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We theoretically investigate interactions between non-degenerate mechanical oscillators mediated
by a time-dependent cavity field. We obtain a reduced master equation valid for all optomechanical
systems operating in the weak coupling regime. This master equation includes all forms of deco-
herence and back-action due to the dissipation of the field mediating the interaction. We apply
the master equation to study two resonant coupling schemes within a rotating-wave approximation:
the beam splitter Hamiltonian and the two-mode parametric amplifier. In both cases, the effective
unitary interaction can be made arbitrarily strong compared to the decoherence due to dissipation
of the mediating field by choosing appropriate detunings.
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I. INTRODUCTION

The ability to control a physical system at the quan-
tum level has, whenever it was achieved, profoundly influ-
enced physics and many of its applications. Two promi-
nent examples, the development of lasers and their appli-
cation to cool atomic gases, have allowed to use light as a
tool to perform a wide range of tasks and lead to improve-
ments of precision measurements by orders of magnitude.
In the last few years, successes in cavity optomechanics
have lead to similar control over motional degrees of free-
dom of mesoscopic and microscopic oscillators [1].

Experiments have successfully demonstrated quan-
tum effects involving a single mechanical oscillator [2–7]
and theoretical studies point out the suitability of op-
tomechanical systems to observe truly macroscopic non-
classical behavior [8–12]. While the vast majority of the
experimental results involve a single mechanical mode,
typical solid-state resonators exhibit a multitude of res-
onances over a wide range of frequencies [13, 14]. In sys-
tems where the mechanical modes consist of the collective
motion of a trapped atomic cloud [4, 15] one can engineer
non-degenerate optomechanical modes by trapping sev-
eral clouds in an optical superlattice [16]. Numerous non-
degenerate mechanical modes are thus a common feature
of optomechanical systems, which feature, however, re-
mains largely unexploited to date as most experimental
results [13, 21, 26, 27] involve nearly degenerate mechan-
ical modes.

While multimode optomechanics has been studied the-
oretically for specific applications [17, 19–25], there has
been no general formalism to analyze the possibilities of
tuning non-degenerate modes into resonance. The aim
of the present work is to provide that formalism, includ-
ing the effects of quantum noise and measurement back-
action of the mediating field. The resulting equations are
applicable over the whole range of optomechanical sys-
tems, from large scale interferometers for gravitational

wave detection [28] to oscillations of ultracold atomic
clouds [4] or optomechanical microcavities [1, 29].

The effective interaction between non-degenerate me-
chanical modes is suppressed by their frequency differ-
ence. Together with the typically small optomechanical
couplings this prohibits effective multimode physics in-
volving modes with vastly different frequencies. However,
other fields of physics successfully use auxiliary modes
to resonantly couple non-degenerate states. In atomic
physics, for instance, two laser beams appropriately de-
tuned from a third state can drive a two-photon reso-
nance between two non-degenerate atomic states [30]. In
non-linear optics, two optical fields can be tuned into
resonance by an appropriate pump creating a standing
wave in a non-linear crystal [30]. The optomechanical
analogue of these techniques is an oscillating intensity in
a cavity field coupled to two non-degenerate mechanical
modes and is the subject of this Article.

A time dependent intracavity intensity is created by
any anharmonic pump, the simplest example being the
field created by two harmonic drives with distinct fre-
quencies. The resulting cavity field can mediate a reso-
nant coupling irrespective of the frequency difference of
the mechanical modes. Recent theoretical studies have
applied specific examples of this very effect for special-
ized applications, such as the cooling of a low-lying me-
chanical mode [25], mechanical phase-conjugation [24] or
preparation of non-classical states [17]. The price for
resonant mediated interaction between non-degenerate
modes is additional decoherence due to the dissipative
nature of the mediating field. The cavity field that pro-
vides mechanical coupling also carries information about
the mechanical state out of the cavity and this loss of
unitarity is necessarily accompanied by noise entering the
mechanical system [23].

In this Article, we derive a general and complete mas-
ter equation for the behavior of two non-degenerate me-
chanical modes interacting via weak coupling to a shared
cavity field. Our treatment is complete in the sense that
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all sources of decoherence, back-action and noise that are
a consequence of the mediating field’s dissipation are in-
cluded. Taking these effects into account is crucial for
the operation of any optomechanical device at the quan-
tum level and a prerequisite to the observation of non-
classical effects. The resulting equation is general in the
sense that we do not assume any specific detuning or
rely on the system’s being in any particular parameter
regime, apart from the weak coupling assumption which
is accessible to virtually all optomechanical systems to
date [1]. The derivation of our master equation does not
rely on the mediating field’s being the mode of an electro-
magnetic resonator. With a few simple modifications it
will also describe interactions mediated by bulk-phononic
modes [18]. Similarly it is straightforward to add individ-
ual, Markovian heat baths for the mechanical oscillators
and while we have neglected them for the discussion of
the individual couplings, their effect is discussed in the
final section.

After deriving the general master equation, we will
study the two resonant effective interactions described
by the beam splitter Hamiltonian

HI = JBS

(
b̂†1b̂2 + b̂1b̂

†
2

)
(1)

and the two-mode parametric amplifier

HI = JPA

(
b̂1b̂2 + b̂†1b̂

†
2

)
, (2)

where b̂j denotes the annihilation operator for phonons
in oscillator j. The former allows the mapping of a quan-
tum state from one oscillator to the other while the latter
leads to non-classical correlations between the two oscil-
lators, akin to parametric down-conversion in quantum
optics. Most results obtained in single-mode optome-
chanics consist of these two Hamiltonians resonantly cou-
pling the cavity-mode with the mechanical mode via the
matching of mechanical side bands with the cavity res-
onance. Optomechanical cooling, for instance, is a real-
ization of the beam splitter Hamiltonian together with
the large dissipation of the electromagnetic field modes,
while parametric driving is a realization of the para-
metric amplifier involving mechanical and electromag-
netic modes [7]. Realizing these couplings between two
mechanical modes opens the door to more customized
and precise sensing of forces and fields, the application
of quantum computation algorithms to mechanical sys-
tems [31] and the study of macroscopic decoherence [32].

