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A scheme to achieve spin squeezing using a geometric phase induced by a single mechanical mode
is proposed. The analytical and numerical results show that the ultimate degree of spin squeezing

depends on the parameter nth+1/2

Q
√

N
, which is the ratio between the thermal excitation, the quality

factor and square root of ensemble size. The undesired coupling between the spin ensemble and
the bath can be efficiently suppressed by Bang-Bang control pulses. With high quality factor, the
ultimate limit of the ideal one-axis twisting spin squeezing can be obtained for a nitrogen-vacancy
(NV) ensemble in diamond.

PACS numbers: 42.50.Lc, 42.50.Dv, 03.65.Vf, 85.85.+j

I. INTRODUCTION

The nitrogen-vacancy (NV) centers in diamond are
amongst the most promising implementations of quan-
tum bits for quantum information processing [1] and
nanoscale sensors [2], which is because their ground state
spin triplet posses ultra-long coherent time at room tem-
perature [3] and can be readout via optical fluorescence.
Significant progresses have been achieved in recent exper-
iments to couple the NV electronic spins to nuclear spins
[4, 5] and mechanical resonators [6, 7]. The nanoscale
magnetometry [8, 9], thermometer [10] and electric field
detection [11] have been demonstrated by single NV or
an ensemble.

It’s well known that the quantum states can boost the
precision of measurement beyond the standard quantum
limit [12]. Among them, the spin squeezed states (SSS)
[13–16] have attracted a lot of interest and applied to
spin or atom ensembles for atomic clocks and gravita-
tional wave interferometers. There are many proposals
and experiments to realize the spin squeezing in atom
ensembles, such as atom-atom collisions [17], quantum
non-demolition (QND) measurement [18, 19] and cavity
squeezing [20–25]. Very recently, spin squeezing of an NV
ensemble by Tavis-Cummings type interaction between
phonon and spins [26] has been proposed for quantum
enhanced magnetometry.

In this paper, we propose a new approach for the re-
alization of spin squeezing by phonon induced geomet-
ric phase, using an ensemble of NV centers dispersively
coupled to a mechanical resonator. It’s shown that the
ultimate degree of spin squeezing by one-axis twisting
can be realized, for reasonable ratio between the thermal
excitation and the quality factor of mechanical oscilla-
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tors. Furthermore, the effect of the coupling between
NV centers and environment is studied, which leads to
dephasing and degrades the spin squeezing effect. By in-
troducing Bang-Bang pulses sequence, the decoherence is
effectively suppressed and significant spin squeezing can
be achieved for the NV ensemble.

II. MODEL

The negatively charged NV center (NV−) in diamond
is well-studied, whose Hamiltonian reads HNV = (D +

d‖ǫz)S2
z + µBge

−→
S · −→B [11, 27], where D ≈ 2.87 GHz

is zero-field splitting, d‖ and ǫz are axial ground-state
electric dipole moment and electric field (strain field),
respectively, µB is the Bohr magneton, ge is the elec-

tron g-factor,
−→
S is the electron spin operator, and

−→
B is

the applied magnetic field. With appropriate bias field
Bz, the two microwave transitions |0〉 ↔ |±1〉 can be ad-
dressed separately in experiment, and we focus on the
{|0〉 , |−1〉} by applying near resonant microwaves at the
transition |0〉 ↔ |−1〉, which can be treated as a spin- 12
system in the following. The Hamiltonian can be writ-
ten as HNV − =

(

D + d‖ǫz − µBge · Bz
)

|−1〉 〈−1|, and
we have ignored the |+1〉 state.
Putting the NV− spin ensemble in a gradient mag-

netic field ∂Bz

∂u 6= 0, then the displacement of diamond
or nanomagnet δu will shift the transition frequency by
∆ωNV = −µBge ∂Bz

