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Solving realistic quantum systems coupled to an environment is a challenging task. Here we
develop a hierarchical functional derivative (HFD) approach for efficiently solving the non-Markovian
quantum trajectories of an open quantum system embedded in a bosonic bath. An explicit expression
for arbitrary order HFD equation is derived systematically. Moreover, it is found that for an
analytically solvable model, this hierarchical equation naturally terminates at a given order and
thus becomes exactly solvable. This HFD approach provides a systematic method to study the
non-Markovian quantum dynamics of an open system coupled to a bosonic environment.
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I. INTRODUCTION

The theory of open quantum systems [1] has received
great interest because environment-induced effects are
important in a wide range of research topics such as quan-
tum information [2] and quantum optics [3]. There were
considerable studies involving environments modeled by
either bosonic or fermionic baths (see, e.g., Refs. [1, 4–
13]), as well as structured environments such as spin-
chain baths [14]. Conventionally, Markov approximation
has been extensively used because of its simplicity. In-
deed, this is valid only when memory effects of the en-
vironment are negligible. However, this approximation
becomes invalid when the system-environment coupling
is strong or when the environment is structured [1, 15].
Therefore, non-Markovian environments have to be con-
sidered in explaining new experimental advances in quan-
tum optics. Also, they must be considered in quantum
information manipulations in which the environmental
memory is utilized to control the entanglement dynam-
ics [16]. Therefore, it is vital to have a non-Markovian
description of the system’s dynamics under the influence
of the memory effects and the backaction of the environ-
ment. Actually, this has long been a challenging task and
many theoretical approaches have been developed (see,
e.g., Refs. [1, 4–10, 17–21]). Among these approaches,
the non-Markovian quantum state diffusion (QSD) [4–
6] has been proven to be a powerful tool to study the
quantum dynamics of the system and exact analytical
results were derived for many interesting systems such as
dissipative multi-level atoms [8] and quantum Brownian
motion [4, 22] which was also analytically solved via a
path-integral approach [17]. Quantum continuous mea-
surement employing the QSD technique was also stud-
ied [23, 24].
For most realistic open quantum system problems, it

is almost impossible to find any useful analytical solu-

tions. Therefore, one has to develop numerical methods
to study the quantum dynamics of the open systems.
However, the application of the non-Markovian QSD is
greatly hindered unless one can cast it to a numerically
implementable time-local form. Recently, two hierarchi-
cal approaches have been proposed; one is the stochastic
differential equation (SDE) method [9] based on a func-
tional expansion of a system operator, and the other is
an approach using a hierarchy of pure states (HOPS) [10]
to calculate a related functional derivative. Apart from
these two approaches, an earlier attempt at a perturba-
tive solution of the non-Markovian QSD equation was
based on hierarchical functional derivative (HFD) [7].
However, because of its apparent complexity, the hierar-
chical equations presented there were implemented only
up to the second order where the higher-order terms were
approximated by a simplified operator. Here we develop
a systematic and efficient higher-order HFD approach to
solving the non-Markovian quantum dynamics of an open
system coupled to a bosonic environment. Remarkably,
a compact explicit expression for an arbitrary order hi-
erarchical equation is derived. Moreover, it is found that
for an analytically solvable model, the hierarchical equa-
tion naturally terminates at a given order, so it becomes
exactly solvable. Thus, our method provides not only an
approach for efficiently solving the non-Markovian quan-
tum dynamics of an open system, but also a systematic
method for the exact solution of analytically tractable
open systems.

The paper is organized as follows. In Sec. II, we present
our HFD method for studying the non-Markovian QSD.
Then, we show the relationship of the HFD method to
the recently developed SDE and HOPSmethod in Sec. III
and Sec. IV, respectively. Finally, discussion and conclu-
sion are given in Sec. V. Moreover, in Appendix A, we
present a detailed derivation of the HFD equation for
a general bath correlation function. The mathematical
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relationship between the SDE approach and our HFD
method is explicitly demostrated in Appendix B.

II. THE HFD METHOD FOR

NON-MARKOVIAN QSD

We study a generic open system with the Hamilto-
nian [4, 5]

H = Hs +
∑

k

(

gkLb
†
k + g∗kL

†bk

)

+
∑

k

ωkb
†
kbk, (1)

where Hs is the Hamiltonian of the system of interest, L
is the coupling operator called Lindblad operator, bk is
the kth mode annihilation operator of the bosonic bath
with a frequency ωk and gk denotes the coupling strength
between the system and the bosonic bath. The bath
state can be specified by a set of complex numbers {zk}
labeling the coherent state of all bath modes and the ef-
fect of the bath is characterized by the zero-temperature
bath correlation function α(t, s) =

∑

k |gk|
2e−iωk(t−s).