Of crucial importance is the ratio between the strength
of the mediated unitary interactions and the decoherence
rates due to the mediating field being emitted from the
cavity. This quantity is a measure for the ability of the
effective interaction to create or maintain non-classical
correlations between the two modes and thus a gauge for
the classicality of the interactions [23, 33, 34]. We find
that the relationship between unitary coupling strengths
and total decoherence rates depends on the system pa-
rameters and the detunings of the pumps with respect

to the cavity resonance, such that different choices of de-
tunings turn out to be ideal for a given application. Most
importantly, we find that even for systems where the cav-
ity emission rate of the mediating field exceeds all of the
involved mechanical frequencies there are regimes where
the engineered interaction allows non-classical motional
states or the transfer of nonclassical states between os-
cillators.

II. MASTER EQUATION

A. System Hamiltonian

Consider an optomechanical system consisting of two
mechanical modes with natural frequencies ω1 and ω2

coupled to the field of an electromagnetic resonator with
single photon/single phonon coupling strengths g1 and
g2 respectively.A sketch of a possible setup involving spa-
tially separate membranes coupled to the field of an opti-
cal Fabry-Pérot resonator is given in Fig. 1. The mechan-
ical modes need not be located on distinct oscillators and
the mediating field does not have to be optical. The sys-
tem could also consist of two non-degenerate drumhead
modes of a capacitor in a superconducting LC circuit [7]
with photons in the microwave regime or two samples of
ultracold atoms trapped in an optical cavity [16].

Neglecting all other modes of the mechanical system
and the cavity, the Hamiltonian in the lab frame is given
by

H = Hopt +Hm +HI +Hκ (3)

with

Hopt = ωcâ
†â+ η(t)â† + η∗(t)â, (4)

Hm =

2∑
j=1

ωj b̂
†
j b̂j , (5)

HI =

2∑
j=1

gj â
†â(b̂†j + b̂j), (6)

and Hκ accounts for the intensity of the intracavity field
being emitted to a reservoir at zero temperature at a rate
κ [40]. We have set ~ = 1, dropped constant terms and
defined the input coherent field driving the cavity with
the rate η. The coupling of each oscillator to its thermal
reservoir is neglected in favor of a focus on decoherence
due to the dissipative nature of the field that mediates
the interaction. Thermal effects are explicitly discussed
later.

To tune a desired coupling into resonance, we need the
cavity intensity to oscillate in time. This is achieved by
driving the cavity with a bi-chromatic pump,

η(t) = η1e
−iωL1t + η2e

−iωL2t. (7)
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FIG. 1: (Color online) (a) Sketch of a possible experimen-
tal realization involving separate optomechanical membranes.
The mechanical modes could also be on the same resonator.
(b) A scattering process contributing to the coherent exchange
of phonons in the resonant beam splitter interaction. The
three other contributing processes result from time reversal
and pump photons with frequency ωL1 scattering with oscil-
lator 2. (c) A scattering process contributing to the paramet-
ric amplification of the mechanical modes. The three other
processes are obtained in the same way as in panel (b).

The beat-note between the two drives will provide the
necessary energy to tune either Hamiltonian (1) or (2)
into resonance. The density operator of the system ρ
satisfies the master equation

dρ

dt
= −i[H, ρ] + κL(â)ρ, (8)

with the Lindblad superoperator

L(â)ρ = âρâ† − 1

2
â†âρ− 1

2
ρâ†â. (9)

Without loss of generality we will assume ω1 > ω2 and
ωL2 > ωL1. The next step is to unitarily displace the cav-
ity field operator by a time-dependent complex function:
â→ α(t) + â. If we choose

α(t) = α1e
−iωL1t + α2e

−iωL2t, (10)

with

αj =
−iηj

κ/2 + i∆j
, (11)

where ∆j = ωc − ωLj , all source terms for â cancel and
it only carries quantum fluctuations of the cavity field.
Without loss of generality, we may choose the phases of
ηj such that both αj are real. The displacement oper-

ation introduces the term |α(t)|2
∑
j gj(b̂j + b̂†j) driving

the mechanical degrees of freedom. The time indepen-
dent part of this term is a constant force that will shift
the equilibrium position of each oscillator. Additionally,
the beat-note between the two pumps will drive each os-
cillator off-resonantly. The constant force does not affect
the dynamics of the system. For the small mechanical
linewidths typical of optomechanics [1] the off-resonant
terms drive oscillator j into a coherent state with phonon
number of the order of

α1α2gj
|ωL1−ωL2−ωj | . For weak couplings

gj his small oscillation can be neglected for all effects that
are considered in the remainder of this paper.

