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We study a two-dimensional spin-orbit-coupled dipolar Bose-Einstein condensate with repulsive
contact interactions by both the variational method and the imaginary time evolution of the Gross-
Pitaevskii equation. The dipoles are completely polarized along one direction in the 2D plane to
provide an effective attractive dipole-dipole interaction. We find two types of solitons as the ground
states arising from such attractive dipole-dipole interactions: a plane wave soliton with a spatially
varying phase and a stripe soliton with a spatially oscillating density for each component. Both types
of solitons possess smaller size and higher anisotropy than the soliton without spin-orbit coupling.
Finally, we discuss the properties of moving solitons, which are nontrivial because of the violation
of Galilean invariance.
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I. INTRODUCTION

Ever since the first achievement of Bose-Einstein con-
densates (BECs) in ultracold atomic gases [1–3], matter
wave solitons in these systems have been the central focus
of many experiments and theory [4]. Solitons that keep
their shape while traveling are the result of the interplay
between nonlinearity and dispersion. In BECs, nonlin-
earity usually originates from short-range collisional in-
teractions between atoms, which can be readily tuned via
Feshbach resonances [5]. In general, there are two types
of solitons: a bright soliton with a density bump, and
a dark soliton with a density notch as well as a phase
jump [4]. For pure contact interactions, a bright and
a dark soliton can emerge respectively when the inter-
actions are attractive or repulsive. Both these solitons
have been experimentally observed in cold atoms [6–14].
However, for these contact attractive interactions, bright
solitons can only exist in one dimension (1D), but not in
two dimensions (2D), where the states either collapse or
expand [15].
Different from the local nonlinearity resulting from

contact interactions, the non-local nonlinearity, in par-
ticular, the nonlinearity introduced by the dipole-dipole
interaction, can stabilize a 2D bright soliton [16, 17]. The
dipole interaction is long-range and anisotropic with the
strength and sign (i.e. repulsive or attractive) depend-
ing on the dipole orientation. When an external rotating
magnetic field is applied to reverse the sign of the interac-
tion [18], or the dipoles are completely polarized in a 2D
plane [19], the dipolar interaction can become attractive,
and 2D bright solitons can be, therefore, stabilized under
appropriate conditions (i.e. the ground state of the sys-
tem is a bright soliton with a localized density profile). It
is essential to note that although the relevant interaction
in most experiments with cold atomic gases is contact,
increasing interest has been focused on the atoms with
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large magnetic moments that possess dipole-dipole inter-
actions [17, 20, 21]. In fact, the Bose-Einstein condensa-
tion of several dipolar atoms such as Chromium [22–24],
Dysprosium [25], and Erbium [26], as well as the degen-
eracy of a dipolar Fermi gas [27, 28] have been observed
in experiments.

Recently, the spin-orbit coupling between two hyper-
fine states of cold atoms has been experimentally engi-
neered [29–34]. This achievement has ignited tremen-
dous interest in this field because of the dramatic change
in the single particle dispersion (induced by spin-orbit
coupling) which in conjunction with the interaction leads
to many exotic superfluids [35–45](also see [46–53] for
review). Such change in dispersion also results in ex-
otic solitons even when the interaction is contact (with-
out dipole-dipole interactions), including 1D bright soli-
tons [54–60] for a BEC with attractive contact interac-
tions, 1D dark [61, 62] and gap solitons [63–65] for a BEC
with repulsive contact interactions, as well as 1D dark
solitons for Fermi superfluids [66, 67]. These solitons ex-
hibit unique features that are absent without spin-orbit
coupling, for instance, the plane wave profile with a spa-
tially varying phase and the stripe profile with a spatially
oscillating density for BECs, as well as the presence of
Majorana fermions inside a soliton for Fermi superfluids.
Also, the violation of Galilean invariance [55, 68, 69] by
spin-orbit coupling dictates that the structure of solitons
changes with their velocities.

On the other hand, spin-orbit-coupled BECs with
dipole-dipole interactions [70–73] have also been ex-
plored, and intriguing quasicrystals [74] as well as meron
states [75] have been found (these ground states are
extended and not localized bright solitons). However,
whether a soliton can exist in such BECs in 2D with
both long-range dipole-dipole interactions and spin-orbit
dispersion has not yet been investigated.

