
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Optical tunneling by arbitrary macroscopic three-
dimensional objects

Lei Bi, Ping Yang, George W. Kattawar, and Michael I. Mishchenko
Phys. Rev. A 92, 013814 — Published  8 July 2015

DOI: 10.1103/PhysRevA.92.013814

http://dx.doi.org/10.1103/PhysRevA.92.013814


Optical Tunneling by Arbitrary Macroscopic 3D Objects

Lei Bi,1 Ping Yang,1, 2, ∗ George W. Kattawar,2 and Michael I. Mishchenko3

1Department of Atmospheric Sciences, Texas A&M University, College Station, Texas, 77843
2Department of Physics and Astronomy, Texas A&M University, College Station, Texas, 77843

3NASA Goddard Institute for Space Studies, New York, New York, 10025

(Dated: May 21, 2015)

Electromagnetic wavefront portions grazing or nearly grazing the surface of a macroscopic par-
ticle contribute to the extinction of the incident radiation through a tunneling process similar to
the scenario of barrier penetration in quantum mechanics. The aforesaid tunneling contribution,
referred to as the edge effect, is critical to a correct depiction of the physical mechanism of elec-
tromagnetic extinction. Although an analytical solution for the edge effect in the case of a sphere
has been reported in the literature, the counterparts for non-spherical particles remain unknown.
The conventional curvature-based formalism of the edge effect breaks down in the case of faceted
particles. As the first success, this paper reports a novel method, based on the invariant imbedding
principle and the Debye expansion technique, to accurately quantify the edge effect associated with
an arbitrarily shaped three-dimensional object. The present method also provides a rigorous capa-
bility to facilitate the validation of various empirical approximations for electromagnetic extinction.
Canonical results are presented to illustrate optical tunneling for two non-spherical geometries.
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I. INTRODUCTION

Diffraction in classical macroscopic electrodynamics
exhibits a tunneling effect similar to that in quantum me-
chanics [1, 2]. As an incident wave strikes a particle, the
interaction between the particle and the wavefront por-
tions that graze or nearly graze the obstacle’s edges leads
to tunneling composed of the above-edge and below-edge
components according to the localization principle [3].
The above-edge effect is due to localized waves that are
beyond the particle’s cross section and propagate in the
surrounding medium without being scattered by the par-
ticle, whereas the below-edge effect is related to anoma-
lous reflection that gives rise to additional forward scat-
tering [3]. Because electromagnetic tunneling occurs near
the edges of particles, the tunneling efficiency is tradi-
tionally referred to as the edge effect or the edge phe-
nomenon [3]. To date, rigorous studies of the edge ef-
fect have been limited to spheres and infinite circular
cylinders [3–6]. It would be a significant leap towards a
better understanding of electromagnetic extinction if the
edge effect could be accurately quantified in the case of
non-spherical particles. Furthermore, the solution for the
optical tunneling associated with an arbitrarily shaped
particle is extremely valuable from practical application
perspective, as most natural particles of interest are non-
spherical (e.g., hexagonal ice crystals in the atmosphere
and spheroids as approximations to the overall shapes of
many particles in nature [7–9]).
It is unlikely feasible to derive an analytical solution

for the edge effect associated with a general non-spherical
particle from Maxwell’s equations. Classical approaches
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to studying the edge effect are based on Fock’s principle
of the local field for a conducting or nearly conducting
particle with smoothly varying curvature [10]. Pioneer-
ing work by Nussenzveig and Wiscombe [5] in the case
of a dielectric sphere was based on the Debye expansion
of the Lorenz-Mie series [11, 12]. An innovative appli-
cation of the complex angular momentum theory to the
Debye series [5] yields an approximate formula for the
edge-effect contribution to the extinction efficiency of a
homogeneous sphere and demonstrates that the edge ef-
fect for a sphere is associated with the forward scattering
amplitude of the zeroth-order Debye series. The Debye
approach has been extended to spheroids and layered
spherical particles [13] based on the method of separa-
tion of variables, and to more general homogeneous non-
spherical shapes based on the extended boundary con-
dition method [14]. However, in the previous studies,
numerical instability and nonconvergence issues limited
the efforts to small size parameters, and thus the relation-
ship between the edge effect and the zeroth-order Debye
series has not been revealed. To understand the edge ef-
fect, the solution to the Debye diffraction and reflection
must be obtained in the semi-classical domain where the
localization principle is approximately valid.