∂u δu [28], and the interaction Hamil-

tonian reads HI ∝ σz
(

a+ a†
)

with δu ∝ a+ a†, where a
and a† are annihilation and creation operators of phonon.
Alternatively, the strain field of a diamond nanomechani-
cal oscillator can induce an electric field inside the crystal
and give rise to a similar phonon-spin interaction [6, 29].
Both approaches to couple the spin with nanomechani-
cal oscillator have been demonstrated in experiments re-
cently [6, 7, 28–31]. The simplified Hamiltonian of an
ensemble of 2N spins coupled to a mechanical resonator
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FIG. 1: Trajectories on phase space of a coherent wave packet
〈a〉=Re(α) + iIm(α) for spin state |m〉 with m = 0, ± 1, ±
2, ± 3. Here we set g/ωa as a unit.

is

H = ωaa
†a+ gJz

(

a+ a†
)

, (1)

where ωa is the frequency of the mechanical resonator,

Jz = 1
2

∑2N
j=1 σzj is the collective spin operator, and g

is the single phonon coupling strength. Along with the
progresses in the nanofabrication of diamond material,
various diamond nanomechanical resonators have been
realized in experiment, with frequency ranging from 1
kHz to 1 GHz, and the quality factor Q ranging from
100 to around 106 [6, 29, 32–34]. Thus, we study the
spin squeezing induced by the mechanical resonator with
frequency ωa/2π = 1 MHz and coupling strength g/2π =
1 KHz [35] in this work.
The Hamiltonian preserves Jz of the spin ensemble.

The dynamics of the system satisfy the Schrödinger

equation i∂|ψ〉∂t = H |ψ〉, and we can obtain the solu-

tion |ψ(t)〉 = eiφ(t) |α(t)〉 for an initial coherent state

|ψ(0)〉 = |α(0)〉, where φ(t) = −gJzRe
´ t

0 α(τ)dτ is

the geometric phase [36] with α(t) = α(0)e−iωat +
−gJz

ωa

[

1− e−iωat
]

. It is convenient to study the mechan-

ical resonator by the coherent state |α〉, and we can
write |α〉 = |Re(α) + iIm(α)〉. The coherent state be-
haves somehow like classical particles in phase space. Its
center, given by Re(α) and Im(α), follows a classical tra-
jectory, while the width of these wave packets remains
fixed, which is given by the uncertainty of the Re(α) and
Im(α). In Fig. 1 we plot the usual phase-space trajec-
tories for 〈a〉 = Re(α) + iIm(α), and we have used the
eigenstates |m〉 of spin operator Jz and α(0) = 0 as the
initial states. We plot phase-space trajectories only with
m = 0, ± 1, ± 2, ± 3 for simple explanation, which
clearly show that the coherent wave packet is restored to
its original state after a fixed time ta = 2π/ωa or integer
times of ta. For different |m|, there are different radius
circles in the phase-space trajectories, and it is the cen-
tral symmetry for the opposite m.
The geometric phase, as the enclosed circle area of

the trajectory in phase space, is insensitive to the ini-

tial phonon state [37], which means
´ ta
0
α(0)e−iωat = 0.

Thus, phonon induced geometry phase is robust against
the imperfection of initial phonon state preparation, and
we assume α (0) = 0 for simplicity. However, the de-
cay and thermal noise of phonon during the spin-phonon
interaction will influence the geometry phase accumula-
tion. In this case, the system dynamics follows the Mas-
ter equation

dρ

dt
= −i [H, ρ] + γ

2
(nth + 1)L(a)ρ+ γ

2
nthL(a†)ρ. (2)

Here γ = ωa/Q describes the decay rate of the mechan-
ical mode, nth is the mean phonon number of the me-
chanical thermal noise and L(o)ρ = 2oρo† − o†oρ − ρo†o
is the Lindblad superoperator for given jump operator o.
The reduced density matrix of the collective spin can be
written as

ρspin =
∑

m,n

ρm,n(0)e
φm,n(t) |m〉 〈n| . (3)

φm,n(t) is the phase difference between these spin states.
The phase can be solved as

φm,n(t)

= −
(

nth +
1

2

)

(n−m)2
{

γ

ˆ t

0

| α(τ) |2 dτ+ | α(t) |2
}

+ig(n2 −m2)Re

ˆ t

0

α(τ)dτ. (4)

Here, the amplitude of mechanical resonator is α(t) =
−ig

γ/2+iωa

[

1− e−(γ/2+iωa)t
]

[37]. The finite γ of the me-

chanical resonator introduces decoherence and leads to
the first term of the above equation, the second term is
corresponding to the interaction J2

z inducing spin squeez-
ing. Molmer and Sorensen proposed an approach for
ion-trap to realize the spin squeezing, which is insensi-
tive to the initial thermal phonon states [38]. Compare
to the Molmer-Sorensen scheme that two laser pumping
and Lamb-Dicke approximation are required [38], our ap-
proach utilize stable spin-phonon interaction and there is
no approximation in our model.

III. SPIN SQUEEZING

The spin squeezing is evaluated by squeezing parame-
ter [13, 16]

ξ2N =
min

(

∆J2
~n⊥

)

N/2
, (5)

where ∆J2
~n⊥

is the variance of spin operators along di-
rection perpendicular to the mean-spin direction ~n0 =
~J/|〈 ~J〉|, which is determined by the expectation val-
ues 〈Jα〉, with α ∈ {x, y, z}. For an atomic system
initialized in a coherent spin state (CSS) [39] along
the x axis, satisfying Jx |ψ (0)〉atom = N |ψ (0)〉atom, we
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FIG. 2: (Color online) (a) The squeezing parameter ξ2N as
a function of the time for nth = 0 and various Q = 5 , 10
, 1000 (top to bottom). (b) The squeezing parameter ξ2N
as a function of the time for Q = 1000 and various nth =
100 , 50 , 0 (top to bottom). (c) The green solid line is
optimal squeezing parameter ξ2N versus the quality factor Q
for nth = 200 (T ≈ 10 mK), and the red dashed line is the
result for ideal one-axis twisting spin squeezing. N = 10 for
all simulations.

have ρm,n (0) = 2−2N
√

(2N)!
(N−m)!(N+m)!

(2N)!
(N−n)!(N+n)! and

∆J2
~n⊥

= N/2. Thus, for squeezed spin states we have

ξ2N < 1.

First of all, we studied the spin squeezing by Eq. (3)
without thermal noise. The squeezing parameters ξ2N as a
function of the time (dimensional number gt) for various
quality factor Q are plotted in Fig. 2(a). As expected,
the effect of phonon induced geometry phase leads to the
twisting and squeezing of CSS, thus the ξ2N decreasing
with time. After a certain optimal t, the ξ2N increases,
due to the over twisting by the geometry phase, and high
order effect arises. It is shown that the minimal value of
spin squeezing parameter decreases with higher mechan-
ical quality factor Q. When the quality factor Q = 1000
(the black solid line), the almost perfect spin squeezing
for the ideal one-axis twisting can be achieved. Including
the mechanical thermal noise, squeezing parameters ξ2N
as functions of the time with the quality factor Q = 1000
are plotted in Fig. 2(b). It is natural that the spin
squeezing becomes worse with the increasing of the ther-
mal noise nth. We also studied the suppression of the
influence of thermal noise by improving the quality fac-
tor Q. As shown in Fig. 2(c), the optimal spin squeezing
(the minimum value of the ξ2N (t)) is plotted against the
Q for nth = 200, which means that the thermal tempera-
ture T ≈ 10 mK. The ξ2N reduces with Q and approaches
the limit for ideal one-axis twisting spin squeezing (red
dashed line).

To understand these results, we simplified the spin

state dependent geometric phase

φm,n(t) =
i|g|2ωat

(γ/2)
2
+ ω2

a

[

(

m2 − n2
)

+ iµ (m− n)
2
]

, (6)

under the approximation t ≫ γ−1, which means α(t) =
−ig

γ/2+iωa
and the transient evolution of the mechanical

resonator is neglected. Here, the dimensionless factor

µ = nth+1/2
Q . The first term accounts for the coefficient

proportional to the time t, and the two terms within
the bracket corresponds to spin squeezing and decoher-
ence, respectively. Then, we can obtain the degree of
spin squeezing for the initial state CSS along the x axis