Similarly, we can also neglect the interactions
quadratic in â and thus find in a co-rotating frame for
the optical operators the Hamiltonian

H = Hm +

2∑
j,k=1

gjαk
(
â†ei∆kt + âe−i∆kt

)
(b̂j + b̂†j). (12)

B. Tracing out the cavity field

Tracing out the electromagnetic system will yield an ef-
fective master equation coupling the mechanical modes.
To perform the partial trace over electromagnetic degrees
of freedom we restrict the optical Hilbert space to the op-
tical vacuum and first-order coherences. This is formally
a projection of the optical Hilbert space unto a lower-
dimensional subspace as described below. Introducing
Fock states of the optical subsystem |n〉o and operators

ρmn = o〈m|ρ|n〉o, (13)

the reduction is formalized as

ρmn = 0 ⇐⇒ m+ n > 1. (14)

By virtue of the displacement operation this is a reason-
able approximation. The reduced density operator of the
mechanical system becomes

ρm = o〈0|ρ|0〉o. (15)

Note, however, that this identification can only be made
after taking the trace over optical degrees of freedom in
Eq. (8), as there are non-vanishing contributions from
the one-photon sector. Taking this into consideration,
we find the equation of motion

dρm

dt
=− i[Hm, ρm]

+

2∑
j,k=1

(
−igjαke−i∆kt[b̂j + b̂†j , ρ10] + h.c.

)
,

(16)
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with h.c. denoting the Hermitian conjugate. The evolu-
tion of the operator ρ10 is governed by

dρ10

dt
= −i[Hm, ρ10]− i

2∑
j,k=1

gjαke
i∆kt(b̂j+ b̂†j)ρm−

κ

2
ρ10.

(17)
Assuming that ρm changes slowly on a timescale κ−1 we
can solve this equation by elementary transformations.
The result is

ρ10 =− i
2∑

j,k=1

gjαke
i∆kt×

×

(
b̂†j

κ/2 + i(∆k + ωj)
+

b̂j
κ/2 + i(∆k − ωj)

)
ρm.

(18)

This expression can be plugged into Eq. (16) to give the
reduced master equation for the mechanical system. In-

troducing the vectors b̂
>

= (b̂1, b̂2, b̂
†
1, b̂
†
2), where > de-

notes the transpose, we obtain

dρm

dt
= −i[Hm, ρm]+b̂

>
M1b̂ρm+ρmb̂

>
M2b̂+b̂

>
M3ρmb̂.

(19)
Here Mi are 4× 4 matrices

Mi =

(
D−i O−i
O+
i D+

i

)
, (20)

with

[
D±1
]
mn

= −gmgn
2∑

k,l=1

αkαle
i(∆l−∆k)t

κ/2 + i(∆l ± ωn)
(21a)

[
O±1
]
mn

= −gmgn
2∑

k,l=1

αkαle
i(∆l−∆k)t

κ/2 + i(∆l ∓ ωn)
(21b)

[
D±2
]
mn

= −gmgn
2∑

k,l=1

αkαle
i(∆k−∆l)t

κ/2− i(∆l ∓ ωm)
(21c)

[
O±2
]
mn

= −gmgn
2∑

k,l=1

αkαle
i(∆k−∆l)t

κ/2− i(∆l ∓ ωm)
(21d)

[
D±3
]
mn

=gmgn

2∑
k,l=1

αkαl×

×
(

ei(∆l−∆k)t

κ/2 + i(∆l ± ωm)
+

ei(∆k−∆l)t

κ/2− i(∆l ∓ ωn)

)
(21e)[

O±3
]
mn

=gmgn

2∑
k,l=1

αkαl×

×
(

ei(∆l−∆k)t

κ/2 + i(∆l ± ωm)
+

ei(∆k−∆l)t

κ/2− i(∆l ± ωn)

)
,

(21f)

and m,n ∈ {1, 2}.
This is the general form of the master equation in the

lab frame, including all off-resonant terms. It is easily re-
duced to the system of a single harmonic oscillator (with
ω1 = ω2 and g1 = g2 or g2 = 0) or a single harmonic
pump (with ∆1 = ∆2 and α1 = α2 or α2 = 0). As
sketched in Fig. 1 (b) and (c), mediated interactions in-
volve at least two photon-phonon scattering processes.
Thus all effective amplitudes appearing in Eqs. (21) are
of second order in the single phonon/single photon cou-
pling strength.

The unitary evolution described by Eq. (19) is con-
ceptually simple. Each pump shifts the resonance of the
oscillators by the frequency

Im
(
[O+

1 ]ii − [O−2 ]ii
)
≡ δΩi +Ri(t), (22)

where we have separated the time-independent spring
shifts δΩi from time-dependent contributions easily
found from Eqs. (21). The explicit form of the spring
shifts is

δΩi = g2
i

2∑
k=1

(
α2
k(∆k − ωi)

κ2/4 + (∆k − ωi)2
− α2

k(∆k + ωi)

κ2/4 + (∆k + ωi)2

)
.

(23)

The mechanical resonances oscillate with small am-
plitudes |Ri(t)| around their means ωi + δΩi. Due
to the weakness of optomechanical couplings we have
|Ri(t)|, δΩi � ωi and the oscillation of their reso-
nance frequency will not affect the dynamics of the sys-
tem for sufficiently non-degenerate modes, quantified by
|∆1 −∆2| � |δΩi|. Additionally, the light-field also es-
tablishes an optical spring between the oscillators, with
spring constant given by

k12 =
1

zHO,1zHO,2
Im
(
[O+

1 ]12 − [O−2 ]21

)
, (24)

where zHO,i is the zero-point displacement of oscillator
i. The re-scaling by the two oscillator lengths serves to
give k12 the units of force per length but does not appear
in the equations of motion, where this length has been

absorbed into the definition of the operators b̂i. This
spring too consists of constant and time-dependent con-
tributions. In contrast to the single-mode optical springs
given in Eq. (22), it is now the time-dependent contri-
butions that can create resonant couplings between the
non-degenerate oscillators.

