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We consider an error model for quantum computing that consists of “contagious quantum germs” that can in-

fect every output qubit when at least one input qubit is infected. Once a germ actively causes error, it continues to

cause error indefinitely for every qubit it infects, with arbitrary quantum entanglement and correlation. Although

this error model looks much worse than quasi-independent error, we show that it reduces to quasi-independent

error with the technique of quantum teleportation. The construction, which was previously described by Knill,

is that every quantum circuit can be converted to a mixed circuit with bounded quantum depth. We also consider

the restriction of bounded quantum depth from the point of view of quantum complexity classes.

1. INTRODUCTION

Is quantum computation realistic even in principle? If we

accept quantum mechanics (more precisely, quantum proba-

bility), then at the theoretical level this question is usually in-

terpreted as the fault tolerance problem: Can a quantum com-

puter still work if all of its gates and qubits are noisy? There

are by now various fault-tolerance theorems for quantum com-

putation, which establish that reliable quantum computation is

indeed possible in principle assuming that the noise present in

different qubits or gates is quasi-independent [1, 8, 11], and

is below some threshold error rate. This threshold is called

the fault tolerance constant. Thus, any remaining doubt that

quantum computation is possible in principle reduces to one

of three possibilities:

1. Quantum probability is not exactly true.

2. The fault tolerance constant is unattainable.

3. The quasi-independence assumption is too optimistic.

In this note, we will consider noise models with a relaxed

version of the quasi-independence assumption, namely conta-

gious noise. It seems possible that each qubit in a quantum

computer might not just be noisy, but carry with it a noise

source, a contagious “bug”, that spreads to all of the output

qubits of each quantum gate. Each bug could get worse over

time. Worse still, the descendants of the bug could be cor-

related and thus violate the quasi-independence assumption.

If a quantum gate has two different bugs among its inputs,

the bugs might also interact and make new bugs. Such pos-

sibilities come to mind given that one of the first bugs in the

history of modern computing was an actual bug, a small moth

[5]. That bug was no longer interacting with anything other

than the relay switch where it had died. A “bug” can also

mean a germ; at least in biological computers, germs can both

replicate and affect data.

More realistically, contagious error is related to some forms

of leakage error, where what was the state of a qubit leaves the
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qubit Hilbert space and enters a larger Hilbert space. Knill has

noted that leakage error is implicitly solved by teleportation

[10], which is also the method that we will use. Leakage error

is generally thought of as a measured error; if it is measured, it

amount to a qubit erasure and the qubit can be reset. However,

before it is measured, leakage error can be contagious, since

the effect of a quantum gate is undefined for leaked states.

In this article, we propose a mutual generalization of conta-

gious germs and leakage error which we call contagious quan-

tum germs. If a qubit has a Hilbert space HQ
∼= C2, then we

attach to it another Hilbert space HG, the germ state space, so

that its total state space is HQ ⊗HG. At each time step, each

qubit interacts with its germ and its germ evolves. At each

gate, all of the germs of the input qubits interact in some way

to make the germs of the output qubits. The only restrictions

are that each fresh qubit is created with an independent germ,

that the effect of a germ on its qubit is bounded above for the

first few steps of its life, and that classical bits do not carry

germs. Note that quantum germs not only strictly generalize

leakage error, but can also do things that would be peculiar for

leakage error. For instance, once activated, they can spread

insidiously with no possibility of being detected, and then hit

hard everywhere that they have spread. We have no argument

that all types of quantum germs are realistic, only that they in-

clude various possibly realistic noise models as special cases.

Theorem 1.1. With a constant overhead factor, every quan-

tum circuit can be re-encoded so that noise from contagious

quantum germs becomes quasi-independent.

As a corollary, we can then apply the standard fault-

tolerance theorem to conclude that quantum computation is

possible in our model with polylogarithmic overhead.

A more detailed version of Theorem 1.1 is stated as The-

orem 4.1 and Corollary 4.2, using the formalism defined in

Section 2.

A closely related result is the “one-way” quantum fault

tolerance proposal of Raussendorf, Harrington, and Goyal

[14, 15]. This is a specific encoded computation with a high

fault-tolerance constant, and which is one-way in the sense

that after an initial encoded state is created, all of the com-

putation is carried out by (adaptive) one-qubit measurements.

