. The proof follows by realizing that with the defin-
itions in Eqs. (B2) and (B3), xi − yi = ai + bi, and,

xi+1 − yi+1 =
1

s2i
(a+ b)(xi − yi)2. (D2)

Remark 9 Note that since xi+yi = si, and xi−yi = zi,
we have,

yi = ci + di =
1

2

[
si − ν

(
sz1
s1ν

)2i−1]
. (D3)

As we will see in the next subsection, the error probabil-
ity Qi depends only on 2ci/si—the fractional probability
of the classical correlations when two copies of ρi−1 are
connected. Note that (ai + bi) is the sum fractional prob-
ability of the Bell states |M+〉 (ai) and |M−〉 (bi) when
two copies of ρi−1 are connected, and si = (ai+ bi)+2ci.
Since we already have ci + di explicitly available, let us
calculate ci − di ≡ ui.

Proposition 10 The difference ci−di ≡ ui can be found
as the solution to the following quadratic difference equa-
tion,

wi+1 = wr + 2(1− 2wr)wi(1− wi), (D4)

where wi , ui/zi, wr = c/(a+ b), and w1 = ce/(ae+ be).

Proof. The proof follows from simply writing down
ci+1 − di+1 using Eqs. (8) and (9), substituting wi =
ui/zi, and simplifying.
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Remark 11 The difference equation equation (D4) re-
duces to the famous Logistic Map, when wr = 0. The
solution to the logistic map wi+1 = Rwi(1 − wi), wi ∈
(0, 1), is in general chaotic, but for R = 2 (which is ex-
actly what (D4) reduces to when wr = 0) was found
exactly by Ernst Schröder in 1870, as:

wi =
1

2

[
1− (1− 2w1)2

i−1
]
. (D5)

Theorem 12 The quadratic difference equation, wi+1 =
wr + 2(1 − 2wr)wi(1 − wi), which is a variant of the
logistic map wi+1 = Rwi(1 − wi) with R = 2, can be
exactly solved, and the solution is given by:

wi =
1

2

[
1− 1

β
[β(1− 2w1)]

2i−1
]
, (D6)

where β = 1− 2wr. This correctly reduces to (E2) when
wr = 0.

Proof. See next Section for the proof.
Next, we find ci. We add the following two expressions:

ci + di = (si − zi)/2, and (D7)

ci − di = ui =
zi
2

[
1− 1

β
[β(1− 2w1)]

2i−1
]
, (D8)

and divide by 2, to obtain:

ci =
si
4

[
1− zi

βsi
[β(1− 2w1)]

2i−1
]
. (D9)

At this point, since we have ci, it is sufficient to calcu-
late Qi (see next subsection). However, let us go ahead
and evaluate ai and bi as well, so that we have a complete
characterization of the quantum state ρi, which can be
used to calculate other quantities of interest, such as the
fidelity, entanglement of formation, etc.

Since we already have ai + bi = zi from Proposition 8,
we need to calculate ai − bi.

Proposition 13 ai − bi ≡ vi is given by the following
recursion,

vi =
1

s2i
(a− b)zivi, (D10)

which can be solved to obtain:

vi =

(
a− b
a+ b

)i−1(
ae − be
ae + be

)
zi, (D11)

where zi is given by Eq. (D1).

Proof. The proof follows simply by subtracting the ex-
pressions for bi+1 from that of ai+1, given in Proposi-
tion 2, and simplifying.

With that, we finally have the state ρi as,

ρi =
1

si

[
ai|M+〉〈M+|+ bi|M−〉〈M−|+ ci|ψ0〉〈ψ0|

+ di|ψ1〉〈ψ1|+ di|ψ2〉〈ψ2|+ ci|ψ3〉〈ψ3|] , (D12)

where |ψ0〉 = |01, 01〉, |ψ1〉 = |01, 10〉, |ψ2〉 = |10, 01〉,
|ψ3〉 = |10, 10〉, |M±〉 = [|ψ2〉 ± |ψ1〉] /

√
2, si = ai + bi +

2(ci + di), and the coefficients given as:

ai =
1

2

[
1 +

(
a− b
a+ b

)i−1(
ae − be
ae + be

)]
zi,

bi =
1

2

[
1−

(
a− b
a+ b

)i−1(
ae − be
ae + be

)]
zi,

ci =
si
4

[
1− zi

si(1− 2wr)
[(1− 2wr)(1− 2w1)]

2i−1
]
,

di =
si
4
− zi

2

[
1− 1

2(1− 2wr)
[(1− 2wr)(1− 2w1)]