III. RESONANT COUPLINGS

In the following section we will focus on the cases where
the time-dependence of the optical spring between the
oscillator resonates with eigenmodes of the two-oscillator
system. We will focus on a regime where the frequency
difference between the two oscillators is large compared
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to the effective coupling strengths,

g1g2α1α2

κ
� |ω1 − ω2|. (25)

For such systems, a monochromatic pump does not lead
to multimode behavior and the system can be treated as
two separate single-mode optomechanical oscillators. In
our case of two harmonic pumps, the beat-note between
the two drives can tune a desired interaction into reso-
nance. For such cases condition (25) assures off-resonant
contributions to be suppressed such that they can be ne-
glected within a rotating-wave approximation.

The beat-note between the two optical pumps has to
hit the resonances of the optically shifted mechanical fre-
quencies ωi + δΩi. This turns the resonance conditions
into non-linear equations with respect to the optical de-
tunings. The correction of the modified resonance con-
ditions compared to their bare values are small, but we
have computed them for completeness and they are given
in the appendix. From here on, we assume that these cor-
rections are taken into account and take them into the
definitions of the mechanical frequencies, i.e.

ωi → ωi + δΩi. (26)

This substitution has to be carried through in Eqs. (21)
to be self consistent and does not lead to qualitatively
different dynamics in the weak-coupling regime.

Resonant coupling arises when the modulation fre-
quency of the spring connecting the two oscillators
matches the difference of the two individual oscillator
resonances,

∆1 −∆2 = δω (27)

where we have introduced δω = ω1 − ω2 for the differ-
ence of the mechanical frequencies. The resulting inter-
action – governed by Hamiltonian (1) – can be used to ex-
change the quantum states of the two mechanical modes
irrespective of their frequency difference. A diagram for
one particular set of scattering processes contributing to
this interaction is given in Fig. 1 (b). The two clas-
sical pumps driving the cavity establish the conditions
for resonant exchange of phonons between the mechan-
ical modes via scattering of intracavity photons. Alter-
natively, the modulation of the coupling spring k12 can
match the sum of the oscillator frequencies,

∆1 −∆2 = 2Ω̄ (28)

with Ω̄ = ω1+ω2

2 being the average frequency of the bare
mechanical modes. In this case the resulting interaction
is a parametric drive of a collective mode of the two-
oscillator system described by Hamiltonian (2). An ex-
ample for a process contributing coherently to this effec-
tive interaction is given in Fig. 1 (c).

In the following, we will study the two resonant cases
in detail. To this end, it is useful to transform into a

HaL
PHΩL

ΩL1ΩL1-Ω1 ΩL1-Ω2 ΩL1+Ω1ΩL1+Ω2

Ω

HbL
PHΩL

ΩL2ΩL2-Ω1 ΩL2-Ω2 ΩL2+Ω1ΩL2+Ω2

Ω

FIG. 2: (Color online) Sketch of the intracavity photon power
spectral density neglecting the cavity profile for clarity. (a)
and (b) show the contributions of the two pumps in red (solid)
and blue (dashed) respectively. The difference between the
pump frequencies is arranged in the beam splitter configura-
tion specified by Eq. (27) with the pumps indicated by arrows
representing delta-peaks at ωL1 and ωL2. Each pump creates
a pair of sidebands for each mechanical oscillator, as indicated
in the sketch. The overlapping sidebands are emphasized by
the dashed lines and formally captured by Eqs. (33). The ex-
act behavior of this quantity including the cavity profile can
be obtained from Eq. (18)

co-rotating frame for the mechanical operators, achieved
by applying the unitary

U = ei
∑

j ωj b̂
†
j b̂jt (29)

to the master equation (19). The transformed Hamilto-
nian does not contain the free mechanical Hamiltonians
Hm, but the frequencies now modulate the off-diagonal
elements of the matrices appearing in the master equa-
tion,

[D±j ]mn → e±i(ωm+ωn)t[D±j ]mn, (30)

[O±j ]mn → e±i(ωm−ωn)t[O±j ]mn. (31)

A. Beam Splitter

In this subsection we will study the setting where the
effective interaction is given by the beam splitter Hamil-
tonian (1). This interaction leads to a coherent exchange
of quantum states between the two mechanical modes at
a rate JBS. Applications include the cooling of a low-
frequency mode by means of an auxiliary high-frequency
mode, the study of mediated interactions [23] or quan-
tum state mapping. In the time-domain the resonant
coupling corresponds to a modulation of the strength of
a spring connecting the two oscillators. It is instructive
to discuss this condition in the frequency domain. The
optomechanical interaction leads to side bands on the
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cavity field, identifiable in Eq. (18) and associated with
photon-phonon scattering processes. Each pump creates
two pairs of side bands, one for each oscillator. Their
optical frequencies are

∆k ± ωj . (32)

The resonance condition (27) implies

∆1 − ω1 = ∆2 − ω2 = ∆̄− Ω̄ (33a)

∆1 + ω2 = ∆2 + ω1 = ∆̄ + Ω̄, (33b)

where we have introduced the central detuning

∆̄ =
∆1 + ∆2

2
(34)

These identities represent overlapping side bands of dif-
ferent oscillators, as sketched in Fig. 2. When a photon
coming from one pump mode leaves the cavity in the
other pump mode, it will have interacted with both os-
cillators and mediated the coherent transfer of a phonon
between oscillators. The distinct overlapping side bands
in Eqs. (33) provide two distinguishable pathways for
phonon exchange and the coherent effective coupling rate
is the sum of the amplitudes for each pathway. Addition-
ally, there are four unmatched side bands with frequen-
cies

∆1 + ω1, (35a)

∆2 − ω1, (35b)

∆2 + ω2, (35c)

∆1 − ω2. (35d)

These unmatched side bands contain photons which have
scattered phonons off a single mechanical mode. They
carry information about the oscillators out of the cavity
and are sources of dissipation and back-action.

