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Interaction of atoms with quantum states of light is a long standing problem which apart from
fundamental physics has potential applications for optical quantum-state storage, quantum com-
munication and quantum information. A fully quantum mechanical treatment of this problem is
usually very complicated mathematically. Here we show, however, that quantum mechanical evolu-
tion equations describing single photon emission (absorption) by atomic ensembles can be written
in a form equivalent to the semiclassical Maxwell-Bloch equations. This connection allows us to
find new exact analytical solutions of the fully quantum mechanical problem. We also found that
semiclassical Maxwell-Bloch equations should be written in a form different from those commonly
used. Namely, the classical limit of the quantum problem gives propagation equation with Laplacian
operator in the right hand side rather than with the second order time derivative.

I. INTRODUCTION

Collective spontaneous emission from a cloud of N
atoms has been a subject of long standing interest since
1954 pioneering work of Dicke [1]. If a single photon
is stored in the atomic cloud (and shared among many
atoms) the system is in an entangled state with no macro-
scopic dipole moment [2]. Yet the state undergoes col-
lective spontaneous decay which could be superradiant
if the atoms are properly phased. Recent studies focus
on collective and virtual effects in such systems [3–16].
Cooperative emission can provide insights into quantum
electrodynamics and is important for various applications
of the entangled atomic ensembles and generated quan-
tum states of light for optical quantum-state storage [17],
quantum cryptography [18, 19], quantum communication
[9, 20, 21] and quantum information [9, 11].

Virtual transitions are fascinating feature of quantum
electrodynamics. Apart from influence on a single atom,
virtual transitions modify evolution of atomic ensembles.
Let us considerN two level (a and b, Ea−Eb = ℏω) atoms
which are prepared in a collective state with only one
atom excited. The initial excitation is distributed among
the atoms with a probability amplitude β(r) which de-
pends on the atom position r. If we disregard virtual
transitions then for a dense cloud of volume V evolu-
tion of the atomic system in the scalar photon theory is
described by an integral equation with sin kernel [22]

∂β(t, r)

∂t
= −γ

N

V

∫

dr′
sin(k0|r− r′|)
k0|r− r′| β(t, r′), (1)

where β(t, r) is the probability amplitude to find atom at
position r excited at time t, γ is the single atom decay
rate, k0 = ω/c and the integral is taken over the vol-
ume of the atomic sample. However, inclusion of virtual
processes yields equation with exp kernel [6, 7, 15, 23]

∂β(t, r)

∂t
= iγ

N

V

∫

dr′
exp(ik0|r− r′|)

k0|r− r′| β(t, r′). (2)

Evolution equation (1) has been subject of investiga-
tion several decades ago [22, 24, 25], while Eq. (2) has
been “rediscovered” and studied in details only recently
[6–8, 12–15, 26, 27]. Virtual transitions have interesting
effect on collective emission of atoms [12, 14, 15]. In par-
ticular, if the initial atomic state is superradiant the vir-
tual transitions partially transfer population into slowly
decaying states which results in a trapping of atomic ex-
citation. On the other hand, for slowly decaying states
virtual processes yield additional decay channels which
leads to a slow decay of the otherwise trapped states.
Collective frequency (Lamb) shift produced by virtual
processes is another fascinating subject of recent theo-
retical [26–32] and experimental investigation [33].
Eqs. (1) and (2) disregard retardation caused by finite

value of the speed of light and assume that evolution of
the system at time t depends only on the state of the sys-
tem at this moment of time (local or Markov approxima-
tion). This assumption is valid if atomic system evolves
slowly so that during propagation of the signal through
the sample the atomic state does not change substan-
tially. However, if size of the sample is large enough the
local approximation breaks down and system’s dynamics
becomes nonlocal in time. Now evolution of the system
at time t depends on the history, that is on the states of
atoms in the previous moments of time and is governed
by equation [34]

∂β(t, r)

∂t
= iγ

N

V

∫

dr′
exp(ik0|r− r′|)

k0|r− r′| β

(

t− |r− r′|
c

, r′
)

.

(3)
Nonlocal effects yield oscillations with collective

atomic frequency which corresponds to collective emis-
sion and reabsorption of the photon during its propaga-
tion through the atomic cloud [35, 36]. Collective in-
teraction of light and atoms combined with parametric
resonance can yield generation of high frequency coher-
ent radiation by driving the system with low frequency
[37] or can be used to control propagation of γ-rays on
short (superradiant) time scale [38].
Fully quantum mechanical treatment of photon emis-
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sion (absorption) by atomic ensembles is mathematically
difficult task. Various techniques have been applied to
address this problem. Solving the evolution equation
for the state vector is the most common approach. It
has been recently applied to study collective spontaneous
emission of N multilevel atoms [39–41]. Another tech-
nique is the quantum multipath interference approach
which has been used to study superradiant and subradi-
ant emission from entangled atoms [2]. A method based
on the equation of motion for the atomic and field oper-
ators has been used to investigate cooperative scattering
by cold atoms [42] and cooperative fluorescence from a
strongly driven dilute atomic cloud [43]. The multiple-
scattering expansion has been applied to calculate coher-
ent propagation of photons through the medium [44, 45].
Cooperativity in light scattering by cold atoms has been
also studied in terms of a master equation for the atomic
density matrix [46].
Here we show that fully quantum mechanical descrip-