In this paper, we examine the existence and properties
of a bright soliton in a two species spin-orbit-coupled
dipolar BEC in 2D with repulsive contact interactions
via both the variational method and the imaginary time
evolution of the Gross-Pitaevskii equation (GPE). The
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dipoles are completely oriented along the y direction in
the 2D plane (i.e. (x,y) plane) in order to provide an
effective attractive dipole-dipole interaction. Thanks to
such attractive interactions, we find two types of solitons:
a plane wave soliton (when the repulsive intraspecies con-
tact interaction is larger than the repulsive interspecies
one) and a stripe soliton (when the interspecies one is
larger). These 2D solitons are the ground states of the
system, and they cannot exist as the ground states of
a system with purely attractive contact interactions (no
dipole) and spin-orbit coupling. Such solitons are highly
anisotropic, and their size is also reduced by spin-orbit
coupling. Finally, we study the moving solitons, which
are nontrivial because of the lack of Galilean invari-
ance. The size of a soliton first increases and then de-
creases with the rise of the velocity, and this change is
anisotropic. The moving soliton also tends to be plane
wave even when its stationary counterpart has the stripe
structure.
The paper is organized as follows. In Sec. II, we intro-

duce the energy functional and the time-dependent GPE,
which are used to describe a spin-orbit-coupled dipolar
BEC. In Sec. III, we calculate the ground states that
are bright solitons by performing the minimization of
the energy of the variational ansatz wave functions and
an imaginary time evolution of the GPE. The properties
of such soliton are also explored by the former method.
Then, we study the nontrivial moving solitons in Sec. IV.
Finally, we conclude in Sec. V.

II. MODEL

We consider a Rashba-type spin-orbit-coupled
BEC [46, 50] and write its single particle Hamiltonian as

Hs =
p̂2

2m
+

1

2
mω2

⊥ρ
2 +

1

2
mω2

zz
2 + λ(p̂× σ) · ez, (1)

where ρ =
√

x2 + y2, p̂ = −i~∇ is the momentum op-
erator, m is the atom mass, λ is the spin-orbit coupling
strength, σ are Pauli matrices, and ez is a unit vector
along the z direction. ω⊥ (ωz) is the trap frequency in
the (x, y) plane (along the z direction). Here, we assume
that ~ωz is much larger than ~ω⊥ and the mean-field
interaction so that the atoms are frozen to the ground
state in the z direction. Given that a soliton is studied,
we thus set ω⊥ = 0.
When the s-wave contact and dipole-dipole interac-

tions are involved, the energy functional of a 2D conden-
sate can be written as

E =

∫

dr

[

Ψ(r)†HsΨ(r) +
1

2
g(|Ψ↑|4 + |Ψ↓|4)

+g12|Ψ↑|2|Ψ↓|2
]

+ Edd, (2)

where the condensate wave function Ψ(r) =
[Ψ↑(r),Ψ↓(r)]

T with two pseudo-spin compo-

nents Ψ↑(↓)(r) , g = 4π~2a/(
√
2πlzm) and

g12 = 4π~2a12/(
√
2πlzm) are the intraspecies and

interspecies contact interaction strength respec-
tively with the intraspecies and interspecies s-wave
scattering length being a and a12 and the charac-
teristic length along z being lz =

√

~/(mωz). Here,
Hs = −~

2(∂2
x + ∂2

y)/(2m) − i~λ(∂xσy − ∂yσx) is the 2D
single particle Hamiltonian, and the third dimension
has been integrated out. For dipole-dipole interactions,
we only consider the density-density interaction which
is dominant when a two subspace (i.e. two pseudo-spin
states) of a large spin atom (e.g. dysprosium) is consid-
ered. We also assume that the dipoles are all oriented
along the y direction, thus

Edd =
gd
2

1

(2π)2

∫

dkρkρ−kUd(klz), (3)

where the Fourier transform of the total density is ρk =
∫

dre−ik·r(|Ψ↑|2 + |Ψ↓|2) and U(k) is given by [18]