This paper reports a novel method based on the in-
variant imbedding principle to obtain the Debye diffrac-
tion and reflection. The tunneling efficiency is computed
from the forward scattering amplitude from the optical
theorem [3]. The invariant imbedding concept is an out-
growth of the principle of invariance introduced by Am-
barzumyan [15] to solve atmospheric radiative transfer,
and the firm foundations of the aforesaid concept were
developed by a late Nobel laureate, S. Chandrasekhar
[16]. The present novel method can be applied to arbi-
trary non-spherical particles for the edge-effect solution
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in a size-parameter range where the ray concept is appli-
cable. To the best of the authors’ knowledge, reported
in this paper is the first success in accurately quantifying
the edge effect for non-spherical particles, which has im-
portant implications for many practical applications [7].

FIG. 1. Reflection of an incoming spherical wave by a non-
spherical particle.

II. METHOD

Figure 1 illustrates the reflection of an incoming spher-
ical wave to outgoing spherical waves by a non-spherical
particle. In terms of Debye’s diffraction and reflection,
the incident wave is an incoming spherical wave,

E
inc(r) =

∞
∑

l=1

ãlM̃l(kr) + b̃lÑl(kr), (1)

and the reflected wave is given by

E
ref(r) =

∞
∑

l=1

p̃lMl(kr) + q̃lNl(kr). (2)

In Eqs. (1) and (2), M and N are vector spherical wave
functions constructed from spherical Hankel functions of
the first kind, and M̃ and Ñ are similar to M and N ex-
cept that spherical Hankel functions of the first kind are
replaced with the second kind; k is the wave number de-
fined as k = 2π/λ in which λ is the incident wavelength.
Note l = n(n + 1) + m is an index defined to combine

the angular momentum number n and the projected an-
gular momentum number m. The reflection matrix can
be symbolically defined as

[

p̃
q̃

]

= R

[

ã

b̃

]

. (3)

With Eq.(1) expanded in terms of regular vector spherical
wave functions and Eq.(2) defined as the total scattered
field, the matrix relating the coefficients is referred to
as the T-matrix [8], which contains the total extinction
efficiency, and can be expanded into the Debye series [14].
To compute the edge effect contribution to the extinction
efficiency, the following zeroth-oder T-matrix is defined

T
0 = −

1

2
(1−R), (4)

from which the extinction efficiency of a randomly ori-
ented particle can be given as the sum of 2 (owing to the
Fraunhofer diffraction and the blocking of the incident
light) and the edge effect contribution in the form

Qext = 2+Qedge

= −
2π

k2 < S >
Re

lmax
∑

l=1

[

T 0,11
ll + T 0,22

ll

]

, (5)

where < S > is the average projected-area of the scat-
tering particle. For a particle with a fixed orientation,
the edge-effect efficiency can be obtained from the am-
plitude scattering matrix in the forward scattering direc-
tion, given by T

0 via a process similar to obtaining the
total extinction efficiency from T [8, 17, 18]. Further-
more, we found that T

0 satisfies the following matrix
Riccati differential equation,

dT0(kr)

d(kr)
= i

[

J
T (kr) +T

0(kr)H(kr)T
]

× U(kr)

[

J(kr) +H(kr)T0(kr)

]

. (6)

In Eq.(6), T0(kr) indicates the zeroth-order T-matrix of
a partial volume of the particle within a sphere of radius
r, J is the real part ofH, andH andU are super matrices
with each element given by

Hll′ = δll′







h
(1)
n (kr) 0

0 1
kr

∂
∂r [rh

(1)
n (kr)]

0
√

n(n+ 1)h
(1)
n (kr)/kr






, (7)

Ull′ = k2r2(−1)m+m′

[

2n+ 1

4πn(n+ 1)

]1/2 [
2n′ + 1

4πn′(n′ + 1)

]1/2 ∫ 2π

0

dφ

∫ π

0

dθ sin θ exp [−i(m−m′)φ] [ǫ(r, θ, φ)− 1]

×





πmn(θ)π
′

mn(θ)+τmn(θ)τmn′ (θ) −i[πmn(θ)τ
′

mn(θ)+τmn(θ)πmn′ (θ)] 0
iπmn(θ)τ

′

mn(θ)+ iτmn(θ)πmn′(θ) πmn(θ)π
′

mn(θ) + τmn(θ)τmn′(θ) 0

0 0 d̃n0m(θ)d̃n
′

0m′ (θ)/m̃2



 , (8)
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where h
(1)
n (kr) is a spherical Hankel function of the first

kind, πmn(θ) = m/ sin θdn0m(θ), τmn(θ) = d/dθdn0m(θ)

and d̃n0m =
√

n(n+ 1)dn0m with dn0m being the Wigner-
d function; m̃ is the complex refractive index and ǫ is
permittivity and equal to m̃2. Given the initial value,
the solution of T0(kr) can be numerically obtained. Note
that for a non-spherical particle, the initial value can be
selected to be T