2i−1
]
,

with w1 = ce/(ae+be), wr = c/(a+b), s1 = ae+be+2ce,
si = s = a+ b+ 2c, 2 ≤ i ≤ n+ 1, and zi given by,

zi =

(
s2

a+ b

)(
1

(1 + 2w1)(1 + 2wr)

)2i−1

, i ≥ 2,

(D13)
with z1 = ae + be. The expressions for ai, bi, ci, and
di correctly reduce to ae, be, ce, and 0, respectively, for
i = 1. As an example calculation, the fidelity of ρi (with

respect to |M+〉), Fi =
√
〈M+|ρi|M+〉 is given by, Fi =√

(ai + di)/si.

2. Evaluating the formula for QBER

Proposition 14 Assume that Alice and Bob have made
a measurement on ρi, i ∈ {1, . . . , n+ 1}. Conditioned on
the fact that they get exactly one click each on their qubits
(which happens with probability P1, as proven in Proposi-
tion 7), the probability Qi, that they obtain a mismatched
bit (a bit error) is given by,

Qi =
1

2

[
1− td

tr
(trte)

2i−1
]
, 1 ≤ i ≤ n+ 1, (D14)

where te = (ae + be − 2ce)/(ae + be + 2ce), tr = (a +
b− 2c)/(a+ b+ 2c), and td = ((q1 − q2)/(q1 + q2 + q3))2

are loss-noise parameters of detectors in the elementary
links, memory nodes, and Alice-Bob, respectively.

Proof. The first step is to show that Qi can be expressed
as follows:

Qi =
1

2
[1− td(1− 2ζi)] , (D15)

where ζi = 2ci/si, td = ((q1 − q2)/(q1 + q2 + q3))2. Since
we have shown that si = s = a + b + 2c, i ≥ 2, and
s1 = ae + be + 2ce, we only need to solve for ci, in order
to evaluate Qi. In order to prove (D15), we need to
evaluate

Qi =
1

P1

(
Tr
[
ρi(M0101 +M1010 +

1

2
{M1101 +M1110 +M0111 +M1011 +M1111})

])
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where the denominator P1 = Tr[ρi(M0101 + M0110 +
M1001 + M1010 + M1101 + M1110 + M0111 + M1011 +
M1111)] = (q1 + q2 + q3)2. We first note that ρi is of
the form,

ρi = r1|M+〉〈M+|+ r2|M−〉〈M−|+ r3|ψ0〉〈ψ0|
+ r4|ψ1〉〈ψ1|+ r5|ψ2〉〈ψ2|+ r6|ψ3〉〈ψ3|, (D16)

with
∑6
i=1 ri = 1. Noting that the relative contributions

of |ψ0〉, |ψ1〉, |ψ2〉, |ψ3〉 in ρi are r3, r4 + (r1 + r2)/2, r5 +
(r1 + r2)/2, and r6 respectively, we now evaluate each of
the 7 terms in the expression for Qi as follows:

Tr(ρiM0101) = q21r3 + q1q2

[
r4 +

1

2
(r1 + r2)

+r5 +
1

2
(r1 + r2)

]
+ q22r6,

Tr(ρiM1010) = q22r3 + q1q2

[
r4 +

1

2
(r1 + r2)

+ r5 +
1

2
(r1 + r2)

]
+ q21r6,

1

2
Tr(ρiM1101) =

1

2

[
r3q3q1 + r4q3q2 + r5q3q1 + r6q3q2

+

(
r1 + r2

2

)
q3q2 +

(
r1 + r2

2

)
q3q1

]
,

1

2
Tr(ρiM1110) =

1

2

[
r3q3q2 + r4q3q1 + r5q3q2 + r6q3q1

+

(
r1 + r2

2

)
q3q2 +

(
r1 + r2

2

)
q3q1

]
,

1

2
Tr(ρiM0111) =

1

2

[
r3q3q1 + r4q3q1 + r5q3q2 + r6q3q2

+

(
r1 + r2

2

)
q3q1 +

(
r1 + r2

2

)
q3q2

]
,

1

2
Tr(ρiM1011) =

1

2

[
r3q3q2 + r4q3q2 + r5q3q1 + r6q3q1

+

(
r1 + r2

2

)
q3q2 +

(
r1 + r2

2

)
q3q1

]
,

1

2
Tr(ρiM1111) =

1

2

[
r3q

2
3 + r4q

2
3 + r5q

2
3 + r6q

2
3

+

(
r1 + r2

2

)
q23 +

(
r1 + r2

2

)
q23

]
.

