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Experimental exploration of the optomechanical attractor diagram and its dynamics
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We demonstrate experimental exploration of the attractor diagram of an optomechanical system
where the optical forces compensate for the mechanical losses. In this case stable self-induced
oscillations occur but only for specific mirror amplitudes and laser detunings. We demonstrate that
we can amplify the mechanical mode to an amplitude 500 times larger than the thermal amplitude at
300K. The lack of unstable or chaotic motion allows us to manipulate our system into a non-trivial
steady state and explore the dynamics of self-induced oscillations in great detail.
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I. INTRODUCTION

Laser or microwave cooling of a mechanical degree of
freedom has led several groups to come close to or even
reach the quantum-mechanical ground state of a macro-
scopic harmonic oscillator [1–3]. This has opened up
many new research avenues to investigate the founda-
tions of quantum mechanics [4], novel decoherence mech-
anisms [5–7] and strong photon-phonon coupling [8–10].
Besides cooling, also heating of the mechanical degree of
freedom is possible, leading to parametric instabilities,
self-induced oscillations and even chaos. Braginsky et al.
have derived the condition for achieving parametric in-
stability in a Fabry-Perot interferometer such as LIGO
[11], which is still a topic of interest [12]. The theoret-
ical framework has been expanded by Marquardt et al.,
with the introduction of an attractor diagram and an ex-
pression for the optomechanical gain [13, 14]. From an
experimental point of view Carmon et al. showed how
self-induced oscillations of the mechanical mode are im-
printed on the cavity output field [15, 16]. Finally the
transition from self-induced oscillation to chaos has been
investigated with some interesting prospects for observ-
ing the quantum to classical transition [17, 18].
The dynamics of self-induced oscillations are best un-

derstood using an attractor diagram. So far only a small
part of this diagram has been explored experimentally by
Metzger et al. with the photothermal effect as the driving
force [19]. Little effort has been made to investigate the
attractor diagram experimentally using radiation pres-
sure force. It has therefore been to date an open problem
to explore the full attractor diagram experimentally [20].
One reason for this is that a transition from self-induced
oscillations to chaotic mirror motion can occur due to
second order effects such as absorption-induced heating
of the optical components [15, 17]. This restricts the ex-
ploration of the attractor diagram to small values of the
mirror amplitude.
Here we demonstrate an optomechanical setup, con-

sisting of a Fabry-Perot cavity with a trampoline res-
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onator, that does not suffer from optical absorption in the
mirrors. Not only does this enables us to explore a large
part of the attractor diagram in a controlled fashion,
we also find surprisingly rich dynamics and non-trivial
steady states of our optomechanical system.

II. THEORETICAL MODEL

Our optomechanical system is described by two cou-
pled equations of motion:

dα(t)

dt
=

−κ

2
α(t) + i(∆ +Gx(t))α(t) +

√
κexαin (1)

d2x(t)

dt2
= −Ω2

mx(t)− Γm

dx(t)

dt
+

~G

m
|α(t)|2 (2)

in which α is the cavity field and x the mirror displace-
ment. The parameters in Eqs. (1)-(2) are defined as
follows: αin is the laser field, κ the overall cavity decay
rate, κex the cavity entrance loss rate, ∆ = ωL − ωcav

the laser detuning defined as the difference between cav-
ity and laser frequency, the optical frequency shift per
displacement G = ωcav/L, with L being the length of
the cavity, Ωm the fundamental mode frequency of the
mechanical oscillator, Γm the mechanical damping rate
and m the mode mass of the harmonic oscillator. Ther-
mal and mechanical noise sources have been neglected;
an important assumption that will be justified for our
optomechanical system by the results below.
The optomechanical attractor diagram displays the op-

tomechanical gain ζopt, the ratio of the radiative force
Prad and frictional losses Pfric, as a function of laser de-
tuning ∆ and mirror amplitude A. From Eqs. (1)-(2) an
expression for ζopt can be derived [13]:

ζopt(∆, A) =
Prad

Pfric

= − 1

Γm

2~Gκexα
2
in

mΩmA
Im(

∑

n

α∗

n+1αn)

(3)
with

αn =
Jn(−GA/Ωm)