Defining z∗t ≡ −i
∑

k g
∗
kz

∗
ke

iωkt, one can interpret zk as
a Gaussian random variable and z∗t becomes a Gaussian
process with its statistical mean given by the bath cor-
relation function α(t, s) = 〈〈ztz∗s 〉〉. The wave function
|ψz∗(t)〉 = 〈z∗|Ψtot(t)〉, obtained by projecting the quan-
tum state |Ψtot(t)〉 of the total system onto the bath state
|z〉, is called a quantum trajectory and obeys a linear
QSD equation

∂

∂t
|ψz∗(t)〉 =

[

−iHs + Lz∗ − L†Ō(t, z)
]

|ψz∗(t)〉, (2)

where O is an operator defined by the functional deriva-
tive δ

δz∗

s
|ψz∗(t)〉 = O(t, s, z∗)|ψz∗(t)〉 and Ō(t, z∗) =

∫ t

0
α(t, s)O(t, s, z∗)ds [4]. Non-Markovian master equa-

tions can also be obtained using this approach [6, 22].
For this linear QSD, |ψz∗(t)〉 is an unnormalized wave
function, so it can be of different orders of magnitude at
different evolution times. This gives rise to an inefficient
Monte Carlo sampling in numerical calculations. Thus,
one utilizes a non-linear QSD [4] for the normalized state

|ψ̃z̃∗〉 = |ψz∗(t)〉/|||ψz∗(t)〉||:

d|ψ̃z̃∗〉

dt
=
[

−iHs +∆t(L)z̃
∗
t −∆t(L

†)Ō(t, z̃∗)

+〈∆t(L
†)Ō(t, z̃∗)〉t

]

|ψ̃z̃∗(t)〉, (3)

which is derived via the Girsanov transformation z̃∗t =

z∗t +
∫ t

0
α∗(t, s)〈L†〉sds. Here ∆t(L) ≡ L− 〈L〉t, and the

reduced density operator ρs(t) ≡ Trenv|Ψtot〉〈Ψtot| can
be obtained from the ensemble average of the normalized
quantum trajectories as ρs(t) = 〈〈|ψ̃z̃∗(t)〉〈ψ̃z̃(t)|〉〉.
The non-Markovian QSD equation (3) is exact, but the

key challenge in solving it relies on the determination of
the O operator. It is difficult to analytically obtain the
explicit expression of the O operator except for a few sim-
ple models such as dissipative multi-level atoms [8], the

quantum Brownian motion [4] and dissipative multiple
qubits [25]. Owing to the importance of open systems,
efforts [7, 9, 10] have been devoted to develop numeri-
cal methods for solving Eq. (3). In Ref. [7], an approach
was proposed to calculate the functional derivative by
defining a set of Qk operators as

Qk(t, z̃
∗) =

∫ t

0

α(t, s)
δ

δz̃∗s
Qk−1(t, z̃

∗)ds, (4)

where Q0(t, z̃
∗) = Ō(t, z̃∗). Because of the complexity

involved, an explicit hierarchical equation of motion for
this set of operators was obtained in Ref. [7] only up
to the second-order Q2 operator while the higher-order
terms were approximated by a simplified operator. Below
we give an explicit hierarchical equation of motion up to
any high orders and also applicable to an arbitrary bath
correlation function α(t, s). For this purpose, we include
the time derivatives of α(t, s) and define

Q
(j)
k (t, z∗) =P(jk)P(jk−1) . . .P(j1)

×

∫ t

0

ds0α
(j0)(t, s0)O(t, s0, z

∗), (5)

where j =
∑

i jiei ≡ (j0, j1, . . . , jk) with ei being the ith

unit vector, P(j) =
∫ t

0
dsα(j)(t, s) δ

δz∗

s
, and α(j)(t, s) =

∂j

∂tj
α(t, s). It is derived (see Appendix A) that this set of

operators satisfy

∂

∂t
Q

(j)
k (t, z∗) =

k
∑

i=1

α(ji)(0)
[

L,Q
(D(j,i))
k−1 (t, z∗)

]

+

k
∑

i=0

Q
(j+ei)
k (t, z∗)− L†Q

(0,j)
k+1 (t, z

∗)

+
[

−iHsys + Lz∗t ,Q
(j)
k (t, z∗)

]

+ δ0,kα
(j)(0)L

−
k

∑

i=0

∑

ci

[

L†Q
(0,ci)
i (t, z∗),Q

(j0,c̄i)
k−i (t, z∗)

]

, (6)

where Q
(0)
k (t, z̃∗) = Qk(t, z̃

∗), α(j)(0) = α(j)(t, t),
D(j, i) ≡ (j0, . . . ji−1, ji+1, . . . , jk) excludes ji in the vec-
tor j, and

