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Here, we study the classical information capacity of a quantum channel, assuming linear optical
encoding, as a function of available photons and optical modes. We present a formula for general
channel capacity and show that this capacity is achieved without requiring the use of entangling
operations typically required for scalable universal quantum computation, e.g. KLM measurement-
assisted transformations. As an example, we provide an explicit encoding scheme using the resources
required of standard dense coding using two dual-rail qubits (2 photons in 4 modes). In this case, our
protocol encodes one additional bit of information. Greater gains are expected for larger systems.
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I. INTRODUCTION

Superdense coding is an elegant application of basic
quantum mechanics that can provide exciting gains in
the capacity of an information channel. A simple pro-
tocol proposed in 1992 by Bennett and Wiesner proved
that two classical bits of information could be sent over
a quantum channel via a single qubit [1], a compression
made possible by exploiting entanglement as a physical
resource. Entanglement can manifest in many forms and
in a variety of physical hosts; engineering an entangled
system to be used as an efficient communication chan-
nel thus presents an interesting challenge. In general,
an optimal quantum channel will require a well-devised
protocol to properly manipulate a maximally entangled
state [2].

We focus here on a linear optical [3] quantum com-
munication channel constructed from a set of modes and
photon quanta. The Hilbert space dimension for such
a system of N total photons propagating in M optical
modes is given by

dH =
(N +M − 1)!

N !(M − 1)!
, (1)

or the number of ways to place N photons in M modes.
Considering, for example, a system of two dual-rail qubits
(N = 2, M = 4), we note that dH = 10 whereas the
logical qubit space is only four-dimensional. Resource
efficiency is paramount in communication and such over-
head immediately limits channel capacity. In this paper,
we aim to develop optimal dense coding protocols specif-
ically for a linear optical quantum channel, without im-
posing the qubit as an operational basis.

The protocol requires that Alice and Bob initially share
an entangled state of N photons, |ψ1〉, with MA out of
the total M modes under Alice’s control. Alice chooses
a classical symbol x and encodes it by operating on her
modes, taking |ψ1〉 to |ψx〉. Her resources are forwarded
to Bob, who then performs a quantum measurement on
the entire state and reads out a classical bit string. Re-
fer to Fig. (1). dH serves as an absolute upper bound
on the number of distinguishable states Alice can send,

FIG. 1: (Color online) A typical quantum optical encoding
device consisting of 4 modes. 2 modes have been distributed
to Alice (top), and 2 modes have been distributed to Bob
(bottom). Alice applies a linear optical operation and sends
her resources to Bob who performs a measurement on the
total state.

though due to the restriction of utilizing only linear opti-
cal operations (beam splitters and phase shifters), Alice
may not be able to make use of the entire Hilbert space,
even if she possesses all of the modes (MA = M). The
crux of the problem is that not all quantum logic oper-
ations are guaranteed to be accessible via linear optical
transformations. Entangling operations in particular re-
quire photons to interact, a task they are notoriously ill-
suited for. Solutions to this problem exist, e.g. the use
of KLM [4] auxiliary resources or non-linear Kerr media.
For now, we omit such components from our system. As
we shall determine, linear optics is sufficient to construct
a maximally efficient communication channel.

We represent the state of our system in the Fock basis

|n1n2...nM 〉 =
(â†1)n1(â†2)n2 ...(â†M )nM

√
n1!n2!...nM !

|0〉 . (2)
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A general linear operation can then be expressed as

â†i →
MA∑
j=1

uij â
†
j ∀ i = 1 . . .MA , (3)

where uij are the matrix elements of a unitary operation
U acting on MA modes. Alice encodes one of |X| classical
symbols into the system by generating the appropriate
quantum state, |ψ1〉 , |ψ2〉 , . . . ,

∣∣ψ|X|〉. Each state |ψx〉
is constructed by applying a different transformation Ux

to the initial entangled state, |ψ1〉 (here without loss of
generality we will take U1 = I).

The mutual entropy H(X : Y ) shared between Alice
and Bob is constrained by the Holevo bound, which for
pure states can be written as [5, 6]

H(X : Y ) ≤1 S(ρ) ≤2 H(X) ≤3 log2 |X|, (4)

where X and Y are the encoding and decoding variables,

ρ =

|X|∑
x=1

px |ψx〉 〈ψx| , (5)

px is the probability of choosing symbol x, S(ρ) is the
von Neumann entropy of ρ, and H(X) is the Shannon
entropy of Alice’s encoding variable. Inequality 1 reflects
the fact that depending on Bob’s measurement capabil-
ities, he may not be able to access all the information
encoded by Alice; it becomes an equality only if Bob can
perform arbitrary measurements on words of arbitrary
length [6–8]. We return to this point in Sec. VI, and in
the following we focus on S(ρ), or the encoding capacity
of the channel. Inequality 2 becomes an equality when
all contributions |ψx〉 to ρ are orthogonal, and finally in-
equality 3 becomes an equality when all symbols in X
are chosen with equal probability.