Since in addition all of the parity checks of their code have

bounded weight, their circuits automatically have bounded

depth. Our Theorem 1.1 is both weaker and more general
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than the RHG construction. Without obtaining any new bound

on the fault tolerance constant, it implies that any method

of quantum fault tolerance whatsoever can be re-encoded in

bounded quantum depth.

The idea of our proof of Theorem 1.1 is not original. The

basic construction uses quantum teleportation [2]; it might

first have been published by Knill [9]. We state the construc-

tion in terms of mixed quantum-classical circuits.

Theorem 1.2 (Knill). With a constant overhead factor, ev-

ery quantum circuit (or mixed classical-quantum circuit) can

be re-encoded as a mixed classical-quantum circuit with

bounded quantum depth.

The surprising property of a mixed circuit with quantum

teleportation is that, if we orient all of the qubit edges forward

in time, then the qubit subgraph only needs to be weakly con-

nected from its input to its output in order to transmit quan-

tum information. (Recall that directed graph is strongly con-

nected from a to b if it has a directed path from a to b; and

weakly connected if it merely has some connecting path with

no restriction on the orientations of the edges.) In a sense,

quantum information can travel backward in time, as long as

classical information transports the result forward in time. In-

deed, quantum teleportation is a reasonable description of any

mixed circuit that transmits quantum information via a weakly

connected quantum subgraph; in this sense, quantum informa-

tion that travels backwards in time is just a slogan for telepor-

tation. Theorems 1.1 and 1.2 then say that if we imagine that

qubits (but not bits) are infected with contagious germs, then

the germs would have to travel backward in time to prevent

fault-tolerant quantum computation.

Given that we can loosely interpret a teleportation circuit

as allowing quantum information to travel backwards in time,

the question arises whether quantum germs could travel back-

wards in time in the same sense of teleportation. The answer

is no, unless either:

1. Germs can infect classical bits.

2. Germs can travel on paths that are not in the circuit.

Given the many different ways that classical bits are encoded

and communicated in practice, the first possibility seems im-

plausible or at least avoidable. The second possibility cer-

tainly can happens in the sense that noise may not be limited

to a quantum circuit in example physical implementations. In

this case, the noise does not need to travel backwards in time

either. However, if correlated noise can spread anywhere with

no causal restriction other than that it travels forward in time,

then it is well-known that both classical and quantum fault

tolerance are impossible.

The authors were led to consider the constructions consid-

ered here by alternative error models proposed by the first au-

thor in which errors are convolved, or smoothed, in time [6].

Our basic observation led the first author to change his model

to require convolution both forward and backward in time [7].

This leads to issues regarding causality that we will not dis-

cuss here.

Remark. If a mixed circuit is not even weakly quantumly con-

nected, then it is equivalent to a model in quantum information

theory known as “local operations and classical communica-

tion” [13, §12.5]. In particular, it is immediate that LOCC

is weaker than full quantum communication, since it leaves

no way to create quantum entanglement between weakly con-

nected components of the circuit, and therefore no way to vi-

olate Bell-type inequalities.

To understand our hypothesis and our conclusion, it is im-

portant to distinguish between sources of error and erroneous

qubits (or bits). An erroneous qubit is one whose state is dif-

ferent from what is intended in a quantum algorithm. If the

intended state is a pure state |ψ〉 (or a density operator ρ),

then the actual state might be some other state |ψ ′〉 (or a den-

sity operator ρ ′). Erroneous states propagate through gates

and through quantum teleportation. In computer science in

general, this is called error propagation and it is why comput-

ers need classical or quantum error correction. In fact, an error

can propagate through a mixed path of classical and quantum

edges in a mixed circuit; in particular, an error can propagate

through the classical bits used in quantum teleportation. How-

ever, while errors can be corrected, by our rules error-causing

germs cannot be removed. (Or, they can only be removed in-

directly with teleportation.)