Ud(klz) = −
√
2π +

3πlzk
2
ye

k2l2
z
/2erfc(klz/

√
2)

k
, (4)

with erfc being the complementary error function. Here,
gd = µ0µ

2/(6πlz) characterizes the strength of the
dipole-dipole interaction where µ is the magnetic dipolar
moment and µ0 is the permeability of the free space. We
note that this head-to-tail dipole configuration that can
be attractive is different from the head-to-head configu-
ration in Ref. [74] that is repulsive.
The dynamical behavior of a BEC can be described by

the time-dependent GPE

i~
∂Ψ(r)

∂t
= HsΨ(r) + gGΨ(r) + gdUd(r)Ψ(r), (5)

where the contact interaction matrix is

G =





|Ψ↑|2 + g12
g |Ψ↓|2 0

0 |Ψ↓|2 + g12
g |Ψ↑|2



 , (6)

and the dipolar interaction potential is

Ud(r) =
1

(2π)2

∫

dkeik·rρ(k)Ud(klz). (7)

For numerical simulation, we choose ~ωz, lz, and 1/ωz

as the units of energy, length, and time, respectively, and
the dimensionless energy per atom hence reads

E =

∫

dr

[

Φ(r)†HsΦ(r) +
1

2
γ(|Φ↑|4 + |Φ↓|4)

+γ12|Φ↑|2|Ψ↓|2
]

+
γd

2(2π)2

∫

dknkn−kUd(k), (8)

where Hs = −(∂2
x + ∂2

y)/2 − iα(∂xσy − ∂yσx), α =

λ/(ωxlz), γ = 2
√
2πN0a/lz, γ12 = 2

√
2πN0a12/lz with

the total particle number N0, , γd = 2N0ad/lz with
ad = mµ0µ

2/(12π~2), and nk =
∫

dre−ik·r(|Φ↑|2+|Φ↓|2).
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The wave function is normalized to 1 (i.e.
∫

dr(|Φ↑|2 +
|Φ↓|2) = 1).
The dimensionless time-dependent GPE reads

i
∂Φ(r)

∂t
=HsΦ(r) + γGΦ(r)

+
γd

(2π)2

∫

dkeik·rn(k)Ud(k)Φ(r), (9)

where

G =





|Φ↑|2 + γ12

γ |Φ↓|2 0

0 |Φ↓|2 + γ12

γ |Φ↑|2


 . (10)

III. STATIONARY BRIGHT SOLITONS

To shed light on the structure of a soliton, we start
from a Rashba spin-orbit-coupled single particle system
in the absence of interactions in a free space and write
its momentum space dispersion as

E(k) =
k2

2
± αk, (11)

with two branches labeled by the helicity ± which is

the eigenvalue of (kxσy − kyσx)/k where k =
√

k2x + k2y.

Clearly, the ground state is degenerate with the energy
being −α2/2 when the momenta lie in the k = |α| ring.
This is different from the case without spin-orbit cou-
pling where the ground state only occurs at k = 0. In
this single particle case, any superposition of the states
in the ring is also its ground state. Yet, this is not the
case when the repulsive contact interaction is involved.
The ground state either possesses a single momentum
(i.e. plane wave phase) when γ12/γ < 1 or two opposite
momenta (i.e. stripe phase) when γ12/γ > 1 [36]. When
the dipolar interaction is turned on, one may expect two
types of ground states — plane wave and stripe solitons
— due to this effective long-range attractive interaction
along with contact repulsive interaction.
To examine whether the ground state can indeed be a

bright soliton in the spin-orbit-coupled dipolar BECs, we
first consider a plane wave soliton variational ansatz

ΦP =

(

Φ0(x0/2)
−Φ0(−x0/2)

)

exp(−iJp · r), (12)

where

Φ0(x0) =
(axay)

1/4

√
2π

e−
1

2
[ax(x−x0)

2+ayy
2]. (13)

Here r = xex + yey with unit vectors ex and ey along
x and y directions respectively, Jp = Jpey is the wave
vector of the plane wave soliton, lν = 1/