∑

ci
is the sum of k!/[i!(k − i)!] terms which

include all possible cases of choosing i elements from a k-
dimensional vector (j1, . . . , jk). Using functional expan-

sions [6], we can also immediately prove that Q
(j)
k (t, z∗)

operators have such a symmetry that Q
(j0,j1,...,jk)
k (t, z∗)

coincide for all permutations of (j1, j2, . . . , jk). This
enables us to greatly reduce the number of equations
that should be solved, because we only need to calcu-

late those Q
(j)
k (t, z∗) operators with normal-ordered ji

(j1 ≤ j2 ≤ . . . ≤ jk).
It is also worth pointing out that since the QSD equa-

tion for a finite-temperature bath with self-adjoint Lind-
blad operator L (i.e., L = L†) is formally the same as the
zero-temperature one with a different finite-temperature
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bath correlation function α(t, s) [4], so Eq. (6) also ap-
plies to that finite-temperature case. Note that the finite-
temperature case with a self-adjoint L covers a large num-
ber of open-system problems, including the important
spin-boson model without the rotating-wave approxima-
tion (see, e.g., [9]).
When modeling the structure of the bosonic bath,

an important and widely used choice is the Lorentzian
spectrum, which corresponds to an environmental noise
zt of the Ornstein-Uhlenbeck type with autocorrelation
α(t, s) = Γγ exp(−γ|t − s|)/2. This kind of bosonic
bath has been used to describe many interesting prob-
lems [1, 3], and it is easy to observe a non-Markovian to
Markovian crossover by just increasing γ. In addition,
this can greatly simplify the hierarchical equations since

α(j)(t, s) = (−γ)jα(t, s) and Q
(j)
k = (−γ)JsQk, where

Js =
∑

i ji. In this case, by utilizing our general re-
sult (6), a compact hierarchical equation for the Qk op-
erators given by Eq. (4) can be explicitly written as

∂

∂t
Qk(t, z̃

∗) = kα(0) [L,Qk−1(t, z̃
∗)] + δ0,kα(0)L

− (k + 1)γQk(t, z̃
∗) + [−iHs + Lz̃∗t ,Qk(t, z̃

∗)] (7)

− L†Qk+1(t, z̃
∗)−

k
∑

i=0

Ck
i

[

L†Qi(t, z̃
∗),Qk−i(t, z̃

∗)
]

,

where Ck
i ≡ k!/[i!(k − i)!] is the binomial coefficient

and the initial conditions are Qk(0, z̃
∗) = 0 for k ≥

0. This set of hierarchical equations can be numeri-
cally solved perturbatively if terminated at order N + 1
by putting either QN+1(t, z̃

∗) = 0 or QN+1(t, z̃
∗) =

∫ t

0
dsα(t, s) [L,QN (t, z̃∗)] [7].
Now we also explore the use of this approach as a sys-

tematic method for models with exact solutions. For
open systems that are known to be exactly solvable by
QSD, the number of expansion terms in

Ō(t, z̃∗) = Ō(0)(t) +

∫ t

0

Ō(1)(t, v1)z̃
∗
v1
dv1

+

∫ t

0

∫ t

0

Ō(2)(t, v1, v2)z̃
∗
v1
z̃∗v2dv1dv2 + . . . . (8)

must be finite [6]. Thus, Ō(n) ≡ 0 for all n larger than a
given finite integer Nc. In this case, we can readily show
that

QNc
(t) =Nc!

∫ t

0

. . .

∫ t

0

α(t, v1) . . . α(t, vNc
)

× Ō(Nc)(t, v1, . . . vNc
)dv1 . . . dvNc

, (9)

which is independent of the noise z̃∗t . Therefore, its func-
tional derivative with respect to z̃∗s is zero. From Eq. (4),
it follows that Qk = 0 for all k ≥ Nc+1, so that the hier-
archical equation naturally terminates and the approach
becomes exact. This provides a useful and systematic
method to deal with an open system with unknown prop-
erties by just implementing the hierarchical equation; if

FIG. 1. (Color online) (a) Ensemble average values of the an-
gular momentum 〈Jx〉, 〈Jy〉, and 〈Jz〉 versus time t. (b) En-
semble average values of the trace norm ofQ0(t, z̃

∗), Q1(t, z̃
∗),

and Qk(t, z̃
∗), with k ≥ 2, as a function of t. In both (a) and

(b), we use 1000 noise realizations and γ = Γ = ω = 1. The
solid curves correspond to the analytic solutions; the solid,
open circles and triangles correspond to the results obtained
using our HFD approach.

the hierarchical equation has a natural termination at a
given order, the considered model is analytically solvable
and our results will be essentially accurate.