κ/2− i∆̃ + inΩm

(4)

in which αn is the nth harmonic (or sideband) in the op-
tical field created by the mirror motion, Jn the Bessel
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function of the first kind and ∆̃ the effective laser de-
tuning defined as ∆̃ = ωL − ωcav + Gx̄ where x̄ is the
static displacement of the mirror due to the radiation
pressure. For most situations, including ours, the static
displacement is negligible and ∆ ≈ ∆̃. Stable self-induced
oscillations occur when ζopt(∆, A) = 1, while amplifica-
tion (attenuation) of the mechanical mode occurs when
ζopt(∆, A) > 1 (ζopt(∆, A) < 0).
One way to map out the attractor diagram ζopt(∆, A)

is to measure the mirror amplitude while varying the
laser detuning. Such measurement schemes have already
successfully been used for demonstrating optical cooling.
With optical cooling, the change in cavity resonance fre-
quency due to the motion of the mirror is usually much
smaller than the linewidth of the cavity resonance, i.e.
GA ≪ κ. In the optical field only the first sideband is
visible and the magnitude of this sideband is linear with
mirror amplitude. For optical excitation, however, the
change in cavity resonance frequency can be much larger
than the cavity linewidth, i.e. GA ≫ κ, resulting in mul-
tiple sidebands present in the optical field. The linear
relation between the first sideband and mirror amplitude
no longer holds. Now the mirror amplitude can only be
obtained by taking into account all optical sidebands.

III. EXPERIMENTAL SETUP

To map out the attractor diagram we make use of a 5
cm long Fabry-Perot cavity operating around 1064 nm,
with a trampoline resonator as one of the end mirrors
[21]. By using a multilayer Bragg stack on both cav-
ity mirrors, absorption losses are minimized to about
1 ppm. The system is placed inside a vacuum cham-
ber with a vibration isolation system containing several
Eddy-current dampers. All measurements are performed
at room temperature. A schematic overview of the set-
up is given in Fig. 1. We use a piezo tunable CW
Nd:YAG laser and control it with a typical scan speed
of dωL

dt
= 100 − 400 MHz/s, which is slow compared to

the cavity build up time, i.e. dωL

dt
≪ κ/τ with κ the

cavity linewidth and τ the cavity lifetime. An electro-
optical modulator (EOM) at 9.5 MHz is used to cali-
brate the laser detuning. The mechanical properties of
the trampoline resonator are characterized by measur-
ing the thermal noise spectrum and the optical prop-
erties by performing an optical ring-down measurement
[21]. Both transmitted and reflected cavity light are de-
tected using photo-detectors and the data-acquisition is
done using a digital storage scope. For our system only
the fundamental mechanical mode and fundamental op-
tical mode (TEM00) are relevant. The parameters for
our system are the following: κ = 175× 103 × 2π rad/s,
κex = 50 × 103 × 2π rad/s, Ωm = 343× 103 × 2π rad/s,
Γm = 1.7 × 2π rad/s at a pressure of 10−6 mbar and
m = 110 × 10−12 kg. To achieve a sufficiently large op-
tomechanical gain, the input laser power should also be
sufficiently large. A typical laser input power of 50 to

100 µW is used, corresponding to an intracavity photon
number of 2.8− 5.6× 108.

IV. RESULTS

Fig. 2(a) shows the optical intensity transmitted by
the cavity when the laser is scanned back and forth across
the cavity resonance. Several peaks are visible, not only
at the cavity resonance ∆/Ωm = 0 but also at mul-
tiples of ∆/Ωm. The appearance of sidebands can be
explained as follows. Suppose the laser frequency is at
ωL = ωcav+Ωm and the amplitude of the mirror is small
such that only the first sideband is created by the mov-
ing mirror at frequencies ω = ωL ±Ωm. Only the Stokes
sideband at ω = ωcav is resonant with the cavity and en-
hanced, while the anti-Stokes sideband at ω = ωcav+2Ωm