tion of interaction of light with atomic ensembles in the
limit of weak excitation (e.g., single photon superradi-
ance) can be reduced to solution of propagation equa-
tions which are equivalent to the semiclassical Maxwell-
Bloch equations. This reduction substantially simplifies
the quantum mechanical problem. Namely, we find that
evolution of electromagnetic field interacting with an en-
semble of two-level atoms located at positions rj is de-
scribed by the coupled equations

ε0

(

1

c2
∂2

∂t2
−∇2

)

E = −∇2P+∇ (divP) , (4)

dSj(t)

dt
= −iωSj(t) +

i

~
~℘ab · E(t, rj), (5)

where

P(t, r) = ~℘ab

∑

j

[

Sj(t) + S∗

j (t)
]

δ (r− rj) , (6)

Sj(t) = 〈Ψ(t) |σ̂j |ΨG〉+ 〈ΨG |σ̂j |Ψ(t)〉 , (7)

E(t, r) =
〈

Ψ(t)
∣

∣

∣
Ê(r)

∣

∣

∣
ΨG

〉

+
〈

ΨG

∣

∣

∣
Ê(r)

∣

∣

∣
Ψ(t)

〉

, (8)

σ̂j = |bj〉 〈aj | is the lowering operator for atom j, Ê(r)
is the electric field operator, ~℘ab is the electric-dipole
transition matrix element between levels a and b, Ψ(t) is
the state of the photon-atom system at time t and ΨG is
the ground state.
Eqs. (4)-(8) are somewhat different from the conven-

tional semiclassical Maxwell-Bloch equations which for
the weak atomic excitation read

ε0

(

1

c2
∂2

∂t2
−∇2

)

E = − 1

c2
∂2P

∂t2
+∇ (divP) , (9)

∂σj(t)

∂t
= −iωσj(t) +

i

~
~℘ab ·E(t, rj), (10)

where

P(t, r) = ~℘ab

∑

j

[

σj(t) + σ∗

j (t)
]

δ (r− rj) (11)

is the medium polarization, σj is the coherence of atom
j

σj(t) = 〈Ψ(t) |σ̂j |Ψ(t)〉 (12)

and E(t, r) is the average of the electric field operator

E(t, r) =
〈

Ψ(t)
∣

∣

∣
Ê(r)

∣

∣

∣
Ψ(t)

〉

. (13)

Eqs. (12) and (13) involve averaging over the state
vector of the system Ψ(t). Such an average vanishes for
the problem of single-photon superradiance and, there-
fore, semiclassical treatment is not applicable. In the
present approach we define Sj(t) and E(t, r) as matrix
elements between Ψ(t) and the ground state ΨG of the
atom-photon system according to Eqs. (7) and (8). Thus
defined quantities are no longer equal to zero for the prob-
lem of single-photon superradiance and, therefore, they
can properly describe evolution of the system. Physical
meaning of Sj(t) and E(t, r) is now different. As we show,
Sj(t) is related to the probability amplitude to find atom
j excited rather than its coherence, while E(t, r) is re-
lated to the probability amplitude that photon is present
in the system.
One should also mention that right-hand sides of Eqs.

(4) and (9) involve different operators,∇2 in one case and
∂2/∂t2 in the other. Such a difference is not attributed
to the single-photon superradiance. We show that gen-
eral derivation of the semiclassical propagation equation
from the full quantum mechanical Hamiltonian yields Eq.
(4). This implies that E(t, r) defined by Eq. (13) as an
average of the electric field operator has a meaning of
the displacement vector rather than electric field. Thus,
conventional Maxwell-Bloch equations must be revisited.
We address this issue in the next section.

II. REVISION OF THE MAXWELL-BLOCH

EQUATIONS

The classical Maxwell’s equations in the dielectric
medium can be written as

ε0

(

1

c2
∂2

∂t2
−∇2

)

E = − 1

c2
∂2P

∂t2
+∇ (divP) , (14)

where P is the vector of medium polarization

P =
∑

j

djδ(r− rj) (15)

and dj is the dipole moment of atom j located at position
rj . In terms of the electric displacement vector

D = ε0E+P (16)
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Eq. (14) reads

(

1

c2
∂2

∂t2
−∇2

)

D =−∇2P+∇ (divP) . (17)

