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In this report we study the Vernier effect in coupled laser systems consisting of two cavities. We
show that depending on the nature of their coupling, not only can the “supermodes” formed at
overlapping resonances of these two cavities have the lowest thresholds as previously found, leading
to lasing at these overlapping resonances and a manifestation of the typical Vernier effect; they can
also have increased thresholds and are hence suppressed, which can be viewed as an inverse Vernier
effect. The inverse Vernier effect can also lead to an increased free spectrum range and possibly
single-mode lasing, which may explain the experimental findings in several previous studies. We
illustrate this effect using two coupled micro-ring cavities and a micro-ring cavity coupled to a slab
cavity, and we discuss its relation to the existence of exceptional points in coupled lasers.

PACS numbers: 42.55.Sa, 42.55.Ah, 42.25.Hz

I. INTRODUCTION

The Vernier effect is well known in passive microwave
and optical systems, which depicts that transmission reso-
nances of a coupled system occur when the resonances of
the subsystems coincide. The counterpart of Vernier ef-
fect in lasers has been experimentally studied with two or
more coupled laser cavities, and an increased free spectral
range (FSR) of the lasing spectrum and even single-mode
lasing have been observed [1–8]. While some of these ex-
periments utilized an interferometer [1–3] (“Type I”; see
Fig. 1) and can be understood similar to the Vernier effect
in transmission, the others were different and consisted of
fused or evanescently coupled slab and micro-ring/micro-
disk cavities (“Type II”). However, the understanding
of the increased FSR or single-mode lasing in Type II
coupled systems is still often argued using the same mech-
anism as in Type I systems, i.e. one cavity acts as an
external cavity for frequency selection, and lasing occurs
at the overlapping resonances of the individual laser cavi-
ties.

In this report we show that frequency overlap in Type
II systems does not favor lasing in general. Instead, the
coupling of these overlapping resonances increases the
lowest threshold of the corresponding lasing modes. Thus
the increased FSR and single-mode lasing observed can
be understood as a consequence of the suppression of
these overlapping modes, which is the manifestation of
an inverse Vernier effect. Below we illustrate this finding
first in two evanescently coupled micro-ring cavities of
different radii (see Fig. 1) and latter in a micro-ring
cavity coupled to a slab cavity. We show that the changes
to the lasing thresholds are related to the existence of
exceptional points (EPs) [9–18], at which two lasing modes
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FIG. 1. Schematics showing two types of coupled micro-
cavities. Type I utilizes an explicit interferometer setup, while
Type II does not.

have the same frequency, threshold, and spatial intensity
pattern. We further show that the effect of coupling in
Type I systems increases with the detuning between two
neighboring resonances, one in each of the two coupled
cavities, while that in Type II systems decreases with the
detuning, yielding the inverse Vernier effect instead of the
typical Vernier effect. Finally, we reveal that while the
typical Vernier effect due to destructive interference does
not impose any restrictions on the losses of the constitute
cavities, the inverse Vernier effect depends on different
losses, or equivalently different quality (Q) factors, in the
two coupled cavities, highlighting its origin in coupling-
caused Q-spoiling.

Our analysis is based on the coupled-mode formulism
suggested by Yariv [19], which takes into account the
amplitude and phase evolutions inside the coupled cav-
ities. Since the increased FSR and single-mode lasing
reported in Refs. [4–8] were observed close to the lowest
lasing threshold, nonlinearity was not crucial for these
observation and we neglect it in the analysis below. We
first consider two coupled micro-ring cavities (see Fig. 1),
and the coupling between them can be captured by a
scattering (S) matrix [19]:(

a−out
b+out

)
= S

(
a−in
b+in

)
, S =

(
t J
−J∗ t∗

)
, (1)

where a−in, out are the incoming and outgoing counterclock-
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wise wave to the coupling junction in the first cavity, and
b+in, out are similar defined for the clockwise waves in the
second cavity. The coupling of the waves traveling in the
opposite directions, i.e. a+in, out and b−in, out, is given by
the same S matrix because of the local spatial symmetry
at the coupling junction. We note that the S matrix is
dimensionless, and so are t and J . They satisfy the local
flux conservation relation |t|2+ |J |2 = 1, and the S matrix
is unitary as a result. Since we do not expect a phase
jump when a−in passes through the coupling junction to
become part of a−out, we take t to be real.