is suppressed. So the interaction of the blue detuned laser
field with the resonator leads to a resonant field in the
cavity. The non-linear interaction of the resonant cavity
field plus the incoming laser field with the mirror lead to a
resonant driving force. By creating sidebands, the mirror
generates its own driving force, which increases the mir-
ror amplitude. The increased mirror amplitude leads to a
stronger modulation of the cavity field, and this process
repeats until the gain is reduced to ζopt = 1 (limit cycle
behavior). When the laser detuning is slowly increased
further, the process repeats whereby the ever increasing
mechanical motion allows sideband generation to drive
the mirror to larger amplitudes. This process continues
until the laser is swept back rapidly to ∆/Ωm = −30.
At first the laser detuning and mirror amplitude do not
match to produce an optical force that influences the mir-
ror motion. The mirror amplitude decreases only due to
the intrinsic mechanical damping. While the laser de-
tuning is slowly increased towards zero detuning at some
point, in this case at ∆/Ωm = −12, the laser detuning
and mirror amplitude are such that sidebands created by
the mirror motion result in an optical force. However
the sign of the optical force has changed compared to the
situation with positive detuning. Instead of parametric
amplification, now parametric attenuation occurs, result-
ing in a decrease in mirror amplitude. The interaction of
the laser field with the resonator again leads to a resonant
cavity field, resulting in peaks at multiples of ∆/Ωm also
for negative laser detunings. This is only visible when
the mirror amplitude was driven to large values previ-
ously. Driven oscillations at negative laser detunings re-
veal therefore something about the state and history of
the system and are non-trivial.
To compare the experimental result of Fig. 2(a) with

theory, a numerical simulation is performed with the
same experimental parameters. For this we solve numer-
ically Eqs. (1)-(2) using the following initial conditions:
α(0) = 0, α′(0) = 0, x(0) = x0 and x′(0) = 0 where x0

denotes the initial mirror amplitude x0. The value for x0

is chosen to correspond to the thermal mirror amplitude
at 300K: x0 =

√

kbT/mΩ2
m. Although no mechanical
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and thermal noise is required to reproduce the experi-
mental results, an initial mirror amplitude is needed to
start the parametric process.

The results of the simulation, depicted in Fig. 2(b),
are in good agreement with the experimental results of
Fig. 2(a). This indicates that our earlier assumption
not to include thermal and mechanical noise in Eqs. (1)-
(2) is justified. Furthermore, we do not need to include
any second order effects such as heating of the mirror
substrates due to absorption. Although from the exper-
imental data the mirror amplitude is not obtained di-
rectly, the numerical simulations do contain the mirror
amplitude. By plotting the attractor diagram according
to Eq. 4 together with the mirror amplitude obtained
from the simulations, we can visualize the traversed path
across the attractor diagram.

In Fig. 2(c) the attractor diagram is displayed together
with the evolution of the mirror amplitude (indicated by
the arrows). The amplitude follows a deterministic path
through the diagram. Along this path the optomechani-
cal gain varies. When the gain is large, the path closely
follows the ζopt = 1 contour, while in the regions with
moderate gain the changing laser detuning prevents the
mirror amplitude from reaching the ζopt = 1 contour as
closely. Specifically, for positive laser detunings ζopt ≥ 1
and for negative laser detunings ζopt ≤ 1. It is also worth-
while to emphasize that the mirror amplitude changes on
the time scale of the laser scan speed, much slower than
the oscillation frequency of the mirror or the cavity life-
time. So far we have thus been discussing the dynamics
of a driven, quasi-static, system. However, also interest-
ing dynamics occur on the time scale of the mechanical
resonator.

Theoretically the increase of the mirror amplitude, as
shown in Fig. 2(c), should be visible as an increase in
the number of harmonics present in the output field [13].
This is verified by analyzing the fast modulation present
in the reflected intensity for several different detunings
corresponding to the white dots in Fig. 2(c). We have
analyzed the reflected intensity as it is picked up by a
faster photodetector in our experimental configuration.
However the same features should also be visible in the
transmitted intensity.

In Fig. 3 we compare experimental and numerical re-
sults for these fast modulations. For clarity an offset is re-
moved and the figures rescaled. The excellent agreement
between theory and experiment confirms once more that
we have explored in detail the boundary (lowest branch
where ζopt = 1) of the attractor diagram and that this
method is suited for further exploration of the attractor
diagram. Furthermore, we have significantly amplified
the motion of our mechanical resonator, using large in-
tracavity power, without any sign of unstable or chaotic
behavior.

To demonstrate that we have full control over our sys-
tem, we change the starting conditions of our laser fre-
quency sweep after performing a cycle similar to the one
displayed in Fig. 2. When the mirror amplitude is large,

changing the laser detuning slightly makes it possible to
skip from the boundary branch to another branch. In
this way different branches in the attractor diagram can
be explored.