In this section we obtain semiclassical equations for the
electromagnetic field interacting with atomic medium.
Namely we start from microscopic fully quantum me-
chanical equations for light and atoms and obtain evo-
lution equations for the averaged quantities. Semiclassi-
cal limit should give Maxwell-Bloch equations. We show
that such a limit yields the usual Bloch equation for
polarization, however, the propagation equation has the
form of Eq. (17) rather than commonly used Eq. (14).
We consider a medium composed of two-level (a ex-

cited and b ground state) atoms with spacing between
levels Ea − Eb = ℏω. For an atom j the dipole moment
operator is d̂j = ~℘ab

(

σ̂j + σ̂+
j

)

, where σ̂j = |bj〉 〈aj |,
σ̂+
j = |aj〉 〈bj | and ~℘ab is the electric-dipole transition

matrix element between levels a and b, ~℘ab = e 〈aj | r |bj〉,
which is assumed to be real. The Hamiltonian for elec-
tromagnetic field interacting with atoms reads

Ĥ =
∑

k,µ

~νk

(

â+
k,µâk,µ +

1

2

)

+
~ω

2

∑

j

σ̂zj

−
∑

j

(

σ̂j + σ̂+
j

)

~℘ab · Ê(rj), (18)

where σ̂zj = |aj〉 〈aj | − |bj〉 〈bj |, Ê(r) is the electric field
operator

Ê(r) = i
∑

k,µ

gk
(

~ǫk,µâk,µe
ik·r − h.c.

)

, (19)

gk =

(

~νk
2V ε0

)1/2

(20)

is a constant that describes the coupling strength be-
tween a single atom and the electric field, ~ǫk,µ are unit
polarization vectors, νk = ck, c is the speed of light in
vacuum and V is the photon volume. Field operators
âk,µ, â

+
k,µ obey the boson commutation relations

[âk,µ, âk′,µ′ ] = [â+
k,µ, â

+
k′,µ′ ] = 0, (21)

[âk,µ, â
+
k′,µ′ ] = δkk′δµµ′ , (22)

while for atomic operators the commutation relations are

[σ̂j , σ̂
+
j′ ] = −δjj′ σ̂zj , (23)

[σ̂j , σ̂zj′ ] = 2δjj′ σ̂j . (24)

We perform calculations in the Heisenberg picture in
which operators are time-dependent. The Heisenberg
equation of motion for an operator Â(t) reads

dÂ

dt
= − i

~
[Â, Ĥ ]. (25)

Applying this equation for the atomic and field operators
we obtain

dâk,µ(t)

dt
= −iνkâk,µ(t)+

gk
~

(~℘ab · ~ǫk,µ)
∑

j

[

σ̂j(t) + σ̂+
j (t)

]

e−ik·rj , (26)

dσ̂j(t)

dt
= −iωσ̂j(t)−

i

~
σ̂zj(t)~℘ab · Ê(t, rj), (27)

dσ̂zj(t)

dt
=

2i

~

(

σ̂+
j (t)− σ̂j(t)

)

~℘ab · Ê(t, rj). (28)

Averaging Eqs. (19) and (26) in the Heisenberg picture
over the initial state vector Ψ(0) of the photon-atom sys-

tem, that is introducing A(t) =
〈

Ψ(0)
∣

∣

∣
Â(t)

∣

∣

∣
Ψ(0)

〉

, etc.,

we obtain equations for the average quantities

dak,µ(t)

dt
= −iνkak,µ(t)+

gk
~

(~℘ab · ~ǫk,µ)
∑

j

[

σj(t) + σ∗

j (t)
]

e−ik·rj , (29)

E(t, r) = i
∑

k,µ

gk
[

~ǫk,µak,µ(t)e
ik·r − c.c.

]

. (30)

In Appendix A we show that Eqs. (29) and (30) yield
the following propagation equation (see Eq. (A14))

ε0

(

1

c2
∂2

∂t2
−∇2

)

E(t, r) = −∇2P+∇ (divP) , (31)

where P is the medium polarization

P(t, r) = ~℘ab

∑

j

[

σj(t) + σ∗

j (t)
]

δ (r− rj) . (32)

Eq. (31) is identical to the classical Eq. (17) and, there-
fore, ε0E should be interpreted as the displacement vec-
tor D rather than the electric field.
In the semiclassical treatment we replace operator

Ê(t, rj) in Eqs. (27) and (28) by its average value and
obtain the following evolution equation for the operators
σ̂j(t) and σ̂zj(t)

dσ̂j(t)

dt
= −iωσ̂j(t)−

i

~
σ̂zj(t)~℘ab · E(t, rj), (33)
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dσ̂zj(t)

dt
=

2i

~

(

σ̂+
j (t)− σ̂j(t)

)

~℘ab ·E(t, rj). (34)

Averaging of these equations over the initial state vector
yields

dσj(t)

dt
= −iωσj(t)−

i

~
σzj(t)~℘ab ·E(t, rj), (35)

dσzj(t)

dt
=

2i

~

(

σ∗

j (t)− σj(t)
)