√
aν with ν =

x, y is the size of the soliton, and x0 is the separation
distance between two components. When x0 = 0, this
state is an eigenstate of pyσx multiplied by a Gaussian

profile Φ0(0), and Jp = α yields the minimum energy. In
fact, x0 is usually nonzero because of a force acting on the
BEC by spin-orbit coupling F = α2(p× ez)σz [40, 76],
which is opposite along the x direction when p (here Jp)
is along the y direction.
In writing down the ansatz (12), we have assumed that

the wave vector of the plane wave soliton is in the y di-
rection. The prerequisite of this assumption is that the
rotation symmetry [40, 41] about the z axis has been
broken by the dipole-dipole interaction. Indeed, without
the dipole-dipole interaction, this state with Jp along y
is not special, and other states with Jp along other direc-
tions are degenerate with it. For example, the state with
Jp along y has the same energy as a state with Jp along
x. Yet, with the specific dipole-dipole interaction arising
from the dipoles entirely oriented along y, the symme-
try is broken, and the ground state should be elongated
along y (ax > ay) so as to provide an effective attrac-
tive interaction because of the head-to-tail configuration
of polarized dipoles. This elongated configuration allows
the existence of a 2D soliton [19] and also requires the
wave vector to be along y [77].
Although the wave vector Jp of the ground state is

along y, there are still two options: negative and positive
directions in terms of the time-reversal symmetry T (i.e.
−iσyK with the complex conjugate operator K). Specif-
ically, the state ΦP2 = T ΦP is degenerate with ΦP . In
the absence of interactions, all superposition states of ΦP

and ΦP2,

ΦPS = | cos θ|ΦP + | sin θ|eiϕΦP2, (14)

are degenerate. This degeneracy may be broken by the
interaction so that the ground state is either ΦP or ΦP2,
or a certain superposition state of them. But this de-
generacy breaking should not happen at γ12/γ = 1 since
the interaction energy only depends on the total density
which is independent of θ and ϕ. This gives us an in-
tuitive understanding that γ12/γ = 1 may separate the
plane wave state (| cos θ| =0 or 1) and the stripe one
(| cos θ| = | sin θ|), similar to the homogenous spin-orbit-
coupled BEC [36] without dipole-dipole interactions. For
the stripe state, we note that ϕ = 0, π corresponds
to the ground state as the energy contributed by ϕ is

−γ12
√
axaye

−(axx
2

0
/2+2J2

p
/ay) cos(2ϕ)/(16π) [78].

To evaluate the variational parameters ax, ay, x0, Jp,
and θ, we minimize the energy E after substituting ΦPS

in Eq. (14) to Eq. (8). Indeed, the calculated variational
solutions reveal that there are two types of ground states:
plane wave states when γ12/γ < 1 and stripe states when
γ12/γ > 1. These ground states are bright solitons with
localized density profiles as shown in Fig. 1; we therefore
call these ground states plane wave solitons and stripe
solitons respectively. In the first panel of this figure, the
density and phase profiles of a typical plane wave soli-
ton (we choose θ = ϕ = 0) are presented, and the stripe
structure of the phase of both two components reveals
the plane wave feature. The soliton is highly elongated
along the y direction, and the centers of two components
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FIG. 1. (Color online) Profiles of the density n↑,↓ = |Φ↑,↓|2 of spin ↑ (↓) in (a)((b)), the total density n↑ + n↓ in (c), the phase
of spin ↑(↓) in (d)((e)) for a plane wave soliton (the first two panels) with γ12 = 6 and a stripe soliton (the last two panels)
with γ12 = 10. The solitons in the first and third panels are obtained by the variational method, while the solitons in the
second and forth panels are calculated by the imaginary time evolution of the GP Eq. (9). The dashed white line labels the
x = 0 line. Here, γ = 8, γd/γ = 0.67, and α = 2.

are spatially separated along the x direction because of
nonzero x0. To confirm that this variational solution can
qualitatively characterize the ground state of the system,
we numerically compute the ground state by an imagi-
nary time evolution of the GP Eq. (9). This exact nu-
merical solution also concludes that γ12/γ < 1 yields the
plane wave soliton, while γ12/γ > 1 the stripe one. In
the second panel of Fig. 1, we also plot the corresponding
density and phase profiles of the GP obtained plane wave
soliton. The variational ansatz is in qualitative agree-
ment with it given the separated centers and the plane

wave varying phase that both states possess. Yet, the
shape of the soliton obtained by the imaginary time evo-
lution deviates slightly from the Gaussian, and the size
is also slightly smaller.