Fig. 4(a) shows the results of two cycles across the
attractor diagram along a different branch. The scale for
the transmitted intensity is the same as in Fig. 2(a). Al-
though the experimental conditions have only changed a
little, the result is quite different from Fig. 2(a). Still
multiple peaks at ∆/Ωm are visible, but the main cav-
ity resonance at ∆/Ωm = 0 is reduced significantly com-
pared to these sidebands. Also a distinctive dip is visible,
indicated with ”*”. To verify that the features of Fig.
4(a) are captured by the theoretical model of Eqs. (1)-
(2), a numerical simulation is performed with the same
experimental parameters. The qualitative agreement be-
tween experiment and simulation shows that the model
is still valid for our system. Furthermore, from the sim-
ulation we can again extract the mirror amplitude and
use this together with the attractor diagram to explain
the features of Fig. 4(a).

Fig. 4(c) shows this attractor diagram. The black
dashed line shows the initialization, which is similar to
the cycle performed in Fig. 2, but now the laser detun-
ing is set back to just ∆/Ωm = −5 to reach a different
branch. Note that the initialization is not shown in Fig.
4(a) and 4(b). The solid black line shows the evolution
of the mirror amplitude during one cycle. The largest
mirror amplitude achieved in this experiment is roughly
1600 pm, more than 500 times the amplitude at 300K
without any sign of chaotic or unstable behavior.

For the steady state cycles of Fig. 4(a) the reduc-
tion of the transmitted intensity at the cavity resonance
(∆/Ωm = 0) is now readily explained: the large mirror
amplitude reduces the time the cavity is resonant with
the input field, therefore less intracavity field is built-up,
resulting in a reduction of transmitted intensity.

The inset of Fig. 4(c) shows the region where a change
from one stable branch to another occurs. This transition
occurs at {∆/Ωm = 1.5, A ≈ 510 pm}. At this point the
mirror amplitude stays constant along a contour where
ζopt = 1. This point coincides with the distinctive dip
in Fig. 4(a). When the mirror amplitude does not
change, no optical driving force occurs and no sideband
is visible in the optical output. Even more interesting
is the surrounding area of the attractor diagram. At
{∆/Ωm = 1.5, A ≈ 510 pm} any small change in mirror
amplitude is significantly amplified: if the mirror ampli-
tude increases slightly, ζopt ≫ 1 and the mirror ampli-
tude will increase significantly. Similarly, if the mirror
amplitude decreases slightly, ζopt ≪ 1 and the mirror
amplitude will decrease significantly. The inset there-
fore highlights a bistability: a small perturbation of the
mirror motion will result in a large change in the mirror
amplitude. However, our results show that in a clean sys-
tem such as ours, we can ”walk” through such unstable
regions on a well-defined path.
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V. CONCLUSION

With the absence of any chaotic or unstable behav-
ior our optomechanical system is only described by two
equations (Eqs. (1)-(2)). This has allowed us to explore
in detail the optomechanical attractor diagram and the
dynamics of self-induced oscillations. By performing a
laser frequency sweep, multiple stable branches in the
attractor diagram are explored. Furthermore, we have
demonstrated non-trivial dynamics such as driven oscil-
lations for negative laser detunings and the presence of a
bistability.
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FIGURES

Figure 1. Schematic overview of the set up. A piezo tunable
CW Nd:YAG laser is passed through an optical isolator (OI)
and a 9.5 MHz electro-optical modulator (EOM) before it
enters a fiber circulator that is fed into a vacuum chamber that
contains a 5 cm Fabry-Perot cavity. Both the transmitted and
the reflected intensity are recorded with photo-detectors. The
inset shows an optical image of the trampoline resonator.

Figure 2. (color online) A closed cycle across the attractor
diagram. (a) Intensity transmitted by the cavity for two con-
secutive periods of a controlled laser detuning sweep. (b) Sim-
ulation based on Eqs. (1)-(2). (c) Attractor diagram corre-
sponding to our experimental parameters. The path followed
in the experiment is indicated by the arrows.

Figure 3. Detailed time traces of the reflected cavity inten-
sity for different laser detunings. The left column shows the
measurements and the right column numerical solutions to
Eqs. (1)-(2). (a)-(d) correspond to specific detunings indi-
cated with white dots in Fig. 2(c).

Figure 4. (color online) Exploring a higher branch in the at-
tractor diagram. (a) Intensity transmitted by the cavity for
two consecutive periods of a controlled laser detuning sweep.
The scale for the transmitted intensity is the same as in Fig.
2(a) (b) Simulation based on Eqs. (1)-(2). (c) Attractor dia-
gram together with the path followed in the experiment. Be-
fore switching to a higher branch, the system is initialized
(dashed line) using a similar detuning sweep as in Fig. 2(c).
Inset: Zoom of region around zero detuning.
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