~℘ab · E(t, rj), (36)

which are conventional Bloch equations for atomic evo-
lution.
Often in the literature the semiclassical Maxwell-Bloch

equations are written in the form motivated by Eq. (14),
namely the propagation equation is written as

ε0

(

1

c2
∂2

∂t2
−∇2

)

E = − 1

c2
∂2P

∂t2
+∇ (divP) . (37)

Our analysis shows however that in the proper treatment
of the problem the propagation Eq. (37) must be re-
placed with Eq. (31). Eqs. (37) and (31) give the same
answer only if the medium polarization P obeys homo-
geneous wave equation

(

1

c2
∂2

∂t2
−∇2

)

P = 0 (38)

describing propagation of P without dispersion with the
speed of light in vacuum c. This is usually not the case
for dielectric medium.

III. DESCRIPTION OF SINGLE-PHOTON

SUPERRADIANCE BY MAXWELL-BLOCH

EQUATIONS

Entangled quantum states of atomic ensembles can
possess zero dipole moment. This is, e.g., the case for
a state

Ψ(0) =

N
∑

j=1

βj |b1b2 . . . aj . . . bN 〉 |0〉 (39)

for which system has no photons and single atom is col-
lectively excited. In Eq. (39) βj is the probability ampli-
tude to find atom j excited. For such state the dipole mo-

ment
〈

Ψ(0)
∣

∣

∣
d̂j

∣

∣

∣
Ψ(0)

〉

vanishes for every atom and, thus,

medium has no initial polarization. Nevertheless, state
(39) decays emitting single photon in quantum mechan-
ical description. On the other hand, semiclassical treat-
ment by means of the Maxwell-Bloch equations yields
that atoms decay only if polarization is nonzero. Thus,
semiclassical treatment fails to describe evolution of the
state (39).
Here we show that for weak atomic excitation, quan-

tum mechanical equations describing evolution of the sys-
tem can be written in the form of the Maxwell-Bloch

equations (31), (32) and (35), however, unknown func-
tions in these equations will have physical meaning dif-
ferent from the displacement vector and medium polar-
ization P.
In the limit of weak excitation one can approximately

replace σ̂zj ≈ −1 in Eq. (27). Then Eq. (27) becomes
linear and decouples from Eq. (28)

dσ̂j(t)

dt
= −iωσ̂j(t) +

i

~
~℘ab · Ê(t, rj). (40)

For the problem of single photon superradiance, e.g.,
when we are interested in the evolution of the state
(39), averaging of Eqs. (26) and (40) over the ini-
tial state vector gives identically zero. Yet one can re-
duce the quantum mechanical equations to the form of
the Maxwell-Bloch equations by making averaging dif-
ferently. Namely, instead of taking the matrix element
〈Ψ(0) |. . .|Ψ(0)〉 from both sides of Eqs. (26) and (40)
we take matrix element between ΨG and Ψ(0), where
ΨG is the ground state of the atom-photon system. In-
troducing

Ak,µ(t) = 〈Ψ(0) |âk,µ(t)|ΨG〉+ 〈ΨG |âk,µ(t)|Ψ(0)〉 ,
(41)

Sj(t) = 〈Ψ(0) |σ̂j(t)|ΨG〉+ 〈ΨG |σ̂j(t)|Ψ(0)〉 , (42)

E(t, r) =
〈

Ψ(0)
∣

∣

∣
Ê(t, r)

∣

∣

∣
ΨG

〉

+
〈

ΨG

∣

∣

∣
Ê(t, r)

∣

∣

∣
Ψ(0)

〉

,

(43)
Eqs. (19), (26), and (40) yield

dAk,µ(t)

dt
= −iνkAk,µ(t)+

gk
~

(~℘ab · ~ǫk,µ)
∑

j

[

Sj(t) + S∗

j (t)
]

e−ik·rj , (44)

E(t, r) = i
∑

k,µ

gk
[

~ǫk,µAk,µ(t)e
ik·r − c.c.

]

, (45)

dSj(t)

dt
= −iωSj(t) +

i

~
~℘ab · E(t, rj). (46)

Eqs. (44) and (45) have the same form as Eqs. (29)
and (30). However, now ak,µ(t) and σj(t) are replaced
with Ak,µ(t) and Sj(t) respectively which are nonzero for
the problem of single photon superradiance. Therefore,
single photon superradiance can be also described by the
Maxwell-Bloch equations

ε0

(

1

c2
∂2

∂t2
−∇2

)

E(t, r) = −∇2P+∇ (divP) , (47)

dSj(t)

dt
= −iωSj(t) +

i

~
~℘ab · E(t, rj), (48)
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where

P(t, r) = ~℘ab

∑

j

[

Sj(t) + S∗

j (t)
]

δ (r− rj) . (49)