As an illustrative example, we consider an analytically
solvable three-level system [8], with Hsys = ωJz, and
L = J−. The functional expansion of its O operator
is only up to the first-order term, i.e., Nc = 1. Thus,
only Q0(t, z̃

∗) and Q1(t) are involved in the hierarchical
equation, and Qk ≡ 0 for k ≥ 2. We numerically solve
the hierarchical equation (7) up to order N = 10. From
Fig. 1(a), it can be seen that the numerically calculated
ensemble averages 〈Ji〉, i = x, y and z, agree well with
the exactly solved results. Also, the trace norms ||Qk|| ≡

Tr

(

√

Q†
kQk

)

are calculated in Fig. 1(b), which shows

that for k ≥ 2, the Qk operators remain zero and the
hierarchical equation naturally terminates at order k =
2 (i.e., Nc = 1), in full consistency with the analytical
derivations.
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FIG. 2. (Color online) (a) Ensemble average 〈σz〉 versus time
t for γ = 0.2, 0.4 and 0.8, obtained using the SDE approach
(solid curves) and the HFD method (solid, open circles and
triangles). Here N = 30, Γγ = 0.2, and 1000 noise realiza-
tions are used. (b) Total number of equations versus termi-
nation order N , where the curve marked by triangles (solid
circles) corresponds to the number of coupled equations of mo-
tion that should be simultaneously solved in the SDE (HFD)
approach.

III. THE RELATIONSHIP TO THE SDE

METHOD

Recently, a numerical approach [9] was developed to
solve the non-Markovian QSD equation via a set of
stochastic differential equations (SDE). A key part of the
SDE formulation is the introduction of a Q operator

Q(n)
m (t, z̃∗) =

∫ t

0

. . .

∫ t

0

α(t− v1) . . . α(t− vm)z̃∗vm+1

. . . z̃∗vnŌ
(n)(t, v1, . . . , vn)dv1 . . . dvn, (10)

where Ō(n)(t, v1, . . . , vn) corresponds to the nth-order
functional expansion term in Eq. (8) and Ō(t, z̃∗) =
∑

n=0Q
(n)
0 (t, z̃∗). For m 6= 0, Q

(n)
m do not directly con-

tribute to Ō(t, z̃∗) but form a set of hierarchical equations

with Q
(n)
0 and need to be solved simultaneously. Within

this framework, one can calculate the quantum trajectory
up to an arbitrary order of the environmental noise.
The spin-boson model without the rotating-wave ap-

proximation (RWA) was studied using this approach by
considering an Ornstein-Uhlenbeck noise (see [9]). This is
a typical example where the explicit form of the O oper-
ator is unknown and the hierarchical approach can serve
as a powerful numerical tool. In Fig. 2 (a), we display
the expectation value of the angular momentum 〈σz〉 as
a function of time using both the SDE and our HFD ap-
proaches. Here we also use an Ornstein-Uhlenbeck noise,
so as to directly compare with the SDE results. An ex-
cellent agreement is reached for the numerical results ob-
tained by them. As a matter of fact, these two hierarchi-
cal methods are very closely related mathematically, and

we prove in Appendix B that the operators Qk and Q
(n)
m

are related by

Qk(t, z̃
∗) =

N
∑

n=k

n!

(n− k)!
Q

(n)
k (t, z̃∗). (11)

The key advantage of the HFD method over the SDE
approach is that the HFD equation (7) effectively groups

theQ
(n)
m operator according to Eq. (11) and sums up their

contributions. This makes the HFD method much more
efficient than the SDE approach. In fact, for a given ter-
mination orderN , the SDE approach needs to simultane-

ously solve coupled equations for Q
(n)
m where n+m ≤ N ,

resulting in a total number of 1
2 (N +2)(N+1) equations.

On the other hand, the HFD approach greatly reduces
the total number of equations to N + 1. Figure 2(b)
shows the total number of coupled differential equations
that should be solved in both the HFD and the SDE ap-
proaches. The very high efficiency of the HFD method
over the SDE approach is clearly seen when increasing
N .

IV. THE RELATIONSHIP TO THE HOPS

METHOD

Previously, almost all QSD approaches are focused on
how to calculate the functional derivative associated with
the O operator. Recently, a hierarchy of pure states
(HOPS) approach [10] was developed as a numerical tool
which, instead of using the O operator, introduces a set
of pure states

|ψk(t)〉 =

∫ t

0

α(t, s)
δ

δz̃∗s
ds|ψk−1(t)〉, (12)

where |ψ0(t)〉 ≡ |ψ(t)〉. In this approach, a set of hierar-
chical equations of motion was found for |ψk(t)〉. Its ad-
vantage is that the hierarchical equations deal with state
vectors of size dim(Hs) × 1 rather than the operators of
size dim(Hs)×dim(Hs), where dim(Hs) is the dimension
of the system’s Hilbert space. From the definition, it is
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easy to see that

|ψ1(t)〉 =Q0(t, z̃
∗)|ψ0(t)〉,

|ψ2(t)〉 =Q1(t, z̃
∗)|ψ0(t)〉 +Q0(t, z̃

∗)|ψ1(t)〉,

|ψ3(t)〉 =Q2(t, z̃
∗)|ψ0(t)〉 + 2Q1(t, z̃

∗)|ψ1(t)〉

+Q0(t, z̃
∗)|ψ2(t)〉, . . . . . . ,

and in general,

|ψk〉 =
k−1
∑

i=0

Ck−1
i Qi(t, z̃

∗)|ψk−i−1〉. (13)