Assuming the circumferences of the two ring cavities
are L1 and L2, the phase and amplitude changes of light
after one circulation in each cavity and before coupling
again is given by

a−in = ei(n+iκ1−iτ)kL1 a−out ≡ β1a−out, (2)

b+in = ei(n+iκ2−iτ)kL2 b+out ≡ β2b+out, (3)

respectively. Here k = ω/c is the wave vector in free
space and n is the refractive index of the ring cavities.
The losses (radiation loss, material absorption, etc.) are
represented by κ1, κ2 in these two cavities, respectively,
and to focus on coupling-induced threshold changes we
will treat them as constants for all modes. The optical
gain is modeled by adding a negative imaginary part τ
to n [20, 21], and hence the laser threshold expressed in
terms of τ is dimensionless.

By solving Eqs. (1) and (3), we find the following rela-
tion between the two counterclockwise amplitudes in the
first micro-ring cavity:

a−out =
t− β2
1− tβ2

a−in, (4)

from which the well-known critical coupling condition
t = β2 6= 1 for a vanished a−out is readily seen. The lasing
thresholds are determined by the self-consistent condition
imposed by Eqs. (2) and (4), e.g., a−in should not change
in steady-state lasing oscillation after light circulates the
first ring cavity once and comes back to the same location:

β1
t− β2
1− tβ2

= 1. (5)

In the absence of coupling, i.e. J = 0 and t = 1, we
recover the simple relation β1 = 1 that determines the
lasing frequencies and thresholds of the first micro-ring
cavity, i.e.

k1,m =
2πm

nL1
, τ1,m = κ1 (m = 1, 2, . . .)

Similarly, the lasing modes in the second micro-ring cavity
are given by k2,m = 2πm/nL2 and τ2,m = κ2. In order
to recover the threshold condition of the second micro-
ring cavity in the absence of coupling, i.e. β2 = 1, it is
necessary to rewrite Eq. (5) in the following equivalent
form:

β2
t− β1
1− tβ1

= 1. (6)

In the strong coupling limit, i.e. J → 1 and t → 0,
both Eqs. (5) and (6) become

β1β2 = −1, (7)

which indicates that the system is now effectively a micro-
ring cavity of circumference (L1 + L2), with a π-phase
shift (coming from the “−” sign) due to the coupling. We
note that this result, as well as Eqs. (5) and (6), does
not depend on the phase of the coupling J . As we show
in Appendix A, the phase of J indeed bares no physical
significance; it can be eliminated by shifting the phases of
the propagating waves. Therefore, we take J to be real
in the following discussions.

II. INVERSE VERNIER EFFECT

The FSRs of the uncoupled micro-ring cavities are
∆k1 = 2π/nL1 and ∆k2 = 2π/nL2, respectively. The
average spectral density is then given by ∆k−1

1 + ∆k−1
2 ,

not counting the double degeneracy of the micro-ring
resonances due to the clockwise and counterclockwise
symmetry. Note that it is equal to the spectral density
given by Eq. (7) at J = 1, where the lasing frequencies
and thresholds are given by

km =
(2m+ 1)π

n(L1 + L2)
, (8)

τm =
L1 κ1 + L2κ2
L1 + L2

. (9)
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FIG. 2. (Color Online) Inverse Vernier effect in two evanes-
cently coupled micro-ring cavities. (a) Trajectories of the
lasing thresholds versus the frequencies as the coupling J in-
creases from 0 to 1. The squares and dots mark the uncoupled
lasing modes at J = 0, respectively. The triangles show the
coupled lasing modes at J = 1. Arrows indicate the direc-
tion of motion as J increases. R and 0.9R are the radius
of the larger and smaller cavities, respectively. (b) Lowest
thresholds of the lasing modes at J = 0.5, which are evolved
from the uncoupled resonances in the larger ring cavity. Note
the increased thresholds especially at the perfectly aligned
resonances near kR = 3.3, 6.6. (c) shows the detuning of these
uncoupled resonances with the nearest counterparts in the
smaller ring cavity. The total loss in the two cavities are
κ1 = 10−4 and κ2 = 5× 10−4 respectively, corresponding to Q
factors of 1.5× 104 and 3× 103. The refractive index is n = 3.
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This observation indicates that the lasing modes in the
coupled system are evolved continuously from the uncou-
pled resonances as J increases from 0 to 1 [see Fig. 2(a)],
with the ones originating from the larger ring cavity hav-
ing the lower thresholds. The thresholds (9) at J = 1 are
the same for all modes, given by the average of the thresh-
olds of the uncoupled micro-ring cavities and weighted by
the corresponding circumferences.