0 associated with the inscribed sphere,
whose reflection matrix is diagonal, namely,

Rll′ = δll′

[

R11
nn 0
0 R22

nn

]

. (9)

The diagonal elements in Eq.(9) can be obtained from
the method of separation of variables and appropriate
wave boundary conditions on the spherical particle sur-
face, given by (e.g., see [19])

R11
nn =

ζ
(2)′

n (x)ζ
(2)
n (m̃x) − m̃ζ

(2)
n (x)ζ

(2)′

n (m̃x)

−ζ
(1)′
n (x)ζ

(2)
n (m̃x) + m̃ζ

(1)
n (x)ζ

(2)′
n (m̃x))

, (10)

R22
nn =

m̃ζ
(2)′

n (x)ζ
(2)
n (m̃x)− ζ

(2)
n (x)ζ

(2)′

n (m̃x)

−m̃ζ
(1)′
n (x)ζ

(2)
n (m̃x) + ζ

(1)
n (x)ζ

(2)′
n (m̃x)

, (11)

where x = krs is the size parameter (rs is the sphere

radius), and ζ
(i)
l (x) is the Riccati-Bessel function defined

with spherical Hankel function of the ith kind. We em-
ploy the classic 4th order Runge-Kutta method for the
numerical solution of Eq. (6). A mathematical proof
of the fundamental relation in Eq.(6) is provided in Ap-
pendix A and the validation in the case of a sphere is
given in Appendix B.

III. RESULTS

The present numerical method can be readily employed
to examine Fock’s principle of the local field [10]. Accord-
ing to Fock, the edge effect is a consequence of the local
characteristics of an object in the penumbra region and
involves the curvature and impedance. It means that
two different particle shapes with the same local charac-
teristics have the same edge-effect efficiency. To test this
conjecture, we consider a scattering problem with the in-
cident light striking a sphere or an incomplete sphere, as
shown in Fig. 2. The direction of the incident light is
along the symmetry axis of the incomplete sphere. The
total extinction efficiencies for the two particles are dif-
ferent if the particle is non-absorptive or weakly absorp-
tive; however, the edge efficiencies for the two geometries
should be the same, if the edge effect is solely associated
with the local characteristics of geometry. Figure 2 shows
the comparison of the edge-effect efficiencies of the two
geometries in a wide size-parameter range for three dif-
ferent refractive indices. The ratio of the diameter to the
height of the incomplete sphere is 1.2. The agreement of
the numerical results affirms Fock’s principle of the local
field for a dielectric particle with a curved boundary that
separates the illuminated and shadow sides.

!"#$%$
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FIG. 2. Comparison of the edge extinction efficiencies for
a sphere and an incomplete sphere as functions of the size
parameter.

Figure 3 shows a comparison of the extinction efficien-
cies of spheroids with the end-on incidence computed
from different approaches to affirm the edge-effect contri-
bution to the total extinction efficiency. Rigorous total
extinction efficiencies are computed from the T-matrix
method [18]. The dotted lines are calculated from the
zeroth-order Debye series as the sum of 2 and the edge-
effect contribution. Circles are computed from the ad-
dition of the rigorous solution of the edge effect and ap-
proximate geometric-optics results. Similar to a spherical
particle, the geometric-optics contribution of the forward
amplitude scattering matrix is only from the central ray
and can be modified from the formula of the spherical
case [5] with a divergence factor correction. The extinc-
tion efficiency formula containing the physics of Fraun-
hofer diffraction and the central ray transmission is given
in Eq. (19) of Bi and Yang [21].

In the upper panel, the particle is moderately absorp-
tive, thus the higher-order transmission must be consid-
ered in the computation of the extinction efficiency. As
the particle size increases, the edge-effect efficiency de-
creases. As evident, the summation of the edge effect
and geometric-optics term closely agree with the exact
solution of the total extinction efficiency. In the lower
panel, the particle is highly absorptive, and the trans-
mission can be reasonably neglected. Therefore, the to-
tal extinction efficiency arises primarily from the Debye
reflection and diffraction, which contains the Fraunhofer
diffraction, the geometric-optics reflection (blocking ef-
fect), and the edge effect.

In addition to particles of smoothly varying curvature,
the present numerical method can be applied to faceted
particles without technical restrictions. Figure 4 shows
the edge-effect contribution for randomly oriented hexag-
onal ice crystals. We found the edge effect to be signif-
icant when the particle is non-absorptive or weakly ab-
sorptive and quite small for highly absorptive particles.
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FIG. 3. Extinction efficiencies of spheroids with the end-on
incidence. Upper panel: the refractive index is 1.3+i0.01;
Lower panel is similar to Upper panel except that the refrac-
tive index is 1.3+i0.5.