When θ = π/4 and ϕ = 0, ΦPS is a stripe soliton
state with a density oscillation along the y direction for
each component. And there is no stripe for the total
density. Along the x direction, two components are not
spatially separated, and the phase for the spin ↑ reverses
suddenly across x = 0. Following these properties by re-
placing (Φ0(x0/2)+Φ0(−x0/2))/

√
2 with cos(Jxx)Φ0(0)
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FIG. 2. (Color online) Plot of ax in (a) and ay in (b) as
a function of γd/γ for the plane wave solitons (dotted blue
line), stripe solitons (dashed green line), and traditional soli-
tons (solid red line) without spin-orbit coupling. The aspect

ratio
√

ay/ax of a soliton is displayed in the inset of (b).
Variational parameters with respect γd/γ are plotted in (c)
associated with x0 (dash-dot blue line) and Jp (dashed blue
line) for the plane wave soliton, and Jx (solid green) and Jy

(dotted green) for the stripe soliton. In (d), the total energy
of the variational ansatz wave function and the wave function
numerically obtained by the imaginary time evolution of the
GPE for both plane wave and stripe solitons is shown. The
solid green line (stripe soliton) and dashed blue line (plane
wave soliton) correspond to the variational results, while the
green circles and blue squares correspond to the GP results.
Here, α = 2, γ = 8, γ12 = 6 (γ12 = 10) for the plane wave
(stripe) soliton.

and (Φ0(x0/2) − Φ0(−x0/2))/
√
2 with sin(Jxx)Φ0(0) in

Eq. (14), we obtain another better variational ansatz for
the stripe soliton

ΦS = ΓΦ0(0), (15)

where

Γ =

(

cos(Jyy) cos(Jxx)− i sin(Jyy) sin(Jxx)
cos(Jyy) sin(Jxx) + i sin(Jyy) cos(Jxx)

)

, (16)

with the variational parameters Jx and Jy. The period
of the stripe along the y direction is π/Jy. Interestingly,
this stripe soliton corresponds to four points (±Jx,±Jy)
in momentum space instead of traditional two points [55]
when Jx = 0, if we do not consider the Gaussian profile
Φ0.
We calculate the variational parameters of stripe soli-

tons by performing the minimization of the energy E in
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FIG. 3. (Color online) Plot of x0 (dash-dot blue line) and Jp

(dashed blue line) for the plane wave variational ansatz, and
Jx (solid green line) and Jy (dotted green line) for the stripe
variational ansatz with respect to ax by the minimization of
the energy EPW

s and EStripe
s in (a). (b) shows the minimum

energy of EPW
s (dotted blue line) and EStripe

s (solid green line)
as a function of ax. Here, α = 2.

Eq. (8) where Φ is replaced with ΦS . The density and
phase profiles of a typical stripe soliton calculated by this
method are displayed in the third panel of Fig. 1. Evi-
dently, the density of each component exhibits the stripe
structure, while the total density does not. The phase
of spin ↑ along the y direction varies like a plane wave,
but reverses across x = 0 due to the presence of sin(Jxx)
in the imaginary part. The phase of spin ↓ exhibits the
phase rotation like vortices around x = 0 and y = nπ/Jy
with integer n; around these points, the wave function
ΦS↓ is proportional to (−1)n(Jxx+ i(Jyy−nπ)), and the
corresponding density of spin ↓ is extremely low. More-
over, in the last panel of Fig. 1, we plot the density and
phase profiles of the corresponding stripe soliton obtained
by the imaginary time evolution of the GPE; comparing
this figure with the third panel of Fig. 1 implies that the
stripe variational ansatz is qualitatively consistent with
the GP results.