The resonant coupling terms are found in the matrices
O±i ; using identities (33) we find[
O±1
]
12

=
[
O±1
]
21

=
[
O±2
]∗
12

=
[
O±2
]∗
21

=
−g1g2α1α2
κ
2 + i(∆̄∓ Ω̄)

,

(36)

where the star denotes complex conjugation. The co-
herent processes are contained in the imaginary parts of
these coupling terms,

JBS = Im
([
O+

1

]
12

+
[
O−1
]
12

)
, (37)

where the two terms correspond to amplitudes for the
scattering being mediated by the matched side bands on
the red and blue side of the pumps respectively. The
real parts of Eq. (36) together with resonant terms in O3

describe the dissipative dynamics. We find[
O±3
]
12

=
[
O±3
]
21

=
g1g2α1α2κ

κ2/4 + (∆̄± Ω̄)2
. (38)

Explicitly separating unitary and dissipative terms yields
after some algebra the master equation

dρm

dt
=− i [Heff , ρm] + Γ̄

(
(n̄+ 1)L(B̂)ρ+ n̄L(B̂†)ρ

)
+

2∑
j=1

Γ̄j

(
(n̄j + 1)L(b̂j)ρ+ n̄jL(b̂†j)ρ

)
(39)

with the effective Hamiltonian

Heff = JBS

(
b̂†1b̂2 + b̂1b̂

†
2

)
, (40)

and the collective mode

B̂ =

√
G1

G2
b̂1 +

√
G2

G1
b̂2, (41)

where we have assumed α1 = α2 ≡ α and introduced
Gj = gjα for notational brevity. The chosen normaliza-
tion of the collective mode yields non-canonical commu-
tation relations but simplifies the coefficients appearing
in the master equation. They are

JBS =Im

(
G1G2(κ+ 2i∆̄)

κ2/4 + Ω̄2 − ∆̄2 + iκ∆̄

)
, (42a)

Γ̄1 =
4G2

1κ∆̄(Ω̄ + δω)

(κ2/4 + (∆̄− Ω̄− δω)2)(κ2/4 + (∆̄ + Ω̄ + δω)2)
,

(42b)

Γ̄2 =
4G2

2κ∆̄(Ω̄− δω)

(κ2/4 + (∆̄ + Ω̄− δω)2)(κ2/4 + (∆̄− Ω̄ + δω)2)
,

(42c)

Γ̄ =
4G1G2κ∆̄Ω̄

(κ2/4 + (∆̄− Ω̄)2)(κ2/4 + (∆̄ + Ω̄)2)
, (42d)

n̄1 =
κ2/4 + (∆̄− Ω̄− δω)2

4∆̄(Ω̄ + δω)
, (42e)

n̄2 =
κ2/4 + (∆̄− Ω̄ + δω)2

4∆̄(Ω̄− δω)
, (42f)

n̄ =
κ2/4 + (∆̄− Ω̄)2

4∆̄Ω̄
. (42g)

The master equation (39) describes two resonantly cou-
pled bosonic modes connected to three independent heat
baths. The two heat baths described by coupling rates
Γ̄j and effective thermal occupations n̄j affect each os-
cillator separately, while the bath described by Γ̄ with
effective occupation n̄ acts on a collective mode of the
system.

1. Unitary Evolution

For given side band resolution κ/Ω̄ and optomechan-
ical couplings, the maximum exchange rate between
the two states Jmax is reached for ∆̄ = ±(Ω̄ + κ/2).
For typical experimental parameters the coupling is
around 0.01 Ω̄ [1] and can be tuned via the pump
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FIG. 3: (Color online) Normalized coupling strength as a
function of central detuning and side band resolution. The
line gives parameters resulting in zero coupling, JBS = 0.
Other parameters are G1 = G2 = 0.01 Ω̄.

strengths. The coupling strength as a function of central
detuning changes its behavior depending on the side band
resolution as plotted in Fig. 3. For κ < 2Ω̄ there are two
non-zero values of ∆̄ resulting in no effective coupling,
indicated by a line in the figures. This cancellation is a
temporal analogue of a double-slit interference. The pro-
cesses of phonon exchange via either matched side band
(see Fig. 2 and Eqs. (33)) can coherently cancel. This
is, however, only possible if the photon coherence time
κ−1 exceeds the inverse separation of the two processes
(ω1 + ω2)−1.

2. Dissipative Dynamics

The single-mode heat baths, characterized by Eqs.
(42b),(42c),(42e) and (42f), correspond to the unmatched
side bands of the two pumps, see Fig. 2. These photons
only carry information about the positions of single oscil-
lators and affect the mechanical modes separately. Pho-
tons in the overlapping side bands partially contribute
to the coherent exchange of excitations through JBS, but
also leak out of the cavity, affecting the collective mode
B̂. Effective temperatures are defined by the occupa-
tions n̄i and n̄. Parameter regimes where n̄i or n̄ become
negative are to be understood in the sense of statisti-
cal mechanics and indicate anti-damping of the mode in
question.