Adding the above, and substituting P1 = (q1 + q2 + q3)2,
we get,

Qi =
(q1 − q2)2(r3 + r6) + 2q1q2 + (q1 + q2)q3 +

q23
2

(q1 + q2 + q3)2
.

(D17)

Substituting r3 = r6 = ci/si, defining ζi = 2ci/si, we get

1− 2Qi =
1

(q1 + q2 + q3)2

[
(q1 + q2 + q3)2 − 2ζi(q1 − q2)2

−4q1q2 − 2(q1 + q2)q3 − q23
]

=
1

(q1 + q2 + q3)2

[
(q1 + q2 + q3)2 − 2ζi(q1 − q2)2

−(q1 + q2 + q3)2 + (q1 − q2)2
]

= (1− 2ζi)

(
q1 − q2

q1 + q2 + q3

)2

(D18)

Defining td = ((q1−q2)/(q1 +q2 +q3))2, Eq. D15 follows.

We now divide 2ci (from Eq. (D9)) by si to obtain,

ζi =
2ci
si

=
1

2

[
1− zi

βsi
[β(1− 2w1)]

2i−1
]
. (D19)

Substituting the expression for zi above, and realizing
that si = s, i ≥ 2, and s1 = ae + be + 2ce, it is easy
to obtain the expression for Qi in Eq. D14 after some
algebraic manipulations. The i = 1 case must be handled
separately (since s1 6= si, i ≥ 2), but the final expression
in Eq. D14 is valid for all i = 1, 2, . . . , n+ 1.

The following corollary is an interesting consequence
of Eq. D14:

Corollary 15 The following law for error propagation
holds through the successive connections of elementary
links:

(1− 2Qi+1) =
tr
td

(1− 2Qi)
2, 1 ≤ i ≤ n. (D20)

An interesting thing to note about the error propagation
is the constant tr = (1 − 2wr)/(1 + 2wr), which is a
function of the parameter 2wr = 2c/(a + b). We saw
that when two pure bell states are ‘connected’ by a linear-
optic BSM with lossy-noisy detectors, 2c is the fractional
probability that spills over into classical correlations (the
nonentangled part), and a+ b is the fractional probability
that goes into one of two entangled bell states.

Putting everything together, we finally have an expres-
sion for the secret-key rate,

R =
P1PsuccR2(Qn+1)

2Tq
secret-key bits/s, (D21)

where Psucc =
[
4s
(
1− (1− 4s1)M

)]2n
/4s, P1 = (q1 +

q2)2, and Qn+1 =
[
1− td

tr
(trte)

2n
]
/2, are all defined in

terms of the detector loss and noise parameters, and the
total number of elementary links N = 2n.
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Appendix E: Solution of the modified logistic map

In this section, we prove the following new variation
of the logistic map, whose solutions are known to have
chaotic behavior in general.

Theorem 16 The quadratic difference equation, wi+1 =
wr + 2(1 − 2wr)wi(1 − wi), which is a variant of the
logistic map wi+1 = 2wi(1 − wi) with R = 2, can be
exactly solved, and the solution is given by:

wi =
1

2

[
1− 1

µ
[µ(1− 2w1)]

2i−1
]
, i ≥ 1, (E1)

where µ = 1− 2wr, and the initial value w1 specified.

Proof. We start with the solution to the standard lo-
gistic map with R = 2, i.e., with wr = 0. The solution is
given by:

wi =
1

2

[
1− (1− 2w1)2

i−1
]
. (E2)

We use the ansatz that the modified map has the solution
of the form

wi =
1

2

[
1− (1− 2w1)2

i−1+ξi
]
. (E3)

Inserting this into the difference equation, we get

1

2

[
1− (1− 2w1)2

i+ξi+1
]

=

wr +
(1− 2wr)

2

[
1− (1− 2w1)2

i+ξi
]
. (E4)

Letting yi = (1− 2w1)2
i+ξi

and µ = 1− 2wr, we obtain

yi+1 = µ2y2i , (E5)

which can be solved to obtain

yi =
1

µ2
(µ2y1)2

i−1

, i ≥ 1, (E6)

Using this to solve for ξi, we get

ξi = i− log2

[
2i log2(µ(1− 2w1))− log2(µ2)

log2(1− 2w1)

]
. (E7)

Finally, inserting the expression for ξi into the ansatz, we
obtain the following expression for wi.