However, interpretation of E and P is now different. In
the new formulation, Sj(t) is no longer coherence of the
atom j and ε0E is not a displacement vector. To under-
stand the physical meaning of E(t, r) and Sj(t) we write
them in a different form using the Schrödinger picture.
Taking into account that

σ̂j(t) = exp

(

iĤt

~

)

σ̂j exp

(

− iĤt

~

)

, (50)

âk,µ(t) = exp

(

iĤt

~

)

âk,µ exp

(

− iĤt

~

)

, (51)

exp

(

− iĤt

~

)

|ΨG〉 = |ΨG〉 , (52)

exp

(

− iĤt

~

)

|Ψ(0)〉 = |Ψ(t)〉 , (53)

we obtain

Sj(t) = 〈Ψ(t) |σ̂j |ΨG〉+ 〈ΨG |σ̂j |Ψ(t)〉 (54)

and

E(t, r) =
〈

Ψ(t)
∣

∣

∣
Ê(r)

∣

∣

∣
ΨG

〉

+
〈

ΨG

∣

∣

∣
Ê(r)

∣

∣

∣
Ψ(t)

〉

. (55)

Thus, Sj(t) and E(t, r) are expressed in terms of the ma-

trix elements of the operators σ̂j and Ê(r) between the
ground state of the system ΨG and the state of the sys-
tem Ψ(t) at moment of time t.
As an example, let us consider evolution of the initial

state (39) which is given by the state vector

Ψ(t) =

N
∑

j=1

βj(t) |b1b2 . . . aj . . . bN〉 |0〉+

∑

k,µ

γk,µ(t) |b1b2 . . . bN 〉 |1k,µ〉+ . . . . (56)

If we disregard virtual processes then ground state of the
Hamiltonian (18) is

ΨG = |b1b2 . . . bN〉 |0〉 (57)

and, therefore,

σ̂j |ΨG〉 = 0, (58)

âk,µ |ΨG〉 = 0. (59)

Then for the state vector (56) Eq. (54) gives

Sj(t) = βj(t) (60)

which is the probability amplitude that atom j is excited
at time t and there are no photons. On the other hand
Eq. (55) yields that

E(t, r) = i
∑

k,µ

gk
(

~ǫk,µγk,µ(t)e
ik·r − c.c

)

(61)

is expressed in terms of the probability amplitudes γk,µ(t)
that single photon with wave vector k and polarization
µ is emitted at time t and all atoms are in the ground
state. Thus, in the present treatment, the Maxwell-Bloch
equations are written for the probability amplitudes.
Our approach can be extended for the case of weak

excitation of atomic ensembles by several photons if we
choose the matrix elements in Eqs. (41)-(43) differently.
The selection criterion is that the matrix elements should
not be equal to zero for the initial state of the atom-
photon system and provide sufficient information about
the system evolution. For a few-photon excitation the
evolution equations will be the same as Eqs. (47)-(49),
however, initial conditions will be now different and de-
pend on the choice of the matrix elements in Eqs. (41)-
(43).
Reduction of the quantum mechanical evolution equa-

tions to the Maxwell-Bloch semiclassical form substan-
tially simplifies the problem and allows us to write down
new analytical solutions for evolution of the entangled
quantum mechanical systems. Maxwell-Bloch equations
have been extensively studied in the literature. In next
section we provide their analytical solutions in the slowly
varying amplitude approximation. Such solutions are
known for particular cases, but we will give them in a
general form valid for arbitrary initial conditions.

IV. EXACT ANALYTICAL SOLUTIONS OF

THE MAXWELL-BLOCH EQUATIONS FOR

WEAK ATOMIC EXCITATION

We assume continuous distribution of atoms with uni-
form density n and consider propagation of a pulse along
the z−axis. In the slowly varying amplitude approxima-
tion the functions entering the Maxwell-Bloch equations
can be written as a product of e−iωt+iωz/c and slowly-
varying envelopes which obey the first order differential
equations

(

c
∂

∂z
+

∂

∂t

)

Ω(t, z) = iΩ2
aρab(t, z), (62)

ρ̇aa = −γρaa − i (Ω∗ρab − c.c.) , (63)

ρ̇ab = −γ

2
ρab + iΩ (ρbb − ρaa) , (64)
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ρbb + ρaa = 1, (65)

where Ω = ~℘ab ·E/~ is the Rabi frequency, γ is the single
atom spontaneous decay rate,

Ωa =

√

3nλ2
abγc

8π
(66)

is a collective atomic frequency proportional to the
square root of atomic density n and λab is the wave-
length of the a− b transition. In such approximation the
Laplacian operator of P in Eq. (47) is equivalent to the
second order time derivative of P.
Assuming weak atomic excitation, ρaa ≪ 1, and omit-

ting single atom decay rate we obtain two coupled equa-
tions for Ω(t, z) and ρab(t, z)