For pumps that are arranged symmetrically around the

FIG. 4: (Color online) Scaled total decoherence rate Γ/Γmax

as a function of detuning and optical dissipation rate. Other
parameters are the same as in Figs. 3.

cavity resonance (∆̄ = 0) there is no effective spring cou-
pling the two oscillators, JBS = 0. The light field only
measures the mechanical system and its dissipation is
pure measurement back-action of the light field on the
mechanical oscillators [41]. Cavities with a dissipation
rate smaller than the frequency difference of the oscilla-
tors can resolve each heat bath independently, as plotted
in Fig. 4. In such systems it is possible to cool or am-
plify each mode or the collective mode selectively and it
is sufficient to consider only the dominant heat bath.

3. Limits to Coherence

The detuning resulting in the strongest coupling
strength JBS is not necessarily the ideal choice to cou-
ple two mechanical modes. For coherent manipulations
on a quantum level it is necessary to minimize the influ-
ence of decoherence. The total decoherence rate of the
system due to the dissipation of the mediating field is
given by

Γ = Γ̄n̄+ Γ̄1n̄1 + Γ̄2n̄2 (43)

and is plotted in Fig. 4 as a function of ∆̄ and κ. Each
contribution is a Lorentzian with width κ2/4 centered on
the blue detuned side of the cavity resonance at ∆̄ = −Ω̄
and ∆̄ = −Ω̄ ± δω. For large κ, the ratio J/Γ is typi-
cally smaller than unity for ∆̄ in the vicinity of Ω̄ and
thus one would have to conclude that in this regime high-
fidelity transfer of quantum states between oscillators is
not possible. However, for ∆̄ � Ω̄ this ratio becomes a
monotonically increasing function of ∆̄ and can in prin-
ciple be made arbitrary large [42]. This remains true
irrespective of the cavity’s quality factor and is analo-
gous to atomic physics, where the decoherence due to
the spontaneous emission from an excited state can be
circumvented by coupling two lower lying states via a far
detuned two-photon transition.
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FIG. 5: (Color online) Sketch of the photon power spectral
density neglecting the cavity profile. (a) and (b) show the
power spectral density due to the two pumps in red (solid)
and blue (dashed) respectively. The two pumps, indicated
as arrows at ωL1 and ωL2, are arranged in the parametric
amplifier configuration specified by Eq. (28). We emphasized
the overlapping sidebands captured by Eqs. (44) with dashed
lines.

B. Two-mode Parametric Amplification

Let us now turn to the case where the resonant cou-
pling results in two-mode parametric amplification as de-
scribed by Hamiltonian (2). This interaction leads to fast
growth of the amplitudes of both modes. The phase of
each oscillator separately becomes uniformly distributed,
while the phase of their collective motion becomes in-
creasingly well defined. In the absence of dissipation, the
resulting two-mode state is not separable and exhibits
squeezing of the uncertainty of one collective quadratures
of the system below its zero-point value [30]. Addition-
ally this systems represents a pair of positive and neg-
ative mass oscillators containing a quantum-mechanics
free subsystem [36]. Even for degenerate modes, the in-
teraction (2) needs auxiliary fields to become resonant.
For the condition (28) we easily find

∆1 − ω2 = ∆2 + ω1 = ∆̄ + δω/2 (44a)

∆1 − ω1 = ∆2 + ω2 = ∆̄− δω/2. (44b)

A contributing resonant scattering process is given in
Fig. 1 (c) and the side band configuration in frequency
space is sketched in panel (b) of Fig. 5. The pumps are
arranged such that a blue side band of oscillator 1 is
overlapped with the red side band of oscillator 2 and
vice versa. Similar “crossing of side bands” was found in
other set-ups to lead to entanglement [35], as is typically
associated with parametric amplification.
The resonant coupling terms are found in the off-diagonal
elements of the matrices D±1 and D±2 . Using Eqs. (44),

we find

[
D+

1

]
12

=
[
D−1
]
21

=
[
D+

2

]∗
12

=
[
D−2
]∗
21

=
−G1G2

κ/2 + i(∆̄− δω/2)
(45)[

D+
1

]
21

=
[
D−1
]
12

=
[
D+

2

]∗
21

=
[
D−2
]∗
12

=
−G1G2

κ/2 + i(∆̄ + δω/2)
. (46)

The resonant terms in the matrices D±3 contribute to
dissipation

[
D+

3

]
12

=
[
D−3
]
21

=
G1G2κ

κ2/4 + (∆̄ + δω)2
(47)

[
D+

3

]
21

=
[
D−3
]
12

=
G1G2κ

κ2/4 + (∆̄− δω)2
. (48)

Writing out the master equation using these expressions
and separating unitary from dissipative evolution, we ar-
rive at

dρm

dt
=− i [Heff , ρm] + Γ̄−L(B̂)ρm + Γ̄+L(B̂†)ρm

+

2∑
j=1

Γ̄j

(
(n̄j + 1)L(b̂j)ρm + n̄L(b̂†j)ρm

)
, (49)

where the effective Hamiltonian is

Heff = JPA

(
b̂1b̂2 + b̂†1b̂

†
2

)
, (50)

with

JPA = Im

(
G1G2(κ+ 2i∆̄)

κ2/4 + δω2/4− ∆̄2 + iκ∆̄

)
, (51)

and the collective mode is now

B̂ =

√
G1

G2
b̂1 +

√
G2

G1
b̂†2. (52)

Again, the commutation relation of this mode depends
on the relative coupling strengths and vanishes for G1 =
G2, indicating a quantum-mechanics free subsystem [36].