II. AN UPPER BOUND ON ENCODING
CAPACITY

From Eq. (4), it immediately follows that encoding ca-
pacity is limited by the Hilbert space dimension,

S(ρ) ≤ log2(dH). (6)

This inequality provides a valuable reference point, but
for our purposes we can derive an even stricter bound on
S(ρ). First, we abstractly define dS as the dimension of
the span of the states Alice can generate via linear opti-
cal transformations as presented in Eq. (3). The Holevo
bound again restricts the encoding capacity,

S(ρ) ≤ log2(dS) dS ≤ dH . (7)

Then, we note the Hilbert space of our channel can be
decomposed into a direct sum

H =

N⊕
NA=0

(HA,NA ⊗HB,NB ) , (8)

where each term represents the subspace corresponding
to a fixed distribution of photons between Alice and Bob.
NA is the number of photons in Alice’s modes, and NB =
N −NA. Any initial state |ψ1〉 can be decomposed into
a sum of components

|ψNA
〉 ∈ HA,NA ⊗HB,NB . (9)

For each such component we can construct a Schmidt

decomposition over a set of min(dA,NA

H , dB,NB

H ) basis vec-

tors, where dA,NA

H and dB,NB

H are the dimensions of
HA,NA andHB,NB respectively. Any operation on Alice’s
modes will act only on the basis vectors of her subspace.

It follows that for any |ψNA
〉 where dA,NA

H < dB,NB

H , Al-
ice has no control over the dimensions of Bob’s subspace
which are not spanned by the basis vectors of the Schmidt
decomposition. Thus, the upper bound for the dimension
of the span of the set of states Alice is able to generate
within each term of Eq. (8) is given by

dNA

S ≤ dA,NA

H min(dA,NA

H , dB,NB

H ) . (10)

We combine Eqs. (8) and (10) to find the upper bound on
the total span dS for given photon number N and modes
MA,MB ≥ 1:

dS ≤
N∑

NA=0

f(NA) , (11)

where

f(NA) = g(NA,MA) min(g(NA,MA), g(NB ,MB)) , (12)

g(n,m) =
(n+m− 1)!

n!(m− 1)!
(13)

is the number of ways to distribute n photons over m
modes, and MB = M −MA.

This is a key result; if we combine Eqs. (7) and (11)
we find an upper bound on the information capacity for
a given physical device. As we will see in Sec. III, we
find that the bound obtained here is tight.

III. NUMERICAL TESTING OF ALICE’S
ENCODING CAPABILITIES

Eqs. (7) and (11) provide a fully analytic upper bound
for the information capacity of an optical channel, but the
question remains whether and how this bound can actu-
ally be reached using linear optical encoding. To obtain
the actual encoding capacity, we numerically maximize
S(ρ) over the initial state |ψ1〉 and Alice’s transforma-
tions Ux. We call the result of this optimization Smax.
Similarly, dS is computed by evaluating the rank of the
density matrix for an ensemble of states generated with
a sufficiently large set of random Ux.

For small N and M , the numerical results are fairly
straightforward and elegant. Of particular interest is the
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case where N = 2, M = 4, MA = 2, which uses the
same physical resources as the standard, two dual-rail
qubit dense coding protocol. Here we find that dS = 8,
in agreement with the right hand side of Eq. (11). Fur-
thermore, we find that Smax → log2(dS) = log2(8) bits
can be achieved by generating |X| = 8 completely dis-
tinguishable states, see Fig. 2 (Left). In contrast with
the standard dense coding protocol, which allows Alice
to communicate 2 classical bits via a single photon in
two modes, we instead find that Alice is able to send
3 classical bits via 1.25 photons (2.4 bits per photon or
1.5 bits per optical mode). This is an important result;
Alice is able to encode additional information into the
channel by not restricting herself to the qubit basis. The
advantage gained by expanding the optimization space
beyond the dual rail basis has been consistently observed
in other work on gate optimization [9] and photonic quan-
tum communication [10].
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FIG. 2: (Color online) Maximization of the von Neumann en-
tropy S(ρ) as a function of the number of symbols |X|. (Left)
N = 2, M = 4, MA = 2. A clear convergence to log2(8) = 3
is observed. (Right) N = 3, M = 5, MA = 2. Here Smax

reaches log2 |X| for |X| ≤ 13, indicating that up to 13 or-
thogonal states may be generated. Globally, Smax reaches
log2(18) at |X| = 20. Analytic solutions can be constructed
for |X| ≤ 13.