Therefore, it is also possible to formulate the HOPS ap-
proach using the Qk operators in Eq. (4). As shown
above, for an exactly solvable model, Qi(t, z̃

∗) = 0 for
all i ≥ Nc + 1, so that the hierarchical equations for
Qi(t, z̃

∗) terminate at the Ncth order. It is interesting to
note that there are infinite number of hierarchical equa-
tions for |ψk〉 in the HOPS approach, but only Nc + 1
nonzero operators Q0(t, z̃

∗),Q1(t, z̃
∗), . . . ,QNc

(t, z̃∗) are
needed to express all of these |ψk〉. This reflects the exact
solvability of the considered model.

V. DISCUSSION AND CONCLUSION

Solving non-Markovian dynamics of an open quantum
system has long been a challenge. The conventional
master equation for the system’s reduced density ma-
trix is driven by a super-operator K, which is given by
the perturbation expansion with respect to the strength
of system-bath interaction [1]. Whereas the expansion
could be done manually up to the orders beyond 2, it
is difficult to find an automatic numerical way to obtain
the higher-order K operator. As such, the conventional
master equation is used in the weakly-coupled scenario.
Likewise, the quantum state diffusion equation driven by
an O operator (which plays a role similar to K) encoun-
ters the same problem. As a breakthrough, this work
develops a systematic and efficient higher-order HFD ap-
proach for solving the non-Markovian quantum trajecto-
ries of an open system coupled to a bosonic environment.
A compact explicit expression for an arbitrary order hi-
erarchical equation of motion is derived and it can be
efficiently implemented numerically. As a distinctive ad-
vantage of this method, while this hierarchical equation

naturally terminates at a given order and becomes ex-
actly solvable for an analytically solvable model, it pro-
vides a systematic perturbation for a generic open system
irrespective of the existence of the time-local O operator.
Our HFD method applies to an arbitrary bath correlation
function. Also, it can be naturally extended to the case of
a finite-temperature bath when the Lindblad operator in
the interaction Hamiltonian is self-adjoint, including the
important spin-boson model without the rotating-wave
approximation.
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Appendix A: Derivation for the HFD equation with

a general bath correlation function

In this appendix, we derive the HFD equation [i.e.,
Eq. (6)] for an open system with a general bath correla-
tion function α(t, s). Define

Q
(j)
k (t, z∗) =P(jk)P(jk−1) . . .P(j1)

×

∫ t

0

ds0α
(j0)(t, s0)O(t, s0, z

∗), (A1)

where j =
∑

i jiei ≡ (j0, j1, . . . , jk) with ei being the ith

unit vector, P(j) =
∫ t

0
dsα(j)(t, s) δ

δz∗

s
, and α(j)(t, s) =

∂j

∂tj
α(t, s). At the zeroth order, using the quantum state

diffusion (QSD) equation

Ȯ(t, s, z∗)] =
[

−iHsys + Lz∗t − L†Q
(0)
0 (t, z∗), O(t, s, z∗)

]

− L† δQ
(0)
0 (t, z∗)

δz∗s
, (A2)

we have

∂

∂t
Q

(j0)
0 (t, z∗) =

∂

∂t

[
∫ t

0

ds0α
(j0)(t, s0)O(t, s0, z

∗)

]

= α(j0)(0)O(t, t, z∗) +

∫ t

0

ds0
∂

∂t

(

α(j0)(t, s0)
)

O(t, s0, z
∗) +

∫ t

0

ds0α
(j0)(t, s)Ȯ(t, s0, z

∗)

= α(j0)(0)L+Q
(j0+1)
0 (t, z∗)− L†Q

(0,j0)
1 (t, z∗) +

[

−iHsys + Lz∗t − L†Q
(0)
0 (t, z∗),Q

(j0)
0 (t, z∗)

]

. (A3)
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For k ≥ 1, it can be seen that

∂

∂t
P(j) =

∂

∂t

[
∫ t

0

dsα(j)(t, s)
δ

δz∗s

]

= α(j)(0)
δ

δz∗t
+

∫ t

0

dsα(j+1)(t, s)
δ

δz∗s

= α(j)(0)
δ

δz∗t
+ P(j+1). (A4)