wi =
1

2

[
1− 1

µ
(µ(1− 2w1))2

i−1

]
, i ≥ 1. (E8)

Appendix F: Derivation of the rate-loss envelope

In subsection F 1 of this Appendix, we will show that
the key rate achieved over a range L, when divided up
into N equal segments, RN (L) can be upper bounded by

a three-piece approximation R
(UB)
N (L). In subsection F 2,

we will derive the envelope R(UB)(L) of the three-piece

upper bounds R
(UB)
N (L), which in turn is an upper bound

to the true rate-loss envelope. Finally, in subsection F 3,
we will derive an exact expression for the rate-loss en-
velope (assuming all detector dark clicks to be zero) and
show that when an optimal number N∗(L) of element-
ary links are employed at a given range L, the resulting
rate-loss envelope R(0)(L) = Aηξ, where η = e−αL.

1. Three-piece rate-loss upper bound for a given
number of elementary links

In this section, we will first discuss the intuition be-
hind why it is reasonable to expect that non-zero de-
tector dark clicks cannot increase the secret-key rate

achieved by the repeater protocol, i.e., RN (L) ≤ R(0)
N (L).

We will argue why a mathematically rigorous proof of
above is not trivial, despite the fact that the statement
sounds intuitively obvious. In the second part of this
section, we will provide a proof of Theorem 3, assuming

RN (L) ≤ R(0)
N (L) holds for all N ≥ 1.

a. Non-zero dark clicks can only decrease the secret-key
rate: an intuitive argument

Let us consider the model for a non-ideal single photon
detector developed in Section A 1. The “no click” and
“click” events at the output of a single photon detector,
of detection efficiency η and dark click probability Pd,
correspond to a two-outcome POVM {F0, F1}, with

F0 = (1− Pd)Π0 + (1−Ad)Π1 + (1−Bd)Π2 (F1)

F1 = PdΠ0 +AdΠ1 +BdΠ2 . (F2)

where,

Ad = 1− (1− Pd)(1− η), and (F3)

Bd = 1− (1− Pd)(1− η)2 . (F4)

In writing the above POVM elements, we have assumed
that the quantum state ρ impinging on the detector has
no more than 2 photons, which holds true for all the
theoretical analysis in Section II that assumed p(2) =
0. Pictorially, this detection model is elucidated in
Fig. 14(a), where the lossy-noisy detector is modeled as
outputting the Boolean OR of two binary-valued random
variables X and Y , where X is the output of an ideal

single photon detector (
{
|0〉〈0|, Î − |0〉〈0|

}
) preceded by

a pure-loss beamsplitter of transmissivity η upon which
the input state ρ is incident, and Y is a binary-valued
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Figure 14. Two equivalent models of a lossy-noisy single
photon detector. X,Y, Z ∈ {0, 1} are binary-valued random
variables, and ‘g’ is the logical OR operation.

random variable that models dark clicks, is statistically
independent of X, and satisfies Pr[Y = 1] = Pd. It is
easy to see that this model is equivalent to the detec-
tion model shown in Fig. 14(b), where a lossy-noiseless
detector (detection efficiency η, zero dark-click probabil-
ity) is followed by a binary-input binary-output discrete
memoryless “Z” channel.

With the above two detection models applied to both
single photon detectors of Alice, and both detectors of
Bob, it is easy to see that a non-zero dark click prob-
ability at Alice’s and Bob’s detectors can be interpreted
as a (random) local post processing of the raw classical
data obtained by Alice and Bob when they (hypothetic-
ally) use zero-dark-click detectors. Since any local post-
processing of their detection outcomes cannot increase
the extractable secret-key rate, one concludes RN (L)
is bounded above by the rate achieved with an N link
chain when Alice’s and Bob’s detectors have zero dark
clicks. However, we need to prove RN (L) ≤ R

(0)
N (L),

whereR
(0)
N (L) is the secret key rate when all the detect-

ors in the system have zero dark click probability. So,
we continue the argument above—that of using the equi-
valent interpretation of lossy-noise single photon detec-
tion depicted in Fig. 14—for all the detectors used at the
N−1 repeater nodes (4(N−1) detectors) and at the cen-
ters of N elementary links (4NM single-frequency single-
photon detectors, or 4N single-photon detectors that can
spectrally resolve the M orthogonal frequencies). Let us

define R
(0),opt
N (L) to be the rate achievable when (a) all

detectors in the system have zero dark clicks, and (b) op-
timal post-processing of all the detector outputs is used
(note that Eve has access to most of these outputs as
well except for those at Alice’s and Bob’s stations). Let

us define Ropt
N (L) to be the rate achievable when (a) all

detectors in the system have non-zero dark click probab-

ilities (Pe, Pr, Pd, depending upon which detector), and
(b) optimal post-processing of all the detector outputs
is used. Note that not only Eve has access to most of
these detector outputs (ones at repeater nodes and ele-
mentary link centers), she could in fact be using noiseless
detectors and simulating dark clicks locally. Again, we
can rigorously argue that:

Ropt
N (L) ≤ R(0),opt

N (L), (F5)

since classical post-processing of the raw detector outputs
(which affects only Alice’s and Bob’s raw classical data)
cannot increase their extractable key rate. However, in
our repeater protocol, we use a specific post-processing of
the vector of detection outcomes at all the single photon
detectors. Hence we have:

RN (L) ≤ Ropt
N (L), and (F6)

R
(0)
N (L) ≤ R(0),opt

N (L). (F7)

Equations (F5), (F6) and (F7) are insufficient to conclude

that RN (L) ≤ R(0)
N (L).

b. Proof of Theorem 3

In this section, we will prove that:

R
(0)
N (L) ≤ R(UB)

N (L) =

 Rmax, for 0 ≤ L ≤ L′,
η
(
ABN

)
, for L′ < L < Lmax,

0, for L ≥ Lmax,
(F8)

with L′ = − log(η′)/α, η′ = (2/Mη2e)N , and Rmax =
A (η2rλ

2
m/2)N , where the constants A and B are given by,

A = η2d/(η
2
rλ

2
mTq) and B = η2rλ

2
mη

2
eM/4. Assuming that

RN (L) ≤ R(0)
N (L) holds ∀N ≥ 1, the bound in Theorem 3

will follow.
The rate R

(0)
N (L) assumes that Pd = Pr = Pe = 0,

which implies Q(N) = 0, and hence R2(Q(N)) = 1, 4s =
η2rλ

2
m/2, and 4s1 = η2eλ

2/2 = η2eη
1/N/2, since λ = η1/2N .

Also, P1 = (q1 + q2)2 = η2d. Since Ps0 = 4s1 < 1, since
it is a probability (of a BSM ‘success’ on one of the fre-
quency modes of one elementary link), with M ≥ 1 and

N ≥ 1, we have that
(
1− (1− 4s1)M

)N ≤ 1. Therefore,

Psucc = (4s)N−1
(
1− (1− 4s1)M

)N
(F9)

≤ (4s)N−1. (F10)

It is now easy to derive a constant (L-independent) upper

bound to R
(0)
N (L), the first segment of R

(UB)
N (L).

R
(0)
N (L) =

P1PsuccR2(Q(N))

2Tq
(F11)

=
η2d
2Tq

Psucc (F12)

≤
(

η2d
η2rλ

2
mTq

) (
η2rλ

2
m

2

)N
(F13)

= A

(
η2rλ

2
m

2

)N
≡ Rmax, (F14)
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where A = η2d/(η
2
rλ

2
mTq). Next, we observe that (1 −

4s1)M ≥ 1− 4Ms1 for M ≥ 1. In other words, 1− (1−
4s1)M ≤ 4Ms1. Hence, we have

Psucc = (4s)N−1
(
1− (1− 4s1)M

)N
(F15)

≤ (4s)N−1 (4Ms1)
N

(F16)

= (4s)N−1
(
Mη2eη

1/N

2

)N
(F17)

= (4s)N−1
(
Mη2e

2

)N
η (F18)

= η

(
1

4s

)(
4s
Mη2e

2

)N
(F19)

= η

(
2

η2rλ
2
m

)(
Mη2eη

2
rλ

2
m

4

)N
. (F20)

Therefore, we have,

R
(0)
N (L) =

P1PsuccR2(Q(N))

2Tq
(F21)

=
η2d
2Tq

Psucc (F22)

≤ η
(
ABN

)
, (F23)

where A = η2d/(η
2
rλ

2
mTq), and B = η2rλ

2
mη

2
eM/4, which

gives us the linear rate-transmittance (second segment)

of the upper bound R
(UB)
N (L). The third segment of

R
(UB)
N (L) is trivial since RN (L) = 0 for L ≥ Lmax.