We note, however, this observation does not mean that
the thresholds of the lasing modes have the same depen-
dence on the coupling. As can be seen from Fig. 2(b) at
J = 0.5, there is a clear difference between the thresh-
olds of the lasing modes, which are inversely correlated
with the detuning of the uncoupled resonances. The least
overlapped resonances of the larger ring cavity have the
lowest threshold and lase at a low pump power, while
the better overlapped ones have higher thresholds and
are suppressed at a low pump power. We refer to this
effect as the inverse Vernier effect, since it is in opposite
to the Vernier effect in transmission that preserves only
the overlapping resonances. Nevertheless, the FSR of
the active lasing modes can also be increased as a result
and single-mode lasing may become possible if the gain
spectrum is not too wide.

To better understand the much stronger J-dependence
of the thresholds at the spectrally aligned resonances (e.g.,
mode 1 of the larger cavity and mode 2 of the smaller
cavity in Fig. 2(a)), we first note one of their qualitative
differences from the detuned resonances. Starting from
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FIG. 3. Inverse bifurcation of the lasing frequencies (a) and
bifurcation of the corresponding thresholds (b) of the perfectly
aligned mode 1 and 2 near kR = 3.3 shown in Fig. 2(a), as the
coupling increases from J = 0. The bifurcations occur near
J = 4× 10−3. The solid lines in (c) and (d) show the much
weaker J-dependencies of the two low-threshold modes on the
left of mode 1 in Fig. 2(a), with the thin one further away
from mode 1. The dots show the analytical approximations
given by Eqs. (16) and (17).
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FIG. 4. (Color online) The ratio V of light amplitudes inside
the two micro-ring cavities for mode 1 and 2 in Fig. 3(a) and
(b). V is defined by Eqs. (10) and (11). The insets in (a)
illustrate their different intensity ratios at J = 3.5 × 10−3

below the EP at Jc = 4 × 10−3 and their identical intensity
ratio |V | = 1 at J = 7× 10−3 above the EP. (b) The identical
phase of V for mode 1 and 2, both below and beyond Jc.

J = 0, mode 1 and 2 first move vertically in the k-τ plane
when the coupling increases; they then coalesce before
moving largely horizontally. The detuned resonances
undergo avoided crossings instead. This behavior of mode
1 and 2 is plotted as a function of the coupling J in
Fig. 3(a)(b). Their frequencies and thresholds experience
a bifurcation and inverse bifurcation respectively when
J becomes Jc ≈ 4 × 10−3, which indicate the existence
of an EP [9–18]. In contrast, the detuned resonances
show a much weaker J-dependence when J is small, as
shown in Fig. 3(c)(d). At J = Jc the threshold increase
of mode 1 is more than 104 times larger than the detuned
resonances.

The EPs are often studied in an eigenvalue problem
[9–11]. Although in our coupled-mode formulism the
threshold conditions (5) and (6) do not have the explicit
form of an eigenvalue problem, the merging of the frequen-
cies and thresholds of mode 1 and 2 shown in Figs. 2(a)
and 3(a)(b) at J = Jc is a clear indication of an EP. This
is further confirmed by the coalescence of their wavefunc-
tions (see Fig. 4), which distinguishes an EP form a usual
(hermitian) degeneracy point. In the next section we will
analyze the location of the EP as well as the much weaker
J-dependence of the detuned resonances.

III. ANALYTICAL RESULTS AND PHYSICAL
INTERPRETATIONS

When the coupling is small, mode 1 and 2 concentrate
in the larger and smaller micro-rings, respectively. This
can be seen quantitatively from

V ≡ b+in
a+in

=
−β2J

1− tβ2
(10)

for mode 1: the lasing condition of the first micro-ring
cavity, i.e. β1 = 1, holds for this mode when J → 0, and
β2 6= 1 because of the different thresholds of mode 1 and
2 when they are uncoupled. Therefore, V → 0 for mode 1,
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which has little amplitude in the second micro-ring cavity
as expected.