Here we define D(j, i) ≡ (j0, . . . ji−1, ji+1, . . . , jk), which
excludes ji in the vector j. For any n-dimensional
vector v = (v1, . . . , vn) and integer x, the notation
(x,v) represents a new (n + 1)-dimensional vector v′ =
(x, v1, . . . , vn). We also introduce a vector ci that chooses

i elements from (j1, . . . , jk) and its complement c̄i that
contains the remaining elements. For example, for
(1, 2, 3, 4, 5), c2 can be (1, 4) and then c̄2 = (2, 3, 5).
We thus have

∂

∂t
Q

(j)
k (t, z∗) =

∂

∂t

[

P(jk)P(jk−1) . . .P(j1)Q
(j0)
0 (t, z∗)

]

=

k
∑

i=1

P(jk)P(jk−1) . . .
∂P(ji)

∂t
. . .P(j1)Q

(j0)
0

+ P(jk)P(jk−1) . . .P(j1)
∂Q

(j0)
0 (t, z∗)

∂t
.

(A5)

Using Eq. (A4) for the first term on the RHS of Eq. (A5)
and Eq. (A3) for the second term, we have

∂

∂t
Q

(j)
k (t, z∗) =

k
∑

i=1

P(jk)P(jk−1) . . .P(ji+1)α(ji)(0)
δ

δz∗t
P(ji−1) . . .P(j1)Q

(j0)
0 (t, z∗)

+

k
∑

i=1

P(jk)P(jk−1) . . .P(ji+1) . . .P(j1)Q
(j0)
0 (t, z∗)

+Q
(j0+1,j1,...,jk)
k (t, z∗) +

[

−iHs + Lz∗t ,Q
(j0,j1,...,jk)
k (t, z∗)

]

− L†Q
(0,j0,j1,...,jk)
k+1 (t, z∗)

− P(jk)P(jk−1) . . .P(j1)
[

L†Q
(0)
0 (t, z∗),Q

(j0)
0 (t, z∗)

]

. (A6)

Note that

P(jk)P(jk−1) . . .P(ji+1) . . .P(j1)Q
(j0)
0 (t, z∗) = Q

(j+ei)
k (t, z∗),

P(jk)P(jk−1) . . .P(ji+1)α(ji)(0)
δ

δz∗t
P(ji−1) . . .P(j1)Q

(j0)
0 (t, z∗) = α(ji)(0)

[

L,Q
(D(j,i))
k−1 (t, z∗)

]

. (A7)

Then, we finally have

∂

∂t
Q

(j)
k (t, z∗) =

k
∑

i=1

α(ji)(0)
[

L,Q
(D(j,i))
k−1 (t, z∗)

]

+

k
∑

i=1

Q
(j+ei)
k (t, z∗) +Q

(j+e0)
k (t, z∗)− L†Q

(0,j)
k+1 (t, z

∗)

+
[

−iHsys + Lz∗t ,Q
(j)
k (t, z∗)

]

− P(jk)P(jk−1) . . .P(j1)
[

L†Q
(0)
0 (t, z∗),Q

(j0)
0 (t, z∗)

]

=
k

∑

i=1

α(ji)(0)
[

L,Q
(D(j,i))
k−1 (t, z∗)

]

+
k

∑

i=0

Q
(j+ei)
k (t, z∗)− L†Q

(0,j)
k+1 (t, z

∗)

+
[

−iHsys + Lz∗t ,Q
(j)
k (t, z∗)

]

−
∑

i

∑

ci

[

L†Q
(0,ci)
i (t, z∗),Q

(j0,c̄i)
k−i (t, z∗)

]

, (A8)

where
∑

ci
is the sum of Ck

i ≡ k!/[i!(k − i)!] terms that
include all possible cases of choosing i elements from a
k-dimensional vector (j1, . . . , jk). This comes from the
term

P(jk)P(jk−1) . . .P(j1)
[

L†Q
(0)
0 (t, z∗),Q

(j0)
0 (t, z∗)

]

, (A9)

where we have chosen i operators in P(jk)P(jk−1) . . .P(j1)

to act on Q
(0)
0 (t, z∗), and the remaining (k − i)

P(jx) operators act on Q
(j0)
0 (t, z∗). For example,

for P(j5)P(j4)P(j3)P(j2)P(j1), one possible case with

i = 2 is that P(j3)P(j1) acts on Q
(0)
0 (t, z∗) to give

Q
(0,j1,j3)
2 (t, z∗), and P(j5)P(j4)P(j2) acts onQ

(j0)
0 (t, z∗) to
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give Q
(j0,j2,j4,j5)
3 (t, z∗). For the Q