(

c
∂

∂z
+

∂

∂t

)

Ω = iΩ2
aρab, (67)

ρ̇ab = iΩ. (68)

Physical meaning of Ω(t, z) and ρab(t, z) in Eqs. (67)
and (68) depends on the particular problem we are solv-
ing. If state of the system has nonzero polarization
(dipole moment) than ρab is atomic coherence and Ω is
the Rabi frequency describing the slowly varying electric
field amplitude. On the other hand, if we are interested
in evolution of entangled states with vanishing polariza-
tion than quantities in Eqs. (67) and (68) are related to
the probability amplitudes which are not equal to zero.
Here we solve Eqs. (67) and (68) with the initial con-

dition t = 0: Ω = Ω(0, z) and ρab = ρab(0, z) using the
method of Laplace transform. We obtain the following
exact analytical solution in terms of the Bessel functions
J0(x) and J1(x) (see Appendix B for details)

ρab(t, z) = ρab(0, z) +
1

c

∫ z

z−ct

dz′ [iΩ(0, z′)×

J0

(

2Ωa

c

√

(z − z′)[z′ − (z − ct)]

)

− Ωaρab(0, z
′)×

√

z′ − (z − ct)

z − z′
J1

(

2Ωa

c

√

(z − z′)[z′ − (z − ct)]

)

]

,

(69)

Ω(t, z) = Ω(0, z − ct) +
Ωa

c

∫ z

z−ct

dz′ [iΩaρab(0, z
′)×

J0

(

2Ωa

c

√

(z − z′)[z′ − (z − ct)]

)

− Ω(0, z′)×

√

z − z′

z′ − (z − ct)
J1

(

2Ωa

c

√

(z − z′)[z′ − (z − ct)]

)

]

.

(70)

Solution (70) with ρab(0, z) = 0 describing superra-
diant forward scattering has been investigated in Ref.
[47] which studied implications of superradiance and slow
light effects for quantum memories.
Eqs. (69) and (70) reduce to a simple answer for spe-

cial initial conditions. For example, for uniform initial
excitation of the atomic medium ρab(0, z) =const and
Ω(0, z) = 0 we find that system undergoes oscillations
with collective atomic frequency Ωa

Ω(t, z) = iΩaρab(0) sin(Ωat), (71)

ρab(t, z) = ρab(0) cos(Ωat). (72)

Such collective oscillations of the field envelope were
first predicted by Burnham and Chiao for a sample of
resonant medium [35]. They play an important role in
light amplification mechanism of the QASER which does
not need population of atoms in the excited state and
generates high frequency coherent light by means of su-
perradiant collective resonance [37].
For the initial delta-function pulse Ω(0, z) = Aδ(z) and

ρab(0, z) = 0 we obtain

Ω(t, z) = Aδ(z − ct)−

−AΩa

c

√

z

ct− z
J1

(

2Ωa

c

√

z(ct− z)

)

θ(ct− z), (73)

ρab(t, z) = i
A

c
J0

(

2Ωa

c

√

z(ct− z)

)

θ(ct− z). (74)

Solution (73) appears in a problem of scattering of
short synchrotron radiation pulses by nuclear resonant
medium [48–52] which is essential to Mössbauer spec-
troscopy. The Bessel function in Eq. (73) leads to the
so-called dynamical beats which are experimentally well
established [53]. They can be understood as interference
beating of the two wings of the spectrum of the incident
white radiation that develops a hole near the resonant
frequency during pulse propagation [54]. Solution (74)
was also obtained in Ref. [55] which studied superra-
diant decay upon coherent excitation of helium atoms
inside helium plasma by short laser pulses.
For the initial delta-function excitation of the medium

ρab(0, z) = Bδ(z) and Ω(0, z) = 0 Eqs. (69) and (70)
yield

Ω(t, z) = i
BΩ2

a

c
J0

(

2Ωa

c

√

z(ct− z)

)

θ(ct− z), (75)

ρab(t, z) = Bδ(z)−

−BΩa

c

√

ct− z

z
J1

(

2Ωa

c

√

z(ct− z)

)

θ(ct− z). (76)
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Solution (75) has been obtained in Ref. [56] which
studied propagation of small-area pulses of coherent light
through a resonant medium. Such a solution describes
propagation of the leading portion of a step-function
pulse.