In comparison to spheres and spheroids, the edge-effect
efficiencies for hexagonal particles are generally small.
The edge-effect efficiency’s dependence on the size pa-
rameter is similar to that of spheres or spheroids.
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FIG. 4. Comparison of the edge-effect efficiencies of hexagonal
particles for three refractive indices.

To obtain the semi-empirical formula of the edge effect
for convex conducting particles with smoothly varying

curvature, Jones [22] derived an edge-effect term based
on the assumption that near a glancing point the obsta-
cle behaves like a cylinder with its axis tangent to the
curve of glancing points. Jones’ approach is developed
within the framework of Fock’s principle of local field.
Based on Jones’ rationale and Nussenzveig’s results of
the extinction efficiency obtained from the complex an-
gular momentum theory, the semi-empirical calculations
for the edge effect in the dielectric spheroid case have
been reported in Bi and Yang [21]. Note that Jones’ ap-
proximate method for the edge-effect calculations relies
on the radius of curvature of the boundary separating the
illuminated and the shadow sides. However, the relation-
ship between the radius of curvature and the edge-effect
efficiency is not applicable to faceted particles. If Jones’s
rationale is applied to a faceted particle, the edge-effect
contribution could be incorrectly infinite.
To understand the physical reasons that decrease

the edge-effect efficiency, we therefore surmise that the
below-edge effect substantially decreases because the in-
terference between the forward reflection and diffraction
may not exist. To test this assumption, the above-edge
effect for axially symmetric particles with the incident
light aligned with the symmetry axis can be separated
from the total edge effect based on the localization prin-
ciple [3], given by

Qedge,abv =
−2

(ka)2
Re

[

∞
∑

n=1

(2n+ 1)

∞
∑

n′=n0

√

2n′ + 1

2n+ 1
in

′
−n

(

T 0,11
1n1n′ + T 0,12

1n1n′ + T 0,21
1n1n′ + T 0,22

1n1n′

)

]

(12)

where n0 = [ka− 1/2] is associated with the grazing rays
([·] indicates the integer part of the argument.). Then,
the below-edge effect efficiency is given by

Qedge,bel = Qedge −Qedge,abv (13)

We compared the edge-effect efficiencies for particles by
modifying the particle boundaries (Fig. 5) and found the
edge effect to be dominated by the above-edge effect if
the below-edge boundary is faceted, which annihilates the
forward reflection. As an example, for m=1.3, ka=20.5,
and kb = 15, the total edge-effect efficiency is 0.1023,
the above-edge efficiency is 0.0883 and the below-edge
efficiency is 0.014.

IV. CONCLUSION

We have demonstrated that the edge effect contribu-
tion to the extinction efficiency can be rigorously quan-
tified from first principles by solving the zeroth-order
Debye series. The conventional curvature-based depic-
tion of the edge effect for particles with curved surfaces
is directly validated in the case of spheroids, but the
curvature-based edge-efficiency formalism breaks down
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FIG. 5. A schematic geometry to annihilate the interference
between the forward reflection and the diffraction.

in the case of faceted particles. However, from the per-
spective of practical applications of the edge effect with
reasonably accurate numerical solution, an approximate
formula of the edge effect can be obtained by param-
eterizing the numerical results. As illustrated by the
present results, the tunneling effect strongly depends on
the scattering particle’s geometric configuration. The
significance of this study is that, as the first success, a
feasible approach is developed to determine the edge ef-
fect associated with general non-spherical particles.
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Appendix A: Proof of Eq. (6)

We derive Eq. (6) from an electric field volume integral
equation and validate the results in the case of a sphere.
The electric field volume integral equation reads [8]

Ē(r) = Ēinc(r)+k2
∫

[

m̃(r′)2−1
] ¯̄G(r − r′)Ē(r′)d3r′,(A1)

where Ēinc(r) is the incident electric field, Ē(r) is the to-

tal electric field, and ¯̄G(r−r′) is the dyadic Green’s func-
tion. Note that in Eq. (A1) and all following equations,
a variable with a single bar represents a three-component
column vector in the spherical coordinate system and a
variable with double bar represents a matrix. The deriva-
tion of Eq. (6) is similar to that employed in deriving
the invariant imbedding T-matrix equation [17] except
for the representation of the source field and the expan-
sion of the dyadic Green’s function with respect to vector
spherical wave functions. To treat the singularity prob-
lem, the total electric field in source free regions Ēeff is

defined. Eq. (A1) is written as [17]

Ēeff (r)=Ēinc(r)