(j)
k operator, termina-

tion of the index k is determined by the functional deriva-
tive of the O operator, whereas termination of the index
j is determined by the bath correlation function α(t, s).
In numerical calculations, this set of equations can be

terminated by imposing Q
(j)
k ≡ 0 for all k +

∑

i ji > N ,

where N is a suitably chosen integer.
As an example, we use an exactly solvable model to

show what the HFD equations look like in the pres-
ence of a general bath correlation function. Consider
a three-level atom in a multi-mode bosonic bath [8],
where Hsys = ωJz, and L = J−. The HFD equation

for Q
(j)
0 (t, z∗), with j ≡ (j0), is given by

∂

∂t
Q

(j0)
0 (t, z∗) = α(j0)(0)L+Q

(j0+1)
0 (t, z∗)− L†Q

(0,j0)
1 (t, z∗) +

[

−iHsys + Lz∗t − L†Q
(0)
0 (t, z∗),Q

(j0)
0 (t, z∗)

]

, (A10)

where j0 = 0, 1, 2, . . .. The HFD equation for Q
(j)
1 (t, z∗), with j ≡ (j0, j1), is given by

∂

∂t
Q

(j0,j1)
1 (t, z∗) =α(j1)(0)

[

L,Q
(j0)
0 (t, z∗)

]

+Q
(j0+1,j1)
1 (t, z∗) +Q

(j0,j1+1)
1 (t, z∗) +

[

−iHsys + Lz∗t ,Q
(j0,j1)
1 (t, z∗)

]

−
[

L†Q
(0)
0 (t, z∗),Q

(j0,j1)
1 (t, z∗)

]

−
[

L†Q
(0,j0)
1 (t, z∗),Q

(j0)
0 (t, z∗)

]

, (A11)

where j0, j1 = 0, 1, 2, . . . and j0 ≤ j1. Because the func-
tional expansion of the O operator terminates at the first
order for this exactly solvable three-level model, it follows
from Eqs. (A1) and (8) that

Q
(j)
k (t, z∗) = 0, j ≡ (j0, j1, . . . , jk), k ≥ 2. (A12)

Solving HFD equations in Eqs. (A10) and (A11), we
can obtain Ō for an arbitrary bath correlation function
α(t, s) and then determine the quantum-dynamical be-
havior of the system using the QSD equation. To ter-
minate Eqs. (A10) and (A11) in numerical calculations,

we can imposeQ
(jmax+1)
0 = aQ

(jmax)
0 andQ

(jmax,jmax+1)
1 =

aQ
(jmax,jmax)
1 , where jmax is a suitably chosen integer and

a is a parameter determined by the bath correlation func-
tion.

In particular, for an Ornstein-Uhlenbeck noise, we have

Q
(1)
0 = −γQ

(0)
0 = −γQ0 and Q

(0,1)
1 = −γQ

(0,0)
1 = −γQ1.

Thus, jmax = 0 and a = −γ. Then, Eqs. (A10) and (A11)
simply reduce to

∂

∂t
Q0(t, z

∗) = α(0)L− γQ0(t, z
∗)− L†Q1(t, z

∗)

+
[

−iHsys + Lz∗t − L†Q0(t, z
∗),Q0(t, z

∗)
]

, (A13)

and

∂

∂t
Q1(t, z

∗) = α(0) [L,Q0(t, z
∗)]− 2γQ1(t, z

∗)

+ [−iHsys + Lz∗t ,Q1(t, z
∗)]−

[

L†Q0(t, z
∗),Q1(t, z

∗)
]

−
[

L†Q1(t, z
∗),Q0(t, z

∗)
]

, (A14)

which give the results in Ref. [8].

Appendix B: The relationship between SDE and

HFD methods

In this appendix, we explicitly show the relationship
between the stochastic differential equation (SDE) ap-
proach [9] and our generalized hierarchical functional
derivative (HFD) approach.

From the definition of the Q
(n)
m operator in Eq. (10),

we have
∫ t

0

dsα(t, s)
δ

δz̃∗s
Q(n)

m (t, z̃∗) = (n−m)Q
(n)
m+1. (B1)

Thus, from Eqs. (A1) and (4), it follows that

Q0(t, z̃
∗) ≡ Ō(t, z̃∗) =

N
∑

n=0

Q
(n)
0 (t, z̃∗),

Q1(t, z̃
∗) =

∫

dsα(t, s)
δ

δz̃∗s
Q0(t, z̃

∗)

=

N
∑

n=1

nQ
(n)
1 , (B2)

Q2(t, z̃
∗) =

∫

dsα(t, s)
δ

δz̃∗s
Q1(t, z̃

∗)

=
N
∑

n=2

n(n− 1)Q
(n)
2 ,

. . . . . .

By mathematical induction, it can be obtained that if

Qk(t, z̃
∗) =

N
∑

n=k

n(n− 1) . . . (n− k + 1)Q
(n)
k

=

N
∑

n=k

n!

(n− k)!
Q

(n)
k (t, z̃∗), (B3)
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then for Qk+1, we have

Qk+1(t, z̃
∗) =

N
∑

n=k

n!

(n− k)!

∫ t

0

dsα(t, s)
δ

δz̃∗s
Q

(n)
k (t, z̃∗)

=

N
∑

n=k+1

n!