Similarly, V can be expressed as

V =
1− tβ1
β1J

(11)

for mode 2: the lasing condition of the second micro-ring
cavity, i.e. β2 = 1, holds for this mode when J → 0, and
β1 6= 1 because of the different thresholds of mode 1 and
2 when they are uncoupled. Therefore, V →∞ for mode
2, which has little amplitude in the first micro-ring cavity
as expected.

We note that the two expressions (10) and (11) are
mathematically identical using Eq. (5) or (6). We dis-
cussed them separately above just to avoid the ratio of two
vanishing quantities in the limit J → 0. Once J becomes
finite, either expression can be used for both mode 1 and
2, and their V values (and hence their wavefunctions)
become the same once they have the same value of β1
(and consequently β2 as well). This condition is satisfied
when the frequencies and thresholds of these two modes
become the same, i.e., at an EP.

To locate the EP in terms the coupling J , we first
note that β1 = exp[(τ − κ1)k0L1] ≡ β̃1 and β2 =

exp[(τ − κ2)k0L2] ≡ β̃2 are both real at the aligned res-
onant frequency k = k0. Consequently, Eq. (5) can be
solved at k = k0, with the threshold τ determined by

t =
1 + β̃1β̃2

β̃1 + β̃2
. (12)

For cavities of relatively high quality factor (and hence

with low loss), the exponents in β̃1,2 are very small and
we expand them to the second order of τ , which gives rise
to

(τ − κ1)(τ − κ2) ≈ 2(t− 1)

k20L1L2
. (13)

The left hand side depicts an quadratic curve of τ , with
the minimum (κ1 − κ2)2/4 at τ = (κ1 + κ2)/2. If this
minimum is lower than the constant on the right hand
side, i.e.

t > 1− k20L1L2

8
(κ1 − κ2)2, (14)

or equivalently,

J < Jc ≡
1

2
k0
√
L1L2|κ1 − κ2|, (15)

Eq. (13) gives two real solutions of τ (i.e., mode 1 and
2). Right at J = Jc, these two solutions coalesce into one,
and the EP is reached. If J is larger than Jc, then there
is no solution to Eq. (12) with a real τ , which means that
the corresponding modes can no longer exist at k = k0,
leading to the frequency bifurcation shown in Fig. 3(b).

Equation (15) gives Jc = 3.97× 10−3 for the example
shown in Fig. 3, which agrees well with the numerical

result shown. Equation (15) also shows that the toy model
given in Ref. [17] is qualitatively correct, and the location
of an EP in terms of the coupling is proportional to the
difference of the losses in the two coupled cavities.

Similar to the derivation above, we obtain the approxi-
mations for the frequency and threshold changes of the
lower-threshold modes, originating from the uncoupled
resonances in the larger ring cavity:

δk(J) ≡ k(J)− k(0) ≈ J2

2nL1

sin θ

1− cos θ
, (16)

δτ(J) ≡ τ(J)− τ(0) ≈ (κ2 − κ1)δk(J)

∆

θ

sin θ
. (17)

Here θ ≡ n∆L2 and ∆ is the detuning of one resonant
frequency in the larger ring from the nearest resonant
frequency in the smaller ring. Equations (16) and (17)
give excellent agreement with the numerical results when
J is small, as can be seen from Fig. 3(c)(d). They show
that both δk and δτ are proportional to J2 when J is
small, and more importantly, these changes are inversely
correlated with the detuning ∆ when |θ| � 1, with δk(J)
proportional to ∆−1 and δτ(J) proportional to ∆−2 in
this limit. Due to the two different FSRs of the two
coupled cavities, the detuning ∆ modulates as a function
of frequency and so does the lasing threshold τ , which
then leads to the inverse Vernier effect of the active lasing
modes when the pump power is low.

This finding can be interpreted in the following way:
for two cavities of different losses (and hence different
Q factors), the coupling effect is strong for overlapping
resonances, and the higher-Q resonances are “spoiled”
more by the lower-Q ones, causing a significant increase of
their thresholds. For little- or non-overlapping resonances,
this Q-spoiling effect is weak, and hence the thresholds
of the higher quality resonances do not vary much from
their uncoupled values.