We will prove Theorem 1.2 in Section 3 and Theorem 1.1 in

Section 4. Finally, in Section 5, we give a complexity theory

interpretation of Theorem 1.2. One way to limit the power of

quantum computation is to only allow bounded-time layers of

it in between classical computation layers. (We do not mean

pseudo-classical operators that are quantum but in the com-

putational basis. Rather we mean classical data processing

revealed to the environment.) We remark that if this is done

asynchronously, then Theorem 1.2 implies that the resulting

polynomial complexity class is exactly BQP.
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2. RIGOROUS DEFINITIONS

2.1. Mixed circuits

We consider the circuit model of computation. As usual, a

circuit is a kind of acyclic, directed graph with labelled ver-

tices which are called gates. In defining classical circuits care-

fully enough to generalize them to quantum circuits, we have

to count bit copying as a gate with 1 input and 2 outputs. Also,

every type of circuit that we consider in this paper can be as-

sumed to be in a uniform circuit family, created by a classical

Turing machine or similar.

The circuits of interest to us have two kinds of circuit edges,

classical or bit edges, and quantum or qubit edges. In order to
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understand what a general mixed gate can do with a combina-

tion of bit and qubit inputs and outputs, we can consider the

hybrid quantum memory model [12]. In practice, we can sim-

plify the definition of a mixed circuit to the following types of

gates:

1. Deterministic classical gates acting on bits.

2. A measurement gate that converts a qubit to a bit.

3. Unitary quantum gates that may have classical control bits.

4. A gate that creates a fresh qubit in the state |0〉.

Since our circuits are uniformly generated, and for other

reasons, we also want a finite set of quantum gates that

densely generate unitary groups acting on qubits, such as

the Hadamard and Toffoli gates. However, rather than prov-

ing something for every gate set, we interpret Theorem 1.1

as saying that there exists a set of gates such that the result

holds with a constant overhead factor for those gates. (Chang-

ing gate sets requires the Solovay-Kitaev theorem, which has

polylogarithmic overhead; we do not know that the stringent

constant overhead factor can be satisfied by every universal

gate set.) The only standard gates that we need for quantum

teleportation (Figure 1), which is the only idea we need to

prove Theorem 1.2, are Hadamard and CNOT gates, and 1-

qubit Pauli gates with classical control bits.

Figure 1 has an example of a mixed circuit, with the qubit

edges in black and the bit edges in gray. In general a cir-

cuit has a total depth, which is the length of its longest di-

rected path; and a quantum depth, which is the length of its

longest directed path following only qubit edges. The graph

of a mixed circuit has a quantum subgraph consisting only

of its qubit edges. (The specific gates used in the circuit are

defined in Section 3.)

2.2. Quantum germs

As usual U(n) is the group of unitary n× n matrices; let

M(n) be the vector space of all n× n matrices. If H is a

Hilbert space, then we let U(H ) be the corresponding ab-

stract unitary group, and we let M(H ) be the abstract space

of all operators on H . The algebra M(H ) comes with an

operator norm; by definition

||A||= sup
〈ψ|ψ〉=1

〈ψ |A|ψ〉.

If H is infinite-dimensional, then technically we take M(H )
to be the bounded operators, meaning those with finite opera-

tor norm. Recall in this case that a state ρ on H is a positive

semi-definite trace-class operator. (More precisely, if ρ is pos-

itive semi-definite, then it is trace class if the trace of its ma-

trix defined using any orthonormal basis of H is a convergent

series.)

As mentioned in the introduction, each qubit has a Hilbert

space HQ
∼= C

2, and a separate germ Hilbert space HG that

could even be infinite-dimensional. If C is a quantum circuit

(or a mixed circuit), we expand it to an infected circuit C′ as

follows: If C creates a qubit with the state |0〉 ∈ HQ, then C′

also creates a germ in some initial state |g0〉 ∈ HG. For each

gate

G ∈U(H
(1)

Q ⊗H
(2)

Q ⊗·· ·⊗H
(k)

Q )

that arises in C, there is a corresponding germ-mixing operator

M ∈U(H
(1)

G ⊗H
(2)

G ⊗·· ·⊗H
(k)

G )

that mixes the germ states. Finally, each edge of the circuit C

is replaced with an error operator

E ∈U(HG ⊗HQ).

Also, we do not assume that the operators M and E and the

states |g0〉 are the same at different positions in C. They must

satisfy the error bound (4) below, but otherwise they can be

different each time and they can be chosen adversarially rather

than randomly.