ξ2N = 1 +
2N − 1

4

(

A−
√

A2 +B2
)

, (7)

where

A = 1− cos2N−2 (2Ct) e−4Cµt,

B = −4 sin (Ct) cos2N−2 (Ct) e−4Cµt. (8)

Here, Ct = g
ωa

1
1+1/4Q2 × gt. The analytical solution im-

plies that the spin squeezing is mainly determined by the
two dimensionless parameters Ct and µ. For Q ≫ 1, we
have 1

1+1/4Q2 ≈ 1. For N ≫ 1, we can apply the approx-

imation cos2N−2 (x) ≈ e−(N−1)x2

for x≪ 1. So, the time
required (gt ≈ 160 in Fig. 2) to achieve the optimal spin
squeezing scales with 1√

N−1
. From Eq. (7), we obtain the

approximated upper bound of the optimal spin squeezing

ξ2N . 1−e−
1
2
−4 µ√

N /(1−e−1−2 µ√
N ), which indicating that

the ratio µ√
N

= nth+1/2

Q
√
N

should be as small as possible.

As long as nth+1/2

Q
√
N

< 10−3, we can achieve squeezing al-

most as good as the best squeezing achievable with ideal
single axes twisting [Fig. 2(c)].

IV. BANG-BANG CONTROL

During the preparation of optimal SSS, there are in-
evitable couplings between the system and baths. For ex-
ample, the lattice vibrations and environment spins will
induce dephasing and destroy the spin squeezing. The
dynamical decoupling technique is well known for pro-
tecting coherence from environment [40–47], and now we
apply the Bang-Bang (BB) pulses [40] to suppress the de-
coherence. The sequence consists ofM pulses, which split
the total time interval t into M small intervals tp = p

M t
with p = 1, 2, ...,M . The pulses rotate the collective
spin states around y axis, and we chose the pulse se-
quence to rotate π and −π alternately, which leads to
eiπJyσzje

−iπJy = −σzj and eiπJyJ2
z e

−iπJy = J2
z . There-

fore, the spin squeezing J2
z is conserved while the σz is

inverted by the BB pulses. Considering the 2N qubits
which are independently coupled to thermal baths, the
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FIG. 3: (Color online) (a) The squeezing parameter ξ2N as a
function of the time gt. The parameters are η = 0, M = 0
(black line), η = 4×10−4, M = 0 (red line), and η = 4×10−4,
M = 500 (blue line). (b) The blue solid line for the optimal
squeezing parameter ξ2N versus the pulses M for η = 4×10−4,
and the black dashed line for the result without thermal baths.
Other parameters are nth = 200 (T ≈ 10 mK), ωc = g, λ =
4/g, Q = 20000 and N = 10.

Hamiltonian from the Eq. (1) is changed to

H ′ = ωaa
†a+ gε(t)Jz

(

a+ a†
)

+
∑

k

ωkb
†
kbk

+
2N
∑

j=1

∑

k

ε(t)σzj
2

hkj(bk + b†k). (9)

Here, bk and b†k are the creation and annihilation bosonic
operators of the k-th bath mode, which coupling to the j-
th spin with coupling strength hkj . The switch function

ε(τ) due to BB pulses is given by ε(τ) =
∑M

p=1(−1)pθ(τ−
tp)θ(tp+1 − τ) with θ (t) is the Heaviside step function.
With the decoherence and BB, the geometry phase fac-

tor [Eq. (4)] of spin states are solved as

φ′m,n(t)

= −
(

nth +
1

2

)

(n−m)2
{

γ

ˆ t

0

| α′(τ) |2 dτ+ | α′(t) |2
}

+ig(n2 −m2)Re

ˆ t

0

ε(τ)α′(τ)dτ − κm,n(t). (10)

Here, α′(t) = −ig
´ t

0
ε(τ)e−( γ

2
+iωa)(t−τ)dτ and κm,n(t) is

due to the decoherence. Assume that the baths to each
spin are Ohmic [48] and have the same spectral density

ηωe−
ω
ωc , we have

κm,n(t) ≤ (|n−m|+ 2)