To study the properties of a soliton with respect to
dipole-dipole interactions γd, we evaluate the variational
parameters of both the plane wave and stripe solitons by
the variational method and plot them in Fig. 2 as γd/γ
varies. Clearly, with increasing γd/γ, ax and ay increase
monotonously because of the enhanced effective attrac-
tive interaction, indicating that the size lx and ly of the
soliton decrease monotonously. We note that as γd/γ
increases further, the soliton can collapse so that both
ax and ay diverge. For the plane wave soliton, ax and
ay are slightly larger than the stripe soliton because of
the smaller contact interaction of the former. Moreover,
compared with the soliton without spin-orbit coupling
(red line in Fig. 2(a) and (b)), ax and ay for both the
plane wave and stripe solitons are much larger, implying
that the size of solitons can be reduced by spin-orbit cou-
pling. Also, these solitons are highly anisotropic with the
much smaller aspect ratio

√

ay/ax as shown in the inset
of Fig. 2(b). To elucidate the reason, we explicitly write
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FIG. 4. (Color online) Plot of ax in (a) and ay in (b) as a func-
tion of the spin-orbit coupling strength α for the plane wave
soliton (dotted blue line) and stripe soliton (dashed green

line). The aspect ratio
√

ay/ax of a soliton is plotted in the
inset of (a). (c) illustrates the change of x0 (dash-dot blue
line), Jp (dashed blue line) for the plane wave soliton and
Jx (solid green line) and Jy (dotted green line) for the stripe
soliton with respect to α. In (d), the total energy plus α2/2
is plotted as a function of α. The solid green (for a stripe
soliton) and dashed blue (for a plane wave soliton) are calcu-
lated by the variational method, while the green circles (for a
stripe soliton) and blue squares (for a plane wave soliton) are
numerically obtained by the imaginary time evolution of the
GPE. Here, γ = 8, γd/γ = 0.67, and γ12 = 6 (γ12 = 10) for
the plane wave (stripe) soliton.

that single particle energy of the plane wave variational
ansatz in Eq.(12) which results from the presence of x0

and Jp

EPW
s =

1

2
J2
p − αe−

x
2
0
ax

4 (Jp +
1

2
axx0). (17)

The minimization of EPW
s with respect to x0 and Jp for

fixed ax yields

x0 =
−Jp +

√

J2
p + 2ax

ax
(18)

Jp = αe−x2

0
ax/4. (19)

For ax = 0, the energy is independent of x0 and Jp = α,
while for ax 6= 0, both x0 and Jp decrease slightly with
increasing ax as shown in Fig. 3(a) with the asymptotic
x0 = 1/α and Jp = α as ax goes zero. The energy EPW

s

is also a monotonously decreasing function of ax. And
this energy decline combined with the reduced dipole-
dipole interaction energy competes with the rise of the

kinetic energy (when x0 = Jp = 0) and contact inter-
action energy, leading to an increased ax and ay com-
pared with the soliton without spin-orbit coupling. This
is also consistent with Fig. 2(c), showing that with in-
creasing the dipole-dipole interaction, ax increases, and
both x0 and Jp, therefore, decrease so as to lower EPW

s .
It is important to note that although EPW

s is not a func-
tion of ay, other energy such as the kinetic energy (when
x0 = Jp = 0), the contact and dipolar interaction energy
depends on it.
For the stripe soliton, the single particle energy due to

the presence of Jx and Jy is

EStripe
s =

1

2
(J2

x + J2
y )− α(Jx + Jye

−J2

x
/ax). (20)

Similar to the plane wave case, this energy is indepen-
dent of ay. For fixed ax, the minimization of this energy
yields both Jx and Jy as a function of ax as shown in
Fig. 3(a). When ax moves towards zero, the solution ap-
proaches (Jx = α, Jy = 0) or (Jx = 0, Jy = α); when it
moves away from zero, there is only one solution where
Jy decreases from α while Jx increases from zero with
the rise of ax. Also, the energy EStrip

s decreases as ax
increases. Analogous to the plane wave soliton, the to-
tal energy decrease resulted from spin-orbit coupling and
dipole-dipole interactions as ax and ay increase from the
value without spin-orbit coupling exceeds the energy gain
of the kinetic (when Jx = 0 and Jy = 0) and contact in-
teraction; this leads to the increased ax and ay compared
with the soliton without spin-orbit coupling. This picture
is also consistent with Fig. 2(c) where Jx increases while
Jy decreases with respect to γd/γ.
To explicitly demonstrate the effect of the spin-orbit