The operators E are subject to an error bound which we

explain carefully. Recall the relation

M(HG ⊗HQ)∼= M(HG)⊗M(HQ).

Recall that M(HQ)∼= M(2) can be given a Pauli basis

P0 = I =

(

1 0

0 1

)

, P1 = X =

(

0 1

1 0

)

P2 = Y =

(

0 −i

i 0

)

, P3 = Z =

(

1 0

0 −1

)

using any isomorphism HQ
∼= C2. Then we can think of an

operator E ∈ M(HG ⊗HQ) as a superposition of operators

acting only on HG:

E =
3

∑
j=0

E j ⊗Pj. (1)

The fact that E is unitary implies that ||E j|| ≤ 1, which we can

read as saying that each E j is subunitary; this will be useful in

the proof of Theorem 1.1.

As a warm-up to the main argument, suppose that the germ

at a given qubit edge has a pure state |g〉 ∈ HG. Then the

partial evaluation of E on |g〉 gives us a vector

~F ∈ HG ⊗M(HQ),

which then decomposes as

~F =
3

∑
j=0

| f j〉⊗Pj. (2)

Here each | f j〉 is a non-normalized state representing a

vector-valued amplitude of the error mode. Following Knill,

Laflamme, and Zurek [11, §I.B], we can define the size of this

error as the sum of the norms of the output germ states | f j〉
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T =

0

0

U
−1

U

m

m

cZ

cX

Figure 1. The teleportation circuit T , with qubit edges in black and bit edges in gray. The output is connected to the input by a path of qubit

edges, but not by an oriented path.

other than the term for the identity. In other words, we can

define an error seminorm

||~F||=
3

∑
j=1

√

〈 f j | f j〉.

One subtle but standard point, which will be relevant in all of

our error bounds, is that the vectors such as | f j〉 need not be

orthogonal. If they are orthogonal, then the different errors

to which they are attached are stochastic; if they are parallel,

then the errors are coherent or “stoquastic”.

If ||~F || is large, it means that the error operator E has a

large effect on its qubit Q. We would like to bound ||~F||;
however for two reasons, we will not do this in all cases. The

first reason is that the state ρG in general comes from a pure

state that is entangled between many germs and computational

qubits as well. The second reason is that we assume that if a

germ creates an error in a qubit, then it is activated and can

cause later errors with high probability.

We address the first issue, and clarify the second one, by

passing to a multilinear expansion of all of the error operators

using (2). Instead of directly considering the full vector state

of all of the germs and the errors they cause, we can instead

consider the amplitude contribution of any particular pattern

of Pauli errors. The total error is a superposition of all of

these patterns. To prove Theorem 1.1, we will bound each

term of the superposition separately, and then sum to get the

total bound.

If there are N edges, then we expand all possible errors

across the circuit C:

~F =
4N−1

∑
J=0

| fJ〉⊗PJ. (3)

Here PJ is a multi-Pauli operator, a tensor product of Pauli op-

erators including the identity. We consider the partial ordering

on qubit edges in which q1 ≺ q2 if there is a directed path from

q1 to q2. Then with respect to this partial ordering, some of

the Pauli factors of PJ are the earliest among those that are not

the identity. We call these qubit edges locally first diseased

(in superposition).

If q is locally first diseased, then all of the germs that ever

interacted with the one at q have an entangled state

|g〉 ∈ H
(1)

G ⊗H
(2)

G ⊗·· ·⊗H
(k).

The state |g〉 is formed from various initial states |g0〉 with

germ-mixing operators M and error components E j acting on

them. Since each M is unitary and each E j is subunitary, we

learn that |〈g|g〉| ≤ 1. We can make an error vector ~F (2) in

the same way as in the warmup case, except using a state |g〉
of many germs rather than one germ. We assume an upper

bound

||~F ||< ε(n), (4)

if the quantum depth of the part of the circuit C that leads to q

is at most n. We assume that ε(n) is a small number when n

is small. Otherwise, if the best upper bound ε(n) is large for

small n, then even small quantum circuits are unreliable; with

enough such noise, there is no clear reason to expect quantum

computation to be possible.