+

∫

¯̄G(r − r′)u(r′) ¯̄Z(r′)Ēeff (r′)d3r′, (A2)

where u(r′) =
[

m̃(r′)2−1
]

and ¯̄Z = (1/m̃2)r̂r̂ + θ̂θ̂ + φ̂φ̂.
To obtain the direct external reflection of an incoming
spherical wave, dyadic Green’s function is expanded as

¯̄G(r, r′) =
1

2

∞
∑

n=1

n
∑

m=−n

¯̄Ymn(θ, φ)¯̄gn(r, r
′) ¯̄Y +

mn(θ
′, φ′),(A3)

where

¯̄Ymn(θ, φ)=(−1)m
[

2n+ 1

4πn(n+ 1)

]

exp(imφ)

×





0 0
√

n(n+ 1)dn0m(θ)
iπmn(θ) τmn(θ) 0
−τmn(θ) iπmn(θ) 0



(A4)

and

¯̄gn(r, r
′)=















ik ¯̄Hn(r)
¯̄H+

n(r
′); r > r′

ik
2

[

¯̄Hn(r)
¯̄H+

n(r
′) + ¯̄H∗

n(r)
¯̄H
T

n (r
′)
]

; r = r′

ik ¯̄H∗

n(r)
¯̄H
T

n (r
′); r < r′

(A5)

Realizing that the incoming spherical wave is represented

as ¯̄Ymn(θ, φ)
¯̄H⋆
n(r) = (M̃mn(kr), Ñmn(kr)), Eq. (A2) is

written as

¯̄Em′n′(r)=¯̄Ym′n′(θ, φ) ¯̄H∗

n′ (r) +

∫ rm

0

dr′
∞
∑

n=1

n
∑

m=−n

¯̄Ymn(θ, φ)¯̄gn(r, r
′) ¯̄Fmnm′n′(r′), (A6)

where

¯̄Fmnm′n′(r) =
r2

2

∫

dΩ ¯̄Y +
mn(θ, φ)u(r)

¯̄Z(r)Em′n′(r).(A7)

Substituting Eq. (A6) in Eq. (A7), we have

¯̄Fmnm′n′(r) = ¯̄Vmnm′n′(r) ¯̄H∗

n′ (r)

+

∞
∑

n=1

n
∑

m=−n

¯̄Vmnmn(r)

×

∫ rm

0

dr′gn(r, r
′)Fmnm′n′(r′), (A8)

where ¯̄V is given by

¯̄Vmnm′n′(r) =
r2

2

∫

dΩ ¯̄Y +
mn(θ, φ)u(r)

¯̄Z(r) ¯̄Ym′n′(θ, φ).(A9)

Note that ¯̄V = ¯̄U/2, where 2 is from the Wronskian iden-
tity. Let r > r′. Then, the integral term in Eq. (A6) is

the reflection field. The ¯̄R matrix can be written as

¯̄Rmnm′n′(rm) = ik

∫ rm

0

dr′ ¯̄H+
n (r′) ¯̄Fmnm′n′(r′).(A10)
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To numerically compute the ¯̄R matrix, the definite inte-
gral of Eq. (A10) is approximated as a weighted sum of
function values at specific points in the domain of inte-
gration,

¯̄R(rs) = ik
s
∑

j=1

wj
¯̄H+(rj)

¯̄F (rs|rj), (A11)

where wj is weight, s is the total number of division

points, and ¯̄F (s|rj) is the solution of

¯̄F (rs|rj) =
¯̄V (rj)

¯̄H∗(rj)

+ ¯̄V (rj)

s
∑

i=1

wi ¯̄g(rj , ri)
¯̄F (rs|ri). (A12)

Once the linear equations of Eq. (A12) are solved, ¯̄R can
be readily computed through summation. The concept

of the invariant imbedding approach is to compute ¯̄R(rs)

based on ¯̄R(rs−1) without solving Eq. (A12). Let the

upper limit in the integral of ¯̄R(r) (Eq. (A10)) be rs−1,
we have

¯̄R(rs−1) = ik

s−1
∑

j=1

wj
¯̄H+(rj)

¯̄F (rs−1|rj) (A13)

and

¯̄F (rs−1|rj) =
¯̄V (rj)

¯̄H∗(rj)

+ ¯̄V (rj)

s−1
∑

i=1

wi ¯̄g(rj , ri)
¯̄F (rs−1|ri).(A14)

The relationship between ¯̄F (rs|rj) and ¯̄F (rs−1)|rj) can
be found from the equation,

L [A12]×R [A14]−R [A12]× L [A14] = 0, (A15)

which gives

¯̄V (rj)

s−1
∑

i=1

wi ¯̄g(rj , ri)

×
[

¯̄F (rs|rj)
¯̄F (rs−1|ri)−

¯̄F (rs−1|rj)
¯̄F (rs|ri)

]

+ ¯̄V (rj)

{

¯̄H∗(rj)

[

¯̄F (rs|rj)
¯̄F (rs−1|rj)

− 1

]

− ws ¯̄g(rj , rs)
¯̄F (rs|rs)

}

¯̄F (rs−1|rj) = 0. (A16)

L and R in Eq. (A15) mean the left- and right-hand

sides of the involved equation. Dropping ¯̄V (rj), taking

summation
∑s−1

j=1 , and noting that

s−1
∑

j=1

s−1
∑

i=1

wi ¯̄g(rj , ri)

×
[

¯̄F (rs|rj)
¯̄F (rs−1|ri)−

¯̄F (rs−1|rj)
¯̄F (rs|ri)

]

= 0,(A17)

we obtain

s−1
∑

j=1

{

H∗(rj)

[

F (rs|rj)

F (rs−1|rj)
− 1

]

−wsg(rj , rs)F (rs|rs)

}

F (rs−1|rj) = 0. (A18)

Because Eq. (A18) is valid for any scattering systems,
all the coefficients of F (rs−1|rj) should be zero, namely,

H∗(rj)

[

¯̄F (rs|rj)
¯̄F (rs−1|rj)

− 1

]

= ikwsg(rj , rs)F (rs|rs).(A19)

Using Eq. (A5) with rj < rs, we have

¯̄F (rs|rj)
¯̄F (rs−1|rj)

= 1 + ikws
¯̄HT (rs)

¯̄F (rs|rs), (A20)

which is independent of rj . To relate ¯̄R(rs) and
¯̄R(rs−1),

we define

¯̄q(rs) = ik

s−1
∑

j=1

wj
¯̄H+(rj)

¯̄F (rs|rj). (A21)

Then, we have

¯̄q(rs) =
¯̄R(rs−1)

[

1 + ikws
¯̄HT (rs)

¯̄F (rs|rs)
]

(A22)

= ¯̄R(rs)− ikws
¯̄H+(rs)

¯̄F (rs|rs). (A23)

Another relation between ¯̄F (rs|rs) and ¯̄q(rs) can be ob-
tained from Eq. (A12). Let rj = rs in Eq. (A12), we
obtain

¯̄F (rs|rs) =
¯̄V (rs)

¯̄H∗(rs)

+ ¯̄V (rs)

s−1
∑

i=1

wi ¯̄g(rs, ri)
¯̄F (rs|ri)

+ ws
¯̄V (rs)¯̄g(rs, rs)

¯̄F (rs|rs). (A24)

Solving the preceding equation in terms of ¯̄F (rs|rs) gives

¯̄F (rs|rs)=w
−1
s ws

¯̄V (rs)

1− ws
¯̄V (rs)¯̄g(rs, rs)

×
[

¯̄H∗(rs)+
¯̄H(rs)¯̄q(rs)

]

. (A25)

Define

¯̄Q(rs) =
ws

¯̄V (rs)

1− ws
¯̄V (rs)¯̄g(rs, rs)

. (A26)

Then,

¯̄F (rs|rs) = w−1
s

¯̄Q(rs)
[

¯̄H∗(rs) +
¯̄H(rs)¯̄q(rs)

]

.(A27)

Substituting Eq. (A27) into Eq. (A22) yields

¯̄q(rs)=
¯̄R(rs−1)

{

1 +
[

¯̄Q21(rs) +
¯̄Q22(rs)¯̄q(rs)

]}

,(A28)
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where

¯̄Q21(rs) = ik ¯̄HT (rs)
¯̄Q(rs)

¯̄H∗(rs), (A29)
¯̄Q22(rs) = ik ¯̄HT (rs)

¯̄Q(rs)
¯̄H(rs). (A30)

Solving Eq. (A28) in terms of ¯̄q(rs) gives

¯̄q(rs)=[1 −
¯̄R(rs−1)

¯̄Q2,2(rs)]
−1 ¯̄R(rs−1)

[

1 + ¯̄Q2,1(rs)
]

.(A31)

From Eq. (A23)

¯̄R(rs) =
¯̄Q11(rs) +

[

1 + ¯̄Q12(rs)
]

¯̄q(rs), (A32)

where

¯̄Q11(rs) = ik ¯̄H+(rs)
¯̄Q(rs)

¯̄H∗(rs), (A33)
¯̄Q12(rs) = ik ¯̄H+(rs)

¯̄Q(rs)
¯̄H(rs). (A34)

Therefore

¯̄R(rs) =
¯̄Q11(rs) +

[

1 + ¯̄Q12(rs)
]