coupling on the properties of a soliton, we plot the varia-
tional parameters as a function of the spin-orbit coupling
strength α for both the plane wave and stripe solitons
in Fig. 4. Consistent with the aforementioned feature
that spin-orbit coupling can reduce the size of the soli-
ton, both Fig. 4(a) and Fig. 4(b) display a monotonous
increasing behavior of ax and ay as a function of α. Also,

the aspect ratio
√

ay/ax is decreased by spin-orbit cou-
pling. Similar to Fig. 2(a) and Fig. 2(b), ax and ay for
the plane wave soliton are slightly larger than the stripe
soliton in that the former has a smaller contact interac-
tion. For the plane wave soliton, JP (determined mainly
by the spin-orbit coupling strength) increases with re-
spect to α while x0 decreases; for the stripe soliton, both
Jx and Jy increase.
In Fig. 2(d) and Fig. 4(d), for both plane wave and

stripe solitons, we compare their energy obtained by the
variational procedure with the one obtained by the imag-
inary time evolution of the GPE. Both figures show that
the energy calculated by the imaginary time evolution is
lower as expected. Yet, the difference between these two
energy is not large (no more than 10%), suggesting that
the variational ansatz can qualitatively characterize the
solitons. We note that in Fig. 4(d), the energy is shifted
by α2/2 in order to clearly present the different results
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FIG. 5. (Color online) Imbalance Imb and width lx of spin
↑ of the solitons with respect to the velocity along the y (x)
direction in (a) ((b)). The insets display the enlarged figure
in a small velocity region. Density and phase profiles of four
typical moving solitons for spin ↑ corresponding to the dif-
ferent velocities in (a) and (b) are plotted in (c-f) where the
horizontal and vertical coordinates are x′ and y′ respectively.
Here, α = 2, γ = 8, γ12 = 10, and γd/γ = 1, corresponding
to a stripe soliton when stationary.

of the two methods, which could be smeared by the large
value of α2/2.

IV. MOVING BRIGHT SOLITONS

Generally, the wave function of a moving soliton with
the velocity v can be simply written as exp(iv · r)Φs(r−
vt) (the density does not disperse) where Φs is the wave
function of a stationary soliton. But this is only valid
for a system respecting Galilean transform invariance. In
fact, Galilean invariance is broken in a spin-orbit-coupled
BEC [68], and this violation dictates that the shape of
a soliton depends on its velocity strength [55]. Here, for
a soliton in a spin-orbit-coupled dipolar BEC in 2D, we
assume that a moving soliton can be written as

ΦM (r, t) = Φv(r
′, t) exp(iv · r− i

1

2
v2t), (21)

where Φv is a localized function (the density still does
not disperse), and r′ = r − vt is the coordinate in the
moving frame. Plugging ΦM (r, t) into Eq. (9) yields

i
∂Φv(r

′, t)

∂t
= Hs(v)Φv(r

′, t) + γGΦv(r
′, t)

+
γd

(2π)2

∫

dkeik·rn(k)Ud(k)Φv(r
′, t), (22)

where Hs(v) = Hs + α(v × σ) · ez + v2/2. Compared
to Eq. (9), this dynamical equation has an additional
term α(v × σ) · ez (v2/2 term has no effects on the dy-
namics), acting as a Zeeman field; this additional term
implies the violation of Galilean invariance. This vio-
lation means that it is no longer a trivial task to find
a moving bright soliton for a BEC with spin-orbit cou-
pling; we need to perform an imaginary time evolution
of the Eq. (22), but not Eq. (9). Furthermore, such a 2D
moving soliton should be different for different velocity
directions even if their amplitude is the same, in contrast
to a 1D soliton which can only move in one direction.
To examine how the shape of a soliton changes with

respect to the velocities along x and y directions, we plot
the imbalance Imb and the width lx of a soliton of spin ↑
as a function of the velocities vx and vy in Fig. 5. Here,
the imbalance for spin ↑ is defined as