V. CONCLUSION

We studied collective interaction of light with an en-
semble of two-level atoms using fully quantum mechan-
ical description. In particular, our analysis can be ap-
plied for emission (absorption) of quantum states of light
(e.g., single photon superradiance). This is a long stand-
ing problem which is usually treated in ways which are
very complicated mathematically. In this paper we show,
however, that in the weak excitation limit one can reduce
quantum mechanical evolution equations to the form
identical to the semiclassical Maxwell-Bloch equations
which are much easier to solve. We summarized ana-
lytical solutions of these equations in the slowly varying
amplitude approximation for arbitrary initial conditions.
Such solutions describe collective emission of atomic en-
sembles as well as propagation of light pulses interacting
with atomic medium.
We also found that semiclassical Maxwell-Bloch equa-

tions should be written in a form different from those
commonly used. Namely, the right hand side of the prop-
agation equation must involve ∇2 operator rather than
∂2/∂t2. That is classical limit of the quantum problem
gives propagation Eq. (4) rather than Eq. (9). Physi-
cally this means that quantum mechanical average of the

electric field operator Ê(r) gives the displacement vector
rather than electric field in the medium. Such a differ-
ence becomes important for pulses that cannot be treated
in the slowly varying amplitude approximation.

Our analysis also provides an interesting insight on the
old problem about the choice between the two matter-
field interaction Hamiltonians, −eE · r and −(e/m)p ·
A [57]. These two different interactions correspond to
two different gauges of the electromagnetic field. It is,
however, sometimes overlooked that the transformation
from one form of the interaction to the other has crucial
consequences. In particular, atomic wave functions have
to be transformed when going from E ·r to p ·A. For the
E · r interaction, atomic states |a〉 and |b〉 are eigenstates
of the unperturbed Hamiltonian. This leads to the atom-
field Hamiltonian (18) in which the atom-field coupling

constant gk (20) is proportional to
√
k. As we show, such

Hamiltonian yields correct propagation equation (17) in
the classical limit. If, however, we naively take gk,µ ∝
1/

√
k as motivated by the p · A interaction, we would

not reproduce correctly the classical limit.
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Appendix A: Derivation of the propagation equation

Here we derive propagation equation for E(t, r) starting from Eqs. (29) and (30). Making change of function

ak,µ(t) = ãk,µ(t)e
−iνkt (A1)

we obtain the system of equations

dãk,µ(t)

dt
=

gk
~

(~℘ab · ~ǫk,µ)
∑

j

[

σj(t) + σ∗

j (t)
]

eiνkt−ik·rj , (A2)

E(t, r) = i
∑

k,µ

gk
[

~ǫk,µãk,µ(t)e
ik·r−iνkt − c.c.

]

. (A3)

Applying operator 1
c2

∂2

∂t2 −∇2 to both sides of Eq. (A3) yields
(

1

c2
∂2

∂t2
−∇2

)

E(t, r) =
i

c2

∑

k,µ

gk~ǫk,µ

(

d2ãk,µ
dt2

eik·r−iνkt − 2iνk
dãk,µ
dt

eik·r−iνkt − c.c.

)

. (A4)

Plug in the time derivative of ãk,µ from Eq. (A2) we have
(

1

c2
∂2

∂t2
−∇2

)

E(t, r) =
1

~c2

∑

j

∑

k,µ

g2k (~℘ab · ~ǫk,µ)~ǫk,µ
[(

i
d

dt

(

σj + σ∗

j

)

+ νk
(

σj + σ∗

j

)

)

eik·(r−rj) + c.c.

]

, (A5)
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or
(

1

c2
∂2

∂t2
−∇2

)

E(t, r) =
2

~c2

∑

j

∑

k,µ

g2k (~℘ab · ~ǫk,µ)~ǫk,µ
[

− d

dt

(

σj + σ∗

j

)

sin [k · (r− rj)] + νk
(

σj + σ∗

j

)

cos [k · (r− rj)]

]

.

(A6)
Since sin [k · (r− rj)] is an odd function of k and g2

k,µ is an even function then

∑

k,µ

g2k (~℘ab · ~ǫk,µ)~ǫk,µ sin [k · (r− rj)] = 0 (A7)

and previous equation reduces to

(

1

c2
∂2

∂t2
−∇2

)

E(t, r) =
2

~c2

∑

j

(

σj + σ∗

j

)

∑

k,µ

νkg
2
k (~℘ab · ~ǫk,µ)~ǫk,µ cos [k · (r− rj)] . (A8)

Taking into account expression for the atom-field coupling constant (20) we find

(

1

c2
∂2

∂t2
−∇2

)

E(t, r) =
1

V ε0

∑

j

(

σj + σ∗

j

)

∑

k,µ

(~℘ab · ~ǫk,µ)~ǫk,µk2 cos [k · (r− rj)] . (A9)

Summation over two polarizations yields

∑

µ

(~℘ab · ~ǫk,µ)~ǫk,µk2 = ~℘abk
2 − k (~℘ab · k) . (A10)

Taking into account that

[

~℘abk
2 − k (~℘ab · k)

]

cos [k · (r− rj)] = −~℘ab∇2 cos [k · (r− rj)] +∇ [div (~℘ab cos [k · (r− rj)])] , (A11)

replacing sum over k by an integral and using

∑

k

cos [k · (r− rj)] =
V

(2π)3

∫

dk cos [k · (r− rj)] = V δ (r− rj) (A12)

we finally obtain

ε0

(

1

c2
∂2

∂t2
−∇2

)

E(t, r) = −~℘ab∇2
∑

j

(

σj + σ∗

j

)

δ (r− rj) +
∑

j

(

σj + σ∗

j

)

∇ [div (~℘abδ (r− rj))] . (A13)

Eq. (A13) can be written as

ε0

(

1

c2
∂2

∂t2
−∇2

)

E(t, r) = −∇2P+∇ (divP) , (A14)

where

P = ~℘ab

∑

j

(

σj + σ∗

j

)

δ (r− rj) (A15)

is the medium polarization.