(n− k − 1)!
Q

(n)
k+1(t, z̃

∗). (B4)

This proves the result given in Eq. (11).

When an Ornstein-Uhlenbeck noise is considered, the

hierarchical equation of motion for the Q
(n)
k operator is

derived in Ref. [9] as

∂

∂t
Q

(n)
k (t, z̃∗) =δn,0α(0)L+

k

max{1, n}
α(0)

[

L,Q
(n−1)
k−1 (t, z̃∗)

]

+
(n− k)

max{1, n}
z̃∗t

[

L,Q
(n−1)
k (t, z̃∗)

]

− (k + 1)γQ
(n)
k (t, z̃∗) +

[

−iHsys, Q
(n)
k (t, z̃∗)

]

− (n+ 1)L†Q
(n+1)
k+1 (t, z̃∗)

−
n
∑

p=0

∑

l

Cp
l C

n−p
n−k−l

Cn
k

[

L†Q
(p)
p−l(t, z̃

∗), Q
(n−p)
k−p+l(t, z̃

∗)
]

. (B5)

Substituting Eq. (B5) into ∂
∂t
Qk(t, z̃

∗) =
∑N

n=k
n!

(n−k)!
∂
∂t
Q

(n)
k (t, z̃∗), it follows that for k = 0, one has

∂

∂t
Q0(t, z̃

∗) =

N
∑

n=0

∂

∂t
Q

(n)
0 (t, z̃∗)

=α(0)L +

N
∑

n=0

{

z̃∗t

[

L,Q
(n−1)
0 (t, z̃∗)

]

− γQ
(n)
0 (t, z̃∗) +

[

−iHsys, Q
(n)
0 (t, z̃∗)

]

−
n
∑

p=0

p
∑

l=p

Cp
l C

n−p
n−l

Cn
0

[

L†Q
(p)
p−l(t, z̃

∗), Q
(n−p)
l−p (t, z̃∗)

]

− (n+ 1)L†Q
(n+1)
1 (t, z̃∗)

}

=α(0)L + z̃∗t [L,Q0(t, z̃
∗)]− γQ0(t, z̃

∗) + [−iHsys,Q0(t, z̃
∗)]−

[

L†Q0(t, z̃
∗),Q0(t, z̃

∗)
]

− L†Q1(t, z̃
∗),

(B6)

and for k ≥ 1, one has

∂

∂t
Qk(t, z̃

∗) =
N
∑

n=k

n!

(n− k)!

∂

∂t
Q

(n)
k (t, z̃∗)

=
N
∑

n=k

n!

(n− k)!

{

k

n
α(0)

[

L,Q
(n−1)
k−1 (t, z̃∗)

]

+
(n− k)

n
z̃∗t

[

L,Q
(n−1)
k (t, z̃∗)

]

− (k + 1)γQ
(n)
k (t, z̃∗)

+
[

−iHsys, Q
(n)
k (t, z̃∗)

]

− (n+ 1)L†Q
(n+1)
k+1 (t, z̃∗)−

n
∑

p=0

∑

l

Cp
l C

n−p
n−k−l

Cn
k

[

L†Q
(p)
p−l(t, z̃

∗), Q
(n−p)
k−p+l(t, z̃

∗)
]

}

=kα(0) [L,Qk−1(t, z̃
∗)] + z̃∗t [L,Qk(t, z̃

∗)]− (k + 1)γQk(t, z̃
∗)− L†Qk+1(t, z̃

∗)

+ [−iHsys,Qk(t, z̃
∗)]−

N
∑

n=k

n!

(n− k)!

n
∑

p=0

∑

l

Cp
l C

n−p
n−k−l

Cn
k

[

L†Q
(p)
p−l(t, z̃

∗), Q
(n−p)
k−p+l(t, z̃

∗)
]

. (B7)

The last term on the RHS of Eq. (B7) can be rewritten as

N
∑

n=k

n!

(n− k)!

∑

p,l

Cp
l C

n−p
n−k−l

Cn
k

[

L†Q
(p)
p−l(t, z̃

∗), Q
(n−p)
k−p+l(t, z̃

∗)
]

=
∑

n=k

∑

p,l

k!

(p− l)!(k + l − p)!

[

L† p!

l!
Q

(p)
p−l(t, z̃

∗),
(n− p)!

(n− k − l)!
Q

(n−p)
k−p+l(t, z̃

∗)

]

=
∑

i

Ck
i

[

L†Qi(t, z̃
∗),Qk−i(t, z̃

∗)
]

, (B8)
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where the substitution p− l → i is taken in the last line.
Finally, substituting Eq. (B8) into Eq. (B7), we obtain

Eq. (7), i.e., the hierarchical equation of motion for the
Qk operator. This proves that Eq. (B5) is mathemati-
cally equivalent to Eq. (7).
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