For larger, more resource-intensive systems, such
straightforward convergence of Smax to log2 |X| is not
observed. We instead find an intermediate optimization
regime where the encoding capacity is achieved by in-
creasing the number of coded states |X| beyond the num-
ber of orthogonal states Alice can send. As an example,
we present the results for N = 3, M = 5, MA = 2 in
Fig. 2 (Right). Here, we find ds = 18 (again in agree-
ment with the right hand side of Eq. (11) and indeed
Smax → log2(dS) = log2(18), but only when |X| ≥ 20.
The maximum channel capacity is equivalent to one asso-
ciated with 18 orthogonal quantum states, however Al-
ice cannot generate 18 such states using linear optics.

Instead, she must generate a set of at least 20 non-
orthogonal states to obtain the maximum capacity of the
channel. It becomes apparent that Alice cannot, in gen-
eral, construct a set of dS orthonormal basis vectors over
the entire subspace accessible to her via allowed opti-
cal transformations. She must instead saturate the sys-
tem with additional linearly independent states until she
reaches the potential of the hardware.

In Fig. 3, we present a larger system, N = 3, M = 6,
MA = 3, where dS = 38. Here the full encoding capacity
log2 dS is approached slowly as the number of symbols
increases, although a modest number of symbols is suf-
ficient to attain a very large fraction of the maximum
capacity.
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FIG. 3: (Color online) Maximization of the von Neumann
entropy for N = 3, M = 6, MA = 3. |X| must be increased
well beyond dS = 38 for the von Neumann entropy Smax

to maximize to log2(38). No gain in information capacity
is observed if we allow Alice to send symbols from X with
non-uniform probability.

Empirically, we observe in all cases that dS and Smax

do attain the upper bounds defined in Eq. (11) and
Eq. (7), respectively, assuming only linear optical encod-
ing. We therefore define classical information capacity C
in bits per channel use as a function of N,M,MA:

C(N,M,MA) = log2(dS) = log2

(
N∑

NA=0

f(NA)

)
, (14)

where f(NA) is defined in Eq. (12). Because the bound
in Eq. (11) holds for any photon-number preserving op-
eration on Alice’s modes, the use of non-deterministic
or non-linear entangling optical components will not im-
prove channel capacity.
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IV. ASYMPTOTIC BEHAVIOR OF THE
ENCODING CAPACITY

To gain some insight into the parameter dependence
implied by Eq. (14), we consider the thermodynamic
limit M = αN , for MA, NA,MB , NB ,M,N � 1. Ap-
plying Stirling’s approximation, the full Hilbert space di-
mension is given by

log2 dH ' N [log2(1 + α) + α log2

(
1 + α−1

)
] . (15)

Similarly,

log2 g(n,m) ' m log2(1 +
n

m
) + n log2(1 +

m

n
) , (16)

and thus Np
A, the maximum of g(NA,MA)g(NB ,MB), is

given by

Np
A ' NMA/M . (17)

Now f(NA) is piecewise defined with the crossover point
N c

A determined by MA. One can verify that Np
A > N c

A if
MA

MB
> 1, Np

A = N c
A if MA

MB
= 1, and Np

A < N c
A if MA

MB
<

1. Thus, the value of f(NA)max is dependent on the
ratio of modes MA/MB . We find the following regimes
of behavior as a function of the mode ratio MA/MB :

(i)
MA

MB
> 1⇒ Np

A > N c
A ⇒ dS ' dH (18)

(ii)
MA

MB
= 1⇒ Np

A = N c
A =

N

2
⇒ dS '

dH
2

(19)

(iii)
MA

MB
< 1⇒ Np

A < N c
A ⇒ dS � dH (20)

(iv) MB ≥ g(N − 1,MA)

⇒ dS ' g2(N − 1,MA)� dH (21)

In particular, we see from Eq. (18) that Alice main-
tains near absolute control of the channel in the range
MA/MB > 1, and the maximum encoding capacity is
asymptotically indistinguishable from the capacity im-
plied by the total Hilbert space dimension dH . Eq. (19)
indicates that when the modes are evenly split be-
tween Alice and Bob, the maximum encoding capacity
is asymptotically lower by precisely one bit than the ca-
pacity implied by dS . From Eq. (21), we find that for
a fixed number of modes MA controlled by Alice, any
modes Bob possesses in excess of g(N − 1,MA) do not
contribute to channel capacity.
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FIG. 4: (Color online) Encoding capacity log2 dS for M = 2N
and different ratios MA/MB . As an upper and lower bound,
we include, respectively, the Hilbert space dimension and the
capacity of traditional dense coding using two dual-rail qubits
(which assumes MA = MB).