From this interpretation it is clear that different Q
factors in the two coupled cavities is crucial for the inverse
Vernier effect, which would not occur if the losses in the
two micro-ring cavities are the same; this can be directly
seen from Eq. (17), which shows that the lasing threshold
τ does not change with the detuning ∆ if κ1 = κ2. A
more rigorous proof without using the expansion for a
small coupling J is given in Appendix B.

As we discussed above, the inverse Vernier effect in Type
II coupled systems is the result of detuning-dependent
Q-spoiling, due to the coupling to a lower-Q cavity. The
typical Vernier effect, on the other hand, is caused by the
detuning-dependent destructive interference. To contrast
their different dependencies on the detuning ∆, below we
use the Michelson interferometer setup [1] to exemplify
Type I systems, the threshold condition of which is given
by

β1(k, τ)T + β2(k, τ)R = 1, (18)

where β1,2 = ei(n+iκ1,2−iτ)kL1,2 are the phase and am-
plitude changes after one circulation along each arm of
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the Michelson interferometer. T and R = 1− T are the
transmittance and reflectance of the beam splitter, and
L1,2, κ1,2 are the length and loss of each arm. For T = 0
or 1, lasing in the two arms takes place independently.

For simplicity, we consider a 50/50 beam splitter (T =
R = 0.5), which simplifies the threshold condition to
β1(k, τ) + β2(k, τ) = 2. Similar to the derivation for the
Type II coupled systems, we find the threshold change of
the higher-Q modes is given by

δτ = τ(T = 0.5)− τ(T = 0) ≈
cos θ − 1− L2 sin2 θ

L1+L2 cos θ

k0L1
.

(19)
We note that Eq. (19) is proportional to the detuning
∆2 when |θ| � 1. In other words, the effect of coupling,
or more precisely, the effect of destructive interference,
is more pronounced for a larger detuning as expected.
This is in stark contrast with the relation (17) for the
threshold change in Type II coupled systems (∝ ∆−2),
which distinguishes the typical Vernier effect and the
inverse Vernier effect reported here.

We also note that the difference of the losses, κ1 − κ2,
does not appear in Eq. (19); it is a higher order term for
high-Q modes, or more specifically, when |κ1−κ2|k1L2 �
1. Thus the typical Vernier effect in Type I systems is
not related to Q-spoiling due to the coupling to a lower-Q
cavity, while this mechanism is what causes the inverse
Vernier effect in Type II coupled systems as discussed.

IV. DISCUSSION AND CONCLUSION

Our analysis based on the coupled-mode formulism is
general and can also be applied to, for example, a slab cav-
ity coupled with a micro-ring/micro-disk cavity. The only
differences are: (i) a different β factor is needed to capture
the phase and amplitude change of the light after a round
trip in the slab cavity, including the effect of the radia-
tion loss through the end facets; and (ii) the clockwise
and counterclockwise waves in the micro-ring/micro-disk
cavity are coupled by a slab resonance. More specifically,
the equivalence of the threshold condition (5) or (6) is

βr
t− βs
1− tβs

= 1, (20)

where βr is defined in the micro-ring cavity similar to β1
in Eq. (2) and βs ≡ ±ei(n+iκs−iτ)kL is defined in the slab
cavity of length L and loss κs. If the radiation loss from
the two mirrors of reflectivity r dominates in the slab, κs
is then given approximately by − log(r)/2kL. The inverse
Vernier effect still holds, as we show in Fig. 5.

In summary, we have shown that for two coupled cav-
ities of different FSRs, the overlap of their resonances
does not typically favor lasing unless in an interferometer
setup, resulting in an inverse Vernier effect. Nevertheless,
the suppression of these overlapping resonances can also
lead to an increased FSR and possibly single-mode lasing
as well, as found in previously experiments [4–8]. We
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FIG. 5. (Color online) Inverse Vernier effect in a slab cavity of
length L coupled with a micro-ring cavity of radius R = L/1.8π
[see the inset in (a)]. (a) Threshold changes for the lowest
threshold modes near kL = 20 at J = 0.5. They originate from
the uncoupled slab resonances, the loss of which is assumed
to come from the radiation through two mirrors of reflectivity
r = 0.99 and lower than that in the micro-ring (κ = 5× 10−3).
The threshold change is inversely correlated with the detuning
from the nearest micro-ring resonance [see (b)].