× [1− ¯̄R(rs−1)
¯̄Q2,2(rs)]

−1 ¯̄R(rs−1)

×
[

1 + ¯̄Q2,1(rs)
]

. (A35)

Formally, Eq. (A35) can be employed to compute the
reflection matrix of the particle by growing the particle
in a layer-by-layer form. From Eqs. (A22) and (A23), we
have,

¯̄R(rs)−
¯̄R(rs−1)

ws
= ik

[

¯̄H+(rs) +
¯̄R(rs−1)

¯̄HT (rs)
]

× ¯̄F (rs|rs). (A36)

Letting ws → 0, we obtain

¯̄F (rs|rs) =
¯̄V (rs)

[

¯̄H∗(rs) +
¯̄H(rs)

¯̄R(rs)
]

, (A37)

because

w−1
s

¯̄Q(rs) =
¯̄V (rs), (A38)

¯̄q(rs) =
¯̄R(rs). (A39)

Substituting Eq. (A37) into Eq. (A36) gives

d ¯̄R(kr)

d(kr)
=

i

2

[

¯̄H+(kr) + ¯̄R(kr) ¯̄HT (kr)

]

¯̄U(kr)

[

¯̄H∗(kr) + ¯̄H(kr) ¯̄R(kr)

]

, (A40)

By letting ¯̄T = −1/2(1− ¯̄R), we have Eq. (6).
Similar to the T-matrix computation [18], Eq. (A35)

provides a natural procedure to compute the reflection
matrix. Unfortunately, the numerical implementation re-
quires fairly small step sizes to avoid the ill-conditioning
problem in the computation of the Q matrix. When
the order of Bessel function n is much greater than

x + 4.02x1/3, the gn(x, x) matrix has fairly large eigen-
values. Mathematically, the step size w should be suffi-
ciently small so that the geometric series

1

1− w ¯̄V (x)¯̄g(x, x)
(A41)

converge (such numerical difficulty is nonexistent in the
computation of T-matrix). Therefore, numerical imple-
mentation based on Eq. (A35) is only applicable to solv-
ing the reflection matrix of nearly spherical particles.
In this study, we solve first-order ordinary differential

equations of Riccati type Eq. (6) by using the 4th order
Runge-Kutta method. Although it becomes challenging
to apply Eq. (6) to large aspect ratios or large particle
sizes due to the stiffness problem, we can obtain accurate
solutions for a range of size parameters, where the edge
effect is pronounced.
The preceding discussions are limited to homogeneous

particles. In the case of particles with inclusions, the
edge effect is solely dependent on the refractive index of
the host particle. A direct confirmation of this statement
from the invariant imbedding method is not straightfor-
ward, because the derivative of the reflection matrix is
discontinuous (e.g., for a coated sphere). However, for
an inhomogeneous sphere with a continuous variation of
the refractive index in the radial direction, we found the
result to be the same as that of a homogeneous particle
with the refractive index of the outermost layer of the
inhomogeneous sphere.

Appendix B: Sphere

In the case of a sphere, the ¯̄U matrix is given as follows,

¯̄Umnm′n′(r)=k2r2(m̃2 − 1)δmm′δnn′





1 0 0
0 1 0
0 0 1/m̃2



 .(B1)

Substituting Eq. (B1) into Eq. (A36), we have

dR11
nn(kr)

d(kr)
=i

m̃2 − 1

2

[

R11
nn(kr)ζ

(1)
n (kr) + ζ(2)n (kr)

]2

(B2)

dR22
nn(kr)

d(kr)
=i

m̃2 − 1

2

{[

n(n+ 1)

m̃2(kr)2

]

,

×
[

R22
nn(kr)ζ

(1)
n (kr) + ζ(2)n (kr)

]2

+
[

R22
nn(kr)ζ

′(1)
n (kr) + ζ

′(2)
n (kr)

]2
}

. (B3)

This section shows the derivation of Eqs. (B2) and
(B3) from Eqs. (10) and (11) as a direct validation of the
results obtained from the previous section. For simplicity
in taking derivatives of the reflection matrix, we define

A(x) = ζ(2)
′

n (x)ζ(2)n (m̃x)− m̃ζ(2)n (x)ζ(2)
′

n (m̃x), (B4)

B(x) = −ζ(1)
′

n (x)ζ(2)n (m̃x) + m̃ζ(1)n (x)ζ(2)
′

n (m̃x),(B5)

U(x) = m̃ζ(2)
′

n (x)ζ(2)n (m̃x)− ζ(2)n (x)ζ(2)
′

n (m̃x), (B6)