V. DEVELOPING EXPLICIT ENCODING
PROTOCOLS

Thus far we have presented a general method for cal-
culating the information capacity of linear optical hard-
ware. An important task remains; we must be able to
design a dense coding protocol for actual implementa-
tion. We return to the prototypical case: N = 2, M = 4,
MA = 2. Using the results of the numerical optimization
of S(ρ), we find the general set of initial states and trans-
formations that satisfy 〈ψi|ψj〉 = 0 ∀ i 6= j. The result is
a non-trivial set of equations, which simplify elegantly if
we slightly restrict the space of Alice’s transformations,
U3, U4, . . . , U8, see Eq. (22).

VI. DISCUSSION

We have already noted that the Holevo bound is not
automatically reachable, and the information capacity of
an optical quantum channel is limited by factors other
than efficient encoding. The susceptibility of entangled
states to decoherence and noise must be considered. Op-
tical quantum computers are an attractive idea in this re-
gard because photons do not strongly interact with most
matter; photonic states can thus be carried over large
distances [4, 9].

So far we have not addressed the practicality of
generating the pre-distributed maximally entangled ini-
tial states. The question remains as to whether |ψ1〉
can be constructed using deterministic optical compo-
nents. This will likely depend on the physical resources
(N,M,MA) of a particular device. While deterministic
state generation is certainly preferred, it is not essential
for efficient communication if one considers cost as that
associated with channel usage.
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At the receiving end of a quantum channel, signal de-
coding is an especially challenging task. For the case in
which Alice sends orthogonal states, the Holevo bound is
achieved by applying an appropriate von Neumann mea-
surement. In principle, a sufficiently large subset of von
Neumann measurements can be carried out by having
Bob rotate incoming states into the photo-counting ba-
sis states (see Lougovski and Uskov [10]). We find that
it is not possible to implement such a measurement us-
ing deterministic linear optics exclusively. If one were to
impose a linear optical measurement, Bob would be un-
able to fully distinguish incoming states [11]. To make
things even more complicated, our results suggest that
in order to optimize S(ρ), Alice will often send a set of
non-orthogonal states. Thus, even if we were able to ap-

ply an optimal POVM, H(X : Y ) would fall well below
S(ρ) for a single communication [5, 12]. Achieving the
Holevo bound for an a priori set of non-distinguishable
quantum states is a common challenge for quantum infor-
mation theory, and has been the subject of some study.
Proposed solutions [6–8, 13] rely on sending code words
comprised of multiple states, |ψaψb...〉. For example, the
PGM [6] scheme guarantees that a word composed of l
states carries Stotal = lS(ρ) information for a coding vo-
cabulary in the limit of large l. The caveat is that Bob
must store previously sent letters in a quantum mem-
ory storage device, so that he may act on an entire word
with a joint measurement. This could be implemented
using lM storage modes and a rail-switching junction for
incoming letters.

Initial entangled state:

|ψ1〉 = c1e
id1 |2000〉+ c2e

id2 |1100〉+ c3e
id3 |1010〉+ c4e

id4 |1001〉+ c5e
id5 |0200〉

+c6e
id6 |0110〉+ c7e

id7 |0101〉+ c8e
id8 |0020〉+ c9e

id9 |0011〉+ c10e
id10 |0002〉 .

Alice’s operations:

U1 =

(
1 0
0 1

)
U2 =

(
−1 0
0 −1

)
Ux = Rz(

π

2
(−1)x+1 + qx)Ry(2 cos−1(1/

√
3))Rz(

π

2
(−1)x+1 − qx) (x = 3, 4, . . . , 8) (22)

qx = q3 +
π

3
(x− 3) (x = 4, . . . , 8)

Restricted by:

c21 + c22 + c25 =
3

8
c3 = c7 c4 = c6 c23 + c24 =

1

4
c28 + c29 + c210 =

1

8
d3 + d7 − d4 − d6 = mπ m ∈ Zodd

c1c2 cos(d1 − d2 − q3)− c1c5 sin(d1 − d5 − 2q3)− c2c5 cos(d2 − d5 − q3) = 0

c1c2 sin(d1 − d2 − q3)− c1c5 cos(d1 − d5 − 2q3)− c2c5 sin(d2 − d5 − q3) = 0

VII. CONCLUSION

In summary, we have shown that hardware-specific
coding algorithms must be developed in order to make
full use of a linear optical quantum channel. In Eq. (14),
we obtained a simple expression for channel capacity as
a function of photons and optical modes. Furthermore,
we found this capacity is achievable via some encoding
procedure using linear optics exclusively. We observe
that for small systems, Alice can send completely distin-
guishable states. Generally, however, Alice must choose
from a pool of non-orthogonal states. In either case,
it is possible to extract an encoding protocol from the

numerical maximization of the von Neumann entropy.
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