3. PROOF OF THEOREM 1.2

Proof. The theorem reduces to the existence of quantum

teleportation. Quantum teleportation is a mixed quantum-

classical circuit T that has one qubit input and one qubit out-

put, and no quantum path from the input to the output. More-

over, the circuit computes the identity: The output agrees with

the input and it even inherits any entanglement that the input

had with other qubits. The teleportation circuit is given in

Figure 1; a simplified version is given in Figure 2.

As mentioned, our convention for all diagrams is that qubit

edges are black and bit edges are gray. The gates used in the

expanded circuit in Figure 1 are as follows:

1. The gate 0 creates a qubit in the state |0〉.
2. The gate m measures a qubit in the computational basis

and outputs a bit. The qubit input is destroyed.

3. The gate U is unitary with the following action:

U |00〉= |00〉+ |01〉√
2

U |01〉= |10〉− |11〉√
2

U |10〉= |10〉+ |11〉√
2

U |11〉= |00〉− |01〉√
2

.

It can be created as a CNOT gate

|x,y〉 7→ |x+ y,y〉
followed by a Hadamard gate

H =
1√
2

(

1 1

1 −1

)

applied to the second qubit.
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4. The gate cX applies the one-qubit operator X if its bit

input is 1, and the identity I if it is 0.

5. The gate cZ applies the one-qubit operator Z if its bit

input is 1, and the identity I if it is 0.

If the circuit T is inserted at every edge of a circuit C to make

C′, then the longest directed qubit path in C′ is 6 edges. An

initialized qubit lasts for 4 edges inside T . The output of T

can be the input to some gate G in C, and then the output of G

can become the input to another copy of T and last for 2 more

edges to make 6 total.

It is a celebrated result that the teleportation circuit T com-

putes the identity, even when its input is entangled. In order

to prove this, it suffices to check that it is the identity for any

spanning set of density operators. For example if the circuit

preserves the vector states |0〉, |1〉, |±〉, and |± i〉, then it also

preserves all six corresponding density operators, which im-

plies that it preserves all density operators. It is easy to check

that these states are indeed preserved by T .

4. PROOF OF THEOREM 1.1

b

m

c

|ψ〉

|ψ〉

Figure 2. A simplified diagram of the teleportation circuit in Fig-

ure 1, in which the gates are combined as much as possible. The gate

b creates a Bell pair; the gate m measures two qubits in an entangled

basis, and the gate c is a unary quantum gate controlled by two bits.

We will actually prove two different results that both fit the

words of Theorem 1.1.

Theorem 4.1. Let C be a circuit with bounded quantum depth

n and gates that act on at most k qubits. If C is infected with

quantum germs with error bound δ (n) at depth at most n, then

C has quasi-independent error with bound ε depending on n,

k, and δ (n). Moreover, ε → 0 as δ (n)→ 0.

Corollary 4.2. If C is a circuit with unbounded quantum

depth, then it can be replaced by an equivalent circuit C′, so

that if C′ is infected with quantum germs, then the result is

equivalent to quasi-independent noise in C.

Corollary 4.2 is important because C could be constructed

according to a fault tolerance threshold theorem that assumes

quasi-independent error.

Proof of Theorem 4.1. We review the definition of quasi-

independent error [11]. We assume that the edges of the cir-

cuit C are subject to error. Then we consider the multilinear

expansion (3). The operator PJ has a weight w(J), which is the

number of tensor factors that are not the identity. The quasi-

independent error condition says that

√

〈 fJ | fJ〉= O(εw(J)).

for some error bound 0 < ε < 1. (The fault tolerance theorem

says that fault tolerance with polylog overhead is possible if

ε is small enough. Note that Knill, Laflamme, and Zurek call

this type of error monotonic quasi-independent error.)

Let PJ be a multi-Pauli operator that arises in the multilinear

expansion of (2). Then we claim that

√

〈 fJ | fJ〉< δ (n)m(J),

where m(J) is the number of locally first errors in PJ . In each

term J, the state | fJ〉 is actually the entangled state |g〉 of all of

the germs at the end of the computation. At each position that

is a locally first error, the norm of |g〉 decreases by a factor

of δ (n) by (4). At every other position, the norm does not

increase because each operator E j is subunitary.

Finally, each edge with a locally first error has at most

1+ k+ · · ·+ kn−1 < kn

edges above it that could have errors. It follows that

w(J)< knm(J).