Appendix B: Solution of evolution equations

Here we solve evolution equations

(

∂

∂z
+

1

c

∂

∂t

)

Ω = iηρab, (B1)
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ρ̇ab = −γcohρab + iΩ, (B2)

where

η =
Ω2

a

c
. (B3)

To obtain more general result we will keep the decoherence term in Eq. (B2), however, for simplicity of derivations
we assume that initially there is no atomic coherence, that is ρab(0, z) = 0 while there is electric field pulse in the
medium Ω(0, z). Then Eq. (B2) yields

ρab(t, z) = ie−γcoht

∫ t

0

Ω(t′, z)eγcoht
′

dt′. (B4)

Plug Eq. (B4) into Eq. (B1) gives

(

∂

∂z
+

1

c

∂

∂t

)

Ω(t, z) + ηe−γcoht

∫ t

0

Ω(t′, z)eγcoht
′

dt′ = 0. (B5)

Introducing new function

Ω(t, z) = F (t, z)e−γcoht (B6)

we obtain

∂

∂z
F (t, z) +

1

c

∂

∂t
F (t, z)− γcoh

c
F (t, z) + η

∫ t

0

F (t′, z)dt′ = 0. (B7)

Making Laplace transform L̂ of this equation over time we have

∂

∂z
F (s, z) +

s

c
F (s, z)− F (0, z)

c
− γcoh

c
F (s, z) + η

F (s, z)

s
= 0, (B8)

where F (0, z) = Ω(0, z) is the pulse at t = 0 and F (s, z) = L̂ [F (t, z)]. For infinitely long medium solution of Eq. (B8)
is

F (s, z) =
1

c

∫ z

−∞

exp
[(s

c
+

η

s
− γcoh

c

)

(z′ − z)
]

F (0, z′)dz′. (B9)

Taking inverse Laplace transform and using

L̂−1

[

exp

(

−αs− β

s

)]

= −
√

β

t− α
J1

(

2
√

β(t− α)
)

θ(t− α) + δ(t− α), (B10)

where J1(x) is the Bessel function, we find

F (t, z) =

∫ z

z−ct

(

δ [z′ − (z − ct)]−
√

η(z − z′)/c

z′ − (z − ct)
J1

(

2

√

η

c
(z − z′) [z′ − (z − ct)]

)

)

exp
[

−γcoh
c

(z′ − z)
]

F (0, z′)dz′.

(B11)
Integration of the term with δ−function finally yields

Ω(t, z) = Ω(0, z − ct)−
∫ z

z−ct

√

η(z − z′)/c

z′ − (z − ct)
J1

(

2

√

η

c
(z − z′) [z′ − (z − ct)]

)

exp
(

−γcoh
c

[z′ − (z − ct)]
)

Ω(0, z′)dz′.

(B12)
The first term in this equation is the initial pulse propagating with the speed of light c through the sample. The
second term is the response of the atomic medium.
To calculate coherence ρab one can use Eq. (B1) which gives

ρab =
1

iη

(

∂

∂z
+

1

c

∂

∂t

)

Ω. (B13)
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Instead of t and z it is convenient to introduce variables ξ = z − ct and z. In these variables Eqs. (B12) and (B13)
read

Ω(ξ, z) = Ω(0, ξ)−
∫ z

ξ

√

η(z − z′)/c

z′ − ξ
J1

(

2

√

η

c
(z − z′) [z′ − ξ]

)

exp
(

−γcoh
c

[z′ − ξ]
)

Ω(0, z′)dz′, (B14)

ρab =
1

iη

∂Ω

∂z
. (B15)

Using

∂

∂z

[
√

η

c
(z − z′)J1

(

2

√

η

c
(z − z′) [z′ − ξ]

)]

=
η

c

√

z′ − ξJ0

(

2

√

η

c
(z − z′) [z′ − ξ]

)

(B16)

we obtain the following expression for evolution of the atomic coherence

ρab(t, z) =
i

c

∫ z

z−ct

J0

(

2

√

η

c
(z − z′) [z′ − (z − ct)]

)

exp
(

−γcoh
c

[z′ − (z − ct)]
)

Ω(0, z′)dz′, (B17)

where Ω(0, z) is the pulse at t = 0.
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