D(x) = −m̃ζ(1)
′

n (x)ζ(2)n (m̃x) + ζ(1)n (x)ζ(2)
′

n (m̃x),(B7)



8

such that

R11
nn(x) =

A(x)

B(x)
, (B8)

R22
nn(x) =

U(x)

D(x)
. (B9)

By employing the Wronskian identity

ζ(2)n (x)ζ(1)′n (x) − ζ(2)′n (x)ζ(1)n (x) = 2i, (B10)

we obtain from Eq. (B4) and Eq. (B5)

A(x)ζ(1)n (x) +B(x)ζ(2)n (x) = −2iζ(2)n (m̃x), (B11)

A(x)ζ(1)′n (x) +B(x)ζ(2)′n (x) = −2im̃ζ(2)′n (m̃x).(B12)

The derivative of Eq. (B11) in terms of x minus Eq.
(B12) yields

A′(x)ζ(1)n (x) +B′(x)ζ(2)n (x) = 0. (B13)

Taking Eq.(B11)×A′(x)−Eq.(B13)×A(x), we have

A′(x)B(x) −A(x)B′(x) =
A′(x)

ζ
(2)
n (x)

[

−2iζ(2)n (m̃x)
]

=−2i

[

ζ
(2)′′

n (x)

ζ
(2)
n (x)

ζ(2)n (m̃x)− m̃2ζ(2)
′′

n (m̃x)

]

ζ(2)n (m̃x).(B14)

By using the identity

m̃2ζ′′n(m̃x) +

[

m̃2 −
n(n+ 1)

x2

]

ζn(m̃x) = 0, (B15)

or, equivalently,

ζ
′′

n (m̃x)

ζn(m̃x)
=

[

n(n+ 1)

(m̃x)2
− 1

]

. (B16)

Eq. (B14) is simplified to

A′(x)B(x) −A(x)B′(x)=−2i(m̃2 − 1)
[

ζ(2)n (m̃x)
]2

.(B17)

From Eq. (B8) and Eq. (B17), we have

dR11
nn(x)

dx
=−2i(m̃2 − 1)

[

ζ
(2)
n (m̃x)

B(x)

]2

. (B18)

Using Eq. (B11) and Eq. (B8), the preceding equation
can be written as

dR11
nn(x)

dx
=

i

2
(m̃2 − 1)

[

R11
nn(x)ζ

(1)
n (x) + ζ(2)n (x)

]2

.(B19)

Similarly, applying Eq. (B10) to Eq. (B6) and Eq.
(B7) gives

U(x)ζ(1)n (x) +D(x)ζ(2)n (x)=−2im̃ζ(2)n (m̃x), (B20)

U(x)ζ(1)′n (x) +D(x)ζ(2)′n (x)=−2iζ(2)′n (m̃x). (B21)

The derivative of Eq. (B20) minus Eq. (B21) leads to

U ′(x)ζ(1)n (x) + D′(x)ζ(2)n (x)

= −2i(m̃2 − 1)ζ(2)′n (m̃x). (B22)
Taking Eq.(B20)×U ′(x)−Eq.(B22)×U(x), we have

U ′(x)D(x) − U(x)D′(x)

=
2i
[

−m̃ζ
(2)
n (m̃x)U ′(x) + (m̃2 − 1)ζ

(2)′
n (m̃x)U(x)

]

ζ
(2)
n (x)

= 2im̃2

(

ζ
(2)′′
n (y)

ζ
(2)
n (m̃x)

−
ζ
(2)′′
n (x)

ζ
(2)
n (x)

)

[

ζ(2)n (m̃x)
]2

(B23)

−2i(m̃2 − 1)
[

ζ(2)′n (m̃x)
]2

= 2i(m̃2 − 1)

{

n(n+ 1)

x2

[

ζ(2)n (m̃x)
]2

−
[

ζ(2)′n (m̃x)
]2
}

.

The derivative of Eq. (B9) can be written as

dR22
nn(x)

dx
=2i(m̃2 − 1)

×







n(n+ 1)

x2

[

ζ
(2)
n (m̃x)

D(x)

]2

−

[

ζ
(2)′
n (m̃x)

D(x)

]2






=−
i

2
(m̃2 − 1)

{

n(n+ 1)

(m̃x)2

×
[

R22
nnζ

(1)
n (x) + ζ(2)n (x)

]2

−
[

R22
nnζ

(1)′
n (x) + ζ(2)′n (x)

]2
}

. (B24)

In Eq. (B24), we have used Eqs. (B9), (B20) and (B21).
Note that the reflection coefficients given by Eqs. (10)
and (11) are obtained from the method of separation of
vairables and appropriate boundary conditions. Thus,
Eq. (A40) in the case of a sphere is validated.
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