Thus C has quasi-independent error with bound

ε < δ (n)k−n

,

as desired.

Proof of Corollary 4.2. The original purpose of the quasi-

independent error model is that it renormalizes to itself under

any map that changes a circuit C to an equivalent circuit C′

made by replacing gates and qubit edges by gadgets. This is

the technique to prove the fault tolerance theorem using con-

catenated quantum codes. Such an analysis applies in our case

because we can replace each edge by a teleportation gadget,

as we did in the proof of Theorem 1.2. Indeed, the analysis

is particularly simple because every multi-Pauli error in the

teleportation gadget in Figure 1 in the circuit C′ is equivalent

to a Pauli error or non-error in the original edge in C. (This

is a standard fact and is left as an exercise to the reader. Note

that even though multi-Pauli errors reduce to Pauli errors, the

relative phase of two multi-Pauli errors might change.)

Suppose that the circuit C′ has quasi-independent error ε by

Theorem 1.1. Suppose that each gate in Figure 1 is available

as a single gate in the gate set. Then 1 edge in C is replaced

by 8 edges in C′. We suppose that C′ has quasi-independent

error with bound ε , say by Theorem 1.1. We suppose for sim-

plicity that the total error amplitude of a multi-Pauli is at most

εw(J) rather than O(εw(J)), although the calculation works ei-

ther way. The total amplitude of all 48 multi-Pauli operators
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(a) (b)

Figure 3. A schematic comparison of two kinds of mixed quantum-classical circuits: (a) SQCL: layered classical-quantum sandwiches; (b)

AQCL, asynchronous Sloppy Joesa with bounded quantum depth.

a A Slopy Joe is a popular American sandwich with loose ground beef and wet seasoning.

on the edges of a teleportation gadget is at most (1+3ε)8. One

of these is the term in which all edges are assigned Z0 = I, the

non-error; the other errors are bounded by (1+ 3ε)8 − 1. It

follows that if we interpret C′ as an encoding of C, then C has

quasi-independent error with bound

δ < (1+ 3ε)8 − 1.

(In fact, we can divide the right side by 3 by symmetry be-

tween the non-trivial Pauli errors, but it is not necessary.)

5. A COMPLEXITY CLASS INTERPRETATION

It is interesting to consider complexity classes with a

bounded amount of available quantum computation. One ex-

ample of such a class is the Fourier hierarchy FH [16]. In the

Fourier hierarchy, the entire circuit is quantum in the sense

that it consists of qubits, but only a bounded number of layers

of Hadamard gates are allowed. In between these layers the

circuit is pseudoclassical, meaning that it is a unitary dilation

of classical circuit.

Here we define two other mixed quantum-classical classes,

even though we do not know whether they are actually use-

ful. (They should not necessarily be added to the Complex-

ity Zoo [17].) First, we can consider the class SQCL, or

sandwiched quantum and classical layers (Figure 3(a)). We

represent this class by a uniform family of polynomial-sized

quantum-classical circuits {Cn}. We assume that qubits are

only allowed in the circuit in disjoint, global layers [t, t + b]
that are bounded in depth by a constant b. In between the lay-

ers, all edges have to bit edges Even though a circuit in SQCL

can have a polynomial number of layers, the fact that no quan-

tum coherence connects any two of the layers is a much more

severe restriction than in FH. A single quantum layer is a

functional class known as QNC0, and surprisingly even this

class seems different from classical computation [3, 4]. The

class SQCL can be viewed as BPPQNC0 , or BPP with oracle

access to QNC0, except that it is a semantic type of oracle

access in which the oracle output is a probability distribution.

Remark. We do not know whetherQNC0 is weaker with noisy

gates. More precisely, whether there is a fault tolerance noise

threshold below which QNC0 is no weaker than before.

We alter the definition of SQCL subtly but dramatically. We

define the class AQCL, or asynchronous quantum and classi-

cal layers with quantum circuits as follows: Each qubit path

in the circuit has depth at most b, but the qubits do not have

to disappear at the same time. (See Figure 3(b).) This defini-

tion matches the conclusion of Theorem 1.2, so we obtain this

corollary:

Corollary 5.1. AQCL= BQP.
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