Since B̂ involves annihilation and creation operators, one
cannot unambiguously assign an effective temperature
to its reservoir. Instead, we will discuss the dynamics
resulting from these dissipative terms from a numerical
simulation later on. The parameters characterizing the
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FIG. 6: (Color online) Normalized parametric driving
strength as a function of central detuning and side band res-
olution. The line gives parameters with JPA = 0. Other pa-
rameters are G1 = G2 = 0.01 Ω̄. Note the formal equivalence
up to a different normalization compared to Fig. 3.

dissipative evolution are

Γ̄1 =
4G2

1κ∆̄(2Ω̄ + δω/2)[
κ2

4 + (∆̄− 2Ω̄− δω
2 )2

] [
κ2

4 + (∆̄ + 2Ω̄ + δω
2 )2

] ,
(53a)

Γ̄2 =
4G2

2κ∆̄(2Ω̄− δω/2)[
κ2

4 + (∆̄− 2Ω̄ + δω
2 )2

] [
κ2

4 + (∆̄ + 2Ω̄− δω
2 )2

] ,
(53b)

Γ̄± =
G1G2κ

κ2/4 + (∆̄± δω/2)2
, (53c)

n̄1 =
κ2/4 + (∆̄− 2Ω̄− δω/2)2

4∆̄(2Ω̄ + δω/2)
, (53d)

n̄2 =
κ2/4 + (∆̄− 2Ω̄ + δω/2)2

4∆̄(2Ω̄− δω/2)
. (53e)

In contrast to the beam splitter case, the collective dy-
namics contained in Eqs. (51) and (53c) are independent
of Ω̄ and depend on the frequency difference δω only.

1. Unitary Evolution

The parameter JPA is proportional to the gain of the
parametric amplifier and formally equivalent to JBS with
the substitution Ω̄→ δω/2. It reaches its maximum Jmax

at ∆̄ = ± 1
2 (δω + κ) and its qualitative behavior is plot-

ted in Fig. 6. The single-quanta processes leading to

parametric amplification can be found from Figs. 1 (c)
and 5. A photon is transferred from one pump to the
other by the creation (or annihilation) of a phonon in
each mechanical mode. This also clarifies the creation
of entanglement by this interaction, as phonons in the
two oscillators are created in pairs and the noise affect-
ing each oscillator becomes correlated. Just as in the
beam splitter configuration there are necessarily two dis-
tinct pathways for the coherent process separated in fre-
quency by δω. Consequently systems with photon co-
herence times longer than the inverse of the frequency
difference, κ < δω, exhibit non-zero detunings where the
pathways interfere destructively and lead to JPA = 0.
These detunings are drawn as lines in Fig. 6.

For non-vanishing JPA the unitary interaction corre-
lates the motion of both oscillators while increasing their
energy exponentially. Whether the mediated interaction
can entangle the two mechanical modes depends on the
ratio of JPA to the total decoherence rate in the system.

2. Dissipative Dynamics

For the parametric amplifier the dissipative behavior
is somewhat less intuitive than in the beam splitter situ-
ation. While the effect of the two pseudo-thermal, single-
mode reservoirs leads to decoherence of each oscillator’s
quantum state with rate Γ̄i(n̄i + 1) towards a thermal

state with occupations n̄i, the collective mode B̂ is cou-
pled to a non-trivial reservoir. To understand its phe-
nomenology we solved the master equation

dρm

dt
= Γ+L(B̂)ρm (54)

numerically for the initial vacuum state. The probability
distributions for the two single mode oscillators and one
of their collective modes after t = (Γ+)

−1
are depicted in

Figs. 7 together with half-maximum contours compared
to their initial state. The dissipation term (54) increases
the variance of both quadratures for each oscillator sep-
arately, albeit at a different rate. On the collective mode
it heats only a single quadrature, leaving the orthogo-
nal one unchanged. These dynamics are the result of a
back-action evading measurement on the collective mode
B̂. For ∆̄ 6= 0, this evolution is accompanied by the
diffusion of the orthogonal quadrature due to the non-
vanishing value of Γ− in addition to the unitary evolution
of parametric amplification.

Just as in the beam splitter case, a cavity with small
dissipation can resolve the different dissipation channels.
If the cavity decay rate is smaller than the sum of the
mechanical frequencies, κ < 2Ω̄, one can choose whether
the system couples to the single-mode reservoirs through
(53a) and (53b) or to the collective, non-trivial reservoir
(53c). If the decay rate is furthermore smaller than the
frequency difference, κ < δω, either one of the two dif-
ferent collective dynamics governed by Eq. (53c) can be
chosen separately.
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FIG. 7: (Color online) Phase-space probability distributions (Wigner functions) for: (a): oscillator 1, (b): oscillator 2, (c):
collective mode under evolution of given by Eq.(54). The dashed black line is the contour of half maximum, while the thick
white one marks the same contour for a vacuum state.

FIG. 8: (Color online) Effective coherences ξPA (as defined
in Eq. (55)) as a function of central detuning ∆̄ and cavity
decay rate κ.(a) and (c) are for widely separated oscillators,
δω/Ω̄ = 1.9, while (b) and (d) are for δω/Ω̄ = 0.1. The
red line denotes the value ξPA = 1. Other parameters are
G1 = G2 = 0.05 Ω̄.

3. Entanglement

The orientation of the squeezed collective quadrature
in phase-space is not aligned with the squeezing from two-
mode parametric amplification of the effective Hamilto-
nian (2), which occurs at an angle of π/4 with respect to
the axes chosen in Fig. 7 (c)[30]. In general this dissipa-
tive behavior will therefore counteract the entanglement
generated by the unitary evolution. The relevant quan-
tity which determines if the two oscillators can be driven
into an inseparable state is the ratio

ξPA =
JPA

Γ̄1n̄1 + Γ̄2n̄2 + Γ̄+ + Γ̄−
. (55)

Two oscillators can be driven into an entangled state for
ξPA > 1. We plotted this quantity in dependence of κ
and ∆̄ in Figs. 8 for different parameter regimes.