Imb =
|Φ↑(0)|2 − |Φ↑(π/(2α))|2
|Φ↑(0)|2 + |Φ↑(π/(2α))|2

, (23)

which characterizes a stripe soliton (as shown in Fig. 5(c)
and Fig. 5(d)) when it approaches one and a plane wave
soliton (as shown in Fig. 5(e) and Fig. 5(f)) when it ap-
proaches zero. Fig. 5(a) and Fig. 5(b) demonstrate that
Imb suffers a sharp decline from one to near zero as vx
and vy increase, indicating that a moving soliton tends to
be a plane wave state. The reason is the broken rotation
symmetry of the single particle Hamiltonian by the veloc-
ity induced Zeeman field, giving rise to a ground state of
the single particle system lying at one momentum point
located along the x (y) direction when the velocity is
along that direction. This also explains why the phase of
a moving plane wave soliton with the velocity along the
x (y) direction varies along that direction.
Furthermore, Fig. 5(a) demonstrates that the width of

the soliton gradually grows when the velocity along the
y direction is enlarged, To explain the growth, we con-
sider the plane wave ansatz in Eq. (12) which yields an

additional term −αvye
−axx

2

0
/4 for the single particle en-

ergy when a soliton moves; this energy decrease enlarges
exponentially with the decline of ax (i.e. increase of the
width), leading to an expanded soliton with the rise of
the velocity. However, this is not a monotonous behavior,
and the soliton begins shrinking when the velocity goes
larger, due to the enlarged Jp by the velocity induced
Zeeman field, similar to increasing spin-orbit coupling.
On the other hand, when the velocity is along the x di-
rection, the width of the soliton gains a sudden rise as
the velocity varies, as shown Fig. 5(b). This corresponds
to a change from a stripe soliton with the wave vector
along the y direction to a plane wave soliton with the
wave vector along the x direction. For the stationary
solitons, the soliton with the wave vector mainly along
the y direction has lower energy than the one with the
wave vector mainly along the x direction as the dipoles
are completely oriented along y. But the Zeeman field
induced by the presence of a velocity along the x direc-
tion gives rise to the single particle ground state that
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possesses the wave vector along x. The two states with
the wave vector along these two directions compete and
change from the former to the latter (i.e. first order phase
transition). For the decrease of the width when vx goes
even larger, the reason is the same as the case for vy.
When a stationary soliton is plane wave, the moving be-
havior is similar except that the moving soliton is always
the plane wave soliton.

V. CONCLUSION

We have studied the bright solitons as the ground
states in a spin-orbit-coupled dipolar BEC in 2D with
dipoles completely polarized along one direction in the
2D plane. It is important to note that the solitons are the
ground states in 2D, but they are the metastable states
in quasi-2D where the true ground state would collapse
and there is an energy barrier between the soliton state
and this ground state. Two types of solitons have been
found: a plane wave soliton and a stripe soliton. The
former has the plane wave phase variation, and its two
components are slightly spatially separated; while for the
latter, the density of each component is spatially oscillat-
ing, and the variational ansatz suggests that four points
in momentum space are involved. Both plane wave and
stripe solitons are highly anisotropic, and their size is
decreased by spin-orbit coupling. These solitons cannot

exist as the ground states in a 2D system with purely
attractive contact interactions and spin-orbit coupling.
Moreover, the shape of these solitons changes with their
velocities due to the absence of Galilean invariance, and
this change is anisotropic.
The 2D bright soliton, albeit mainly plane wave soli-

ton, can also exist when equal Rashba and Dresselhaus
spin-orbit coupling is considered. In experiments, this
type of spin-orbit coupling has been engineered by cou-
pling two hyperfine states of atoms through two coun-
terpropagating Raman laser beams [29–34], and such
setup could be employed to realize this spin-orbit cou-
pling in Dysprosium [71] with large dipole-dipole inter-
actions. Also, the large magnetic moment in Dysprosium
atoms may permit the realization of Rashba spin-orbit
coupling [79].
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Rev. Mod. Phys. 83, 1523 (2011).

[47] V. Galitski and I. B. Spielman, Nature (London) 494, 49
(2013).

[48] X. Zhou, Y. Li, Z. Cai, and C. Wu, J. Phys. B: At. Mol.
Opt. Phys. 46 134001 (2013).
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