2. Envelope of the three-piece rate-loss upper
bounds

In this section, we will prove Theorem 4, i.e., de-

rive the envelope of R
(UB)
N (L) over all N ≥ 1. The

main step will be to prove (see below) that the locus
of the corner points {XN} is given by Aηt with t =
log
(
η2rλ

2
m/2

)
/log

(
2/Mη2e

)
≤ 1. Next we argue that since

the line segments connecting XN and YN are propor-
tional to η (i.e., η

(
ABN

)
), that the locus of the corner

points {YN} cannot be above the locus of the corner
points {XN} (since t ≤ 1). We thereby conclude that

the envelope of the functions R
(UB)
N (L) over all N ≥ 1,

is given by Aηt. Finally, since RN (L) ≤ R
(0)
N (L) ≤

R
(UB)
N (L), given R(L) is the envelope of RN (L) over all

N ≥ 1 and given R(UB)(L) is the envelope of R
(UB)
N (L)

over all N ≥ 1, we get the statement of Theorem 4, i.e.,
R(L) ≤ R(UB)(L) = Aηt.

Let us now prove the only step we left open above, that
the locus of the corner points {XN} is given by Aηt with
t = log

(
η2rλ

2
m/2

)
/log

(
2/Mη2e

)
. The proof follows simply

by calculating the coordinates of XN (η′, R′), where η′ is

given by equating the first two segments of R
(UB)
N (L),

and solving for η:

(ABN )η′ = A

(
η2rλ

2
m

2

)N
, (F24)

which yields η′ = ( 2
Mη2e

)N . Clearly, R′ = Rmax =

A(η2rλ
2
m/2)N . Eliminating N from the expressions of

η′(N) and R′(N) by taking logarithms and dividing, it
is simple to obtain the solution of the locus of the points
{XN} as R′ = A(η′)t, where A = η2d/(η

2
rλ

2
mTq), and

t = log
(
η2rλ

2
m/2

)
/log

(
2/Mη2e

)
. Hence proved.

3. Exact expression for the rate-loss envelope

In this section, we will prove Theorem 5, i.e., derive
R(0)(L) = Aηξ, the exact solution of the envelope of

R
(0)
N (L) over all N ≥ 1, where A = η2d/(η

2
rλ

2
mTq), and

the exponent ξ is given by:

ξ =
log
[
β
(
1− (1− γz)M

)]
log z

, (F25)

where z is the unique solution of the following transcend-
ental equation in the interval (0, 1):(

1− (1− γz)M
)

log
[
β(1− (1− γz)M )

]
= γMz log z (1− γz)M−1 , (F26)

with, β = η2rλ
2
m/2, and γ = η2e/2.

We can express R
(0)
N (L) ≡ y = P1Psucc/2Tq =

η2dPsucc/2Tq as:

y = A

[
β

(
1−

(
1− γx1/N

)M)]N
, (F27)

where x = η is the channel transmittance, A =
η2d

η2rλ
2
mTq

,

β = η2rλ
2
m/2, and γ = η2e/2. Substituting t = 1/N , the

envelope of R
(0)
N (L) over N ≥ 1 is given by the simul-

taneous solution of f(x, y, t) = 0 and ∂f(x, y, t)/∂t = 0,
where

f(x, y, t) =
( y
A

)t
− β

(
1− (1− γxt)M

)
, (F28)

with t ≡ 1/N ∈ (0, 1]. The two simultaneous equations
are thus given by:

zt = β
(
1− (1− γxt)M

)
, and (F29)

zt log z = βγMxt log x
(
1− γxt

)M−1
, (F30)

where z ≡ y/A. We will next argue that the unique
solution to Eqs. (F29) and (F30) must be of the form,
z = xξ. To do so, let us differentiate z with respect to x
in Eq. (F29), which yields

zt−1
dz

dx
= βγM

(
1− γxt

)M−1
xt−1. (F31)
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Substituting βγMxt (1− γxt)M−1 = zt log z/ log x from
Eq. (F30), we get

dz

z log z
=

dx

x log x
, (F32)

taking an indefinite integral of which yields:

log log z − log log z0 = log log x− log log x0, (F33)

where z0 and x0 are constants to be determined, by sub-
stituting the solution back into f(x, y, t) = 0. Simplifying

the above, we obtain,

log

(
log z

log x

)
= log

(
log z0
log x0

)
, (F34)

or z = xξ, with ξ = log z0/log x0. Finally, we substitute
z = xξ into Eq. (F29) and solve to obtain the expression
for ξ as shown in Eq. (F25), and hence obtaining y =
Axξ. Hence, we have R(0)(L) = Aηξ, the exact solution

of the envelope of R
(0)
N (L) over all N ≥ 1.
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