ˆ ∞

0

G (ω)FM (ω, t)dω, (11)

where the modulation spectrum is FM (w, t) =
tan2( ωt

2M+2 )(1+(−1)M cos(ωt))
ω2 , the temperature-dependent

interacting spectrum is G(ω) = ηωe−
ω
ωc

(

2
eλω−1

+ 1
)

[46], in which η is the coupling strength between the
system and the bath modes, ωc is the cutoff frequency,
and λ = 1/κBTb is the inverse temperature. This time-
dependent dephasing is a non-Markovian process [49],
which is a constant under the Markovian approximation
[26]. In order to simplify the calculation, we use the up-
per limit instead of the κm,n(t).
In Fig. 3(a), we numerically calculated squeezing pa-

rameter ξ2N as a function of time for various η and M .
Since the decoherence term κm,n(t) is proportional to
the coupling strength between the system and the bath
modes, we observe the increment of the optimal ξ2N for in-
creasing η (black and red lines). The blue line shows the
suppression of decoherence by BB, and here we choose
the sequence number M = 500 and η = 4× 10−4, which
is in contrast to the red line. There are periodic peaks
with the separation distance ∆gt = π, and the peak val-
ues are obtained when gt = (n+ 1/2)π, n is integer.
This phenomena can be interpreted as following: the BB
pulse period is tM = t/M , and the time period for the
phonon state trajectories in the phase-space [Fig. 1] is
ta = 2π/ωa. For M = 500 and ωa/g = 1000, we have
tM/ta = gt/π. When gt/π = n is integer, the geometric
phase is always cumulative, and the coherent spin squeez-
ing effect is not degraded by the BB pulse sequence. In
contrast, when gt/π = n + 1

2 , the geometric phase im-
prints alternating sign as function of M , and then the
spin squeezing is weakened. Compare the minimas of
ξ2N with BB (blue line) to the results without BB (black
and red lines), the undesired effect of decoherence is effec-
tively suppressed by the dynamical decoupling. Fig. 3(c)
shows the optimal ξ2N versus the pulse sequence length
M . With increasing M , the optimal value of ξ2N is im-
proved and approaches the black dashed line, which is
the ideal result determined by the Eq (6) without ther-
mal baths. When M ≥ 400, the influence of thermal
baths on spin squeezing can be almost eliminated, which
means κm,n(t) ≈ 0.

V. EXPERIMENTAL REALIZATION

The possible experiment configures are diamond
nanostring oscillator and diamond nanocrystal adhere to
cantilever. For first approach, the diamond nanostring
with nanoscale cross-section can be fabricated with the
approaches in Ref. [32], with frequency above 1 MHz and
quality factor as large as 105. For the second approach,
a diamond nanocrystal can be attached to a cantilever
[7, 28] and close to a nanomagnet, the cantilever fre-
quency around 1 MHz and quality factor exceeding 104.
For both approach, NV− centers can be generated by
ion implantation in diamond nanocrystal or at selected
location of the diamond nanostring. A reasonable den-
sity can be about 100 ppm, leads to the spin ensemble of
N ∼ 20 in a 10×10×10 nm3 volume of diamond. As the
spin squeezing depends on the dimensionless parameter



5

T/Q
√
N , we can relaxation the requirement for low tem-

perature by increasing the mechanical Q or the ensemble
size.

VI. CONCLUSION

An approach to achieve spin squeezing by phonon in-
duced geometric phase is proposed. This scheme is fea-
sible for experiments on solid state spin ensemble cou-
pled to a mechanical oscillator. With reasonable param-
eters, the ultimate limit of the ideal one-axis twisting spin
squeezing can be achieved as long as the quality factor

is sufficiently high that Q > nth+1/2√
N

× 103. The deco-

herence due to spin-bath coupling can be effectively sup-
pressed by the Bang-Bang pulses. This geometric-phase-
based spin squeezing can be used to significantly improve
the sensitivity of magnetic sensing with nitrogen-vacancy

spin ensembles. Moreover, the technique can be general-
ized to spin ensembles coupled to other high-Q Bosonic
modes that prepare quantum states by geometry phase.
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