The behavior of ξPA is qualitatively similar to the

quantum/classical transition of linearly coupled oscilla-
tors found in [23]. Perhaps most importantly, ξPA scales
linearly with the central detuning ∆̄ for high optical de-
cay rates κ and can in principle be made arbitrarily large.
For very large detunings this requires high pump powers,
since the effective coupling decreases due to smaller in-
tracavity photon numbers, G1G2 ∝ 1/∆̄2, and weaker
effective coupling JPA ∝ 1/∆̄, see Eq. (51).

Just as in the beam splitter case the ratio of unitary
coupling strength to decoherence rate is analogous to
two-photon transitions in atomic physics [30]. For large
cavity-detunings the lossy photonic state becomes only
virtually excited and thus decoherence from its dissipa-
tion can be made arbitrarily small. This allows to create
non-classical correlations in a cavity with a low quality
factor for sufficiently large central detunings and suffi-
ciently high pump-powers.

The dissipation rate in the denominator of Eq. (55) as-
sumes that information contained in the photons emitted
by the cavity is discarded. Using the outcomes of mea-
surements performed on these photons to post-select data
– or alternatively using these photons directly to control
a feed-back mechanism – would allow to create entangled
mechanical modes even in regimes where ξPA < 1. A de-
tailed study of such mechanisms is beyond the scope of
this work.

C. Thermal Heat bath

Throughout this article we have neglected the inde-
pendent thermal heat baths for each oscillator. The
derivation of the master-equation relies on the coupling
strength of each oscillator to its bath γi being much
smaller than the cavity decay rate κ; a condition typi-
cally satisfied for optomechanical systems [1]. The dis-
cussed coherent effects are negligible if thermal decoher-
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ence rates dominate the system,

niγi �
G1G2

κ
, (56a)

where ni denotes the occupation of oscillator iths ther-
mal reservoir. Even for such thermal systems, however,
the resonant coupling can significantly alter the dynam-
ics if the effective coupling is at least of the order of the
reservoir couplings,

γi '
G1G2

κ
. (56b)

These conditions are not necessarily restrictive because
each Gi can be tuned via the intracavity photon numbers
α2
i .

IV. SUMMARY

We investigated a scheme to couple non-degenerate
mechanical modes resonantly using optomechanical cou-
pling to a single cavity mode. Applying a bi-chromatic
pump leads to time-dependent optical springs that can
tune couplings between non-degenerate modes into res-
onance. We derived the reduced master equation for
the two oscillators containing frequency shifts, unitary
coupling and non-unitary effects such as dissipation and
back-action. It is generally applicable for optomechan-
ical systems in the weak coupling regime, ranging from

macroscopic oscillators to ultracold atomic systems. We
applied the master equation to discuss two resonant cases
in depth: a beam splitter and a parametric amplifier.
While the former allows more general cooling schemes
and quantum state transfer between different frequency
regimes, the latter could realize entanglement of spatially
separated mechanical modes. We showed that these two
fundamental quantum operations can be executed coher-
ently irrespective of the cavity quality factor. Addition-
ally, both cases exhibit mechanical quantum interference
for sufficiently low cavity decay rates.

The coupling scheme allows customized interactions
among distinct elements in arrays consisting of more than
two mechanical modes [37] and the derived master equa-
tion is easily generalized to include more modes. Be-
yond mechanical excitations, the presented theory can
be adapted to describe a variety of hybrid quantum sys-
tems, for instance ensembles of spins interacting with a
single cavity mode [38] or spatially separated nitrogen
vacancy centers in diamond coupled by a high-frequency
phonon mode [39].
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Appendix A: Nonlinear corrections to the resonance
conditions

Adopting the notation of Sec. II, with ωi and δΩi
denoting the bare mechanical frequencies and their opti-

cal spring shift respectively, the two modified resonance
conditions read

∆1 −∆2 =δω + δΩ1 − δΩ2 (A1)

∆1 −∆2 =2Ω̄ + δΩ1 + δΩ2, . (A2)

These resonance conditions are nonlinear equations with
respect to the two pump frequencies because the indi-
vidual springs δΩi depend on the position of each pump
with respect to the cavity resonance. While the individ-
ual shifts are subtracted from each other in the case of
a beam splitter coupling, they add up for the parametric
amplifier. For mechanical modes with identical couplings
they remain small corrections to the bare frequency dif-
ference/sum, but since they provide limits to the fidelity
of coherent state transfer or the gain of parametric ampli-
fication and the resulting entanglement, these effects have
to be taken into account for applications in the quantum
regime. The extent of the correction is measured by the
dimensionless quantities

δΩ1 − δΩ2

δω
(A3)

δΩ1 + δΩ2

2Ω̄
, (A4)

for the beam splitter and parametric amplifier respec-
tively. We have calculated these expressions numerically
and plotted them as a function of the bare mechanical
frequency difference δω and the average of the pump de-
tunings in Fig. 9.
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FIG. 9: (Color online) Corrections of the resonant pump detunings from their bare value. Top row for the beam splitter setting
δΩ1−δΩ2

δω
, bottom row for parametric amplification, δΩ1+δΩ2

2Ω̄
. All plots have gjαk = 0.01Ω̄ and the optical dissipation rate is

κ = 10Ω̄ for (a) and (d), κ = Ω̄ for (b) and (e) and κ = 0.1Ω̄ for (c) and (f).