have treated J as a constant for all modes. If we consider
a weaker value of the coupling due to a larger detuning,
the differences of the maximum and minimum thresholds
shown in Figs. 2(b) and 5(a) will be smaller, but their
qualitative modulation as a function of the frequency still
holds, and hence so does the inverse Vernier effect.
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CUNY Cycle 46 Research Grant and NSF Grant No.
DMR-1506987. H.E.T. acknowledges NSF CAREER
Grant No. DMR-1151810 and DARPA Grant No. N66001-
11-1-4162.

Appendix A: Phase of the coupling coefficient J

As we mentioned at the end of Section I, the phase of
the coupling coefficient J does not appear in the threshold
equations (5) and (6). Here we show explicitly that the
phase of J can be eliminated by shifting the phases of the
propagating waves a−in, out, b

+
in, out in the coupled equation

(1).
Suppose we start with a complex J = J0e

iθ, where
J0 = |J | > 0. We then redefine

ã−in, out ≡ a
−
in, oute

−iθ/2, b̃+in, out ≡ b
+
in, oute

iθ/2, (A1)

and introduce a transformation matrix O and its inverse
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O−1,

O =

(
e−iθ/2 0

0 eiθ/2

)
, O−1

(
eiθ/2 0

0 e−iθ/2

)
, (A2)

satisfying OO−1 = O−1O = 1, where 1 is the identity
matrix. By multiplying O to both sides of Eq. (1), we
find (

ã−out
b̃+out

)
= O

(
a−out
b+out

)
= O

(
t J
−J∗ t∗

)(
a−in
b+in

)
= O

(
t J
−J∗ t∗

)
O−1O

(
a−in
b+in

)
= O

(
t J
−J∗ t∗

)
O−1

(
ã−in
b̃+in

)
. (A3)

In other words, the S matrix for the phase-shifted waves
ã−in, out, b̃

+
in, out are

S̃ = O

(
t J
−J∗ t∗

)
O−1

=

(
e−iθ/2 0

0 eiθ/2

)(
t J0e

iθ

−J0e−iθ t∗

)(
eiθ/2 0

0 e−iθ/2

)
,

=

(
t J0
−J0 t∗

)
, (A4)

in which the coupling is now real.

Appendix B: Role of different cavity losses

In the main text we discussed that the different losses
in coupled cavities is the key factor that leads to the
inverse Vernier effect. It was presented using physical
intuitions and the expansion of the threshold condition
in the weak coupling limit (J � 1). Here we show more
rigorously that the lasing threshold τ does not change
with the coupling J if the coupled cavities have the same

loss, i.e., κ1 = κ2, and hence the inverse Vernier effect
does not occur in this case.

a1

a2

a 1 a2

a +1 a2

. (1+        )a 1 a2
.

1θ1

θ1

FIG. 6. Schematics showing the right hand side of Eq. (B1).

What we do is the following: we take τ to be equal to
κ1 = κ2, and show that the resulting threshold condition

t ∈ [0, 1] =
1 + eink(θ1+θ2)

eiθ1 + eiθ2
(B1)

can be satisfied simply by varying the lasing frequency
k. Here θ1 ≡ nkL1 and θ2 ≡ nkL2 are the phase changes
in the two ring cavities after a round trip. We note that
the right hand side of Eq. (B1) depicts the sum of two
unit vectors ~a1, ~a2 dividing the sum of their inner product
( ~a1 · ~a2) and the unit vector along the real axis. From the
phasor diagram shown in Fig. 6, we know that these two
sums are both along the bisector of the angle formed by ~a1
and ~a2, because ~a1 · ~a2 is rotated counterclockwise from ~a2
by the same angle θ1 between 1 and ~a1. Therefore, their
ratio is indeed real as required by Eq. (B1). Eq. (B1)

at any coupling J =
√

1− t2 can then be satisfied by
varying θ1 and θ2 via k, which changes the ratio of the
two aforementioned sums.
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A. D. Stone, Phys. Rev. A 84, 023820 (2011).

[21] J. Andreasen, C. Vanneste, L. Ge, and H. Cao, Phys. Rev.
A 81, 043818 (2010).


