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Anomalous charge pumping in a one-dimensional optical superlattice

Ran Wei and Erich J. Mueller
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853

We model atomic motion in a sliding superlattice potential to explore “topological charge pump-
ing” and to find optimal parameters for experimental observation of this phenomenon. We analyti-
cally study the band-structure, finding how the Wannier states evolve as two sinusoidal lattices are
moved relative to one-another, and relate this evolution to the center of mass motion of an atomic
cloud. We pay particular attention to counterintuitive or anomalous regimes, such as when the
atomic motion is opposite to that of the lattice. We propose a practical cold-atom experiment to
detect this anomalous behavior. Through numerical simulations, we find that a negative adiabatic
current and a non-trivial Chern number C = −1 is readily measured.

PACS numbers: 03.65.Vf, 67.85.Lm

I. INTRODUCTION

Slow periodic changes in a lattice potential can trans-
port charge. For a filled band, the integrated particle
current per cycle in such an adiabatic pump is quantized
[1]. We study a simple but rich example of this phe-
nomenon, namely charge transport in a sliding superlat-
tice, and draw attention to its counterintuitive properties
such as regimes where the charge moves faster than the
potential, or even travels in the opposite direction. The
mathematics predicting this anomalous transport goes
back 30 years [2, 3], but has not been observed in exper-
iments. We here argue that this effect is observable in a
cold atom experiment.

The quantum mechanics of particles in a one-
dimensional (1D) superlattice is rich, for incommensurate
periods boasting a fractal energy spectrum [4], and a lo-
calization transition similar to what is seen in disordered
lattices [5]. While recent studies have focused on the
tight-binding limit (the Aubry-Andre model) [6–23], we
study the continuous limit of the 1D superlattice, where,
because of the weak potential, the single-particle spec-
tra can be calculated perturbatively. Related cold atom
proposals on quantized transport [24–29] have focused on
the simplest superlattice where one sub-lattice constant
is half of the other, and the lowest band is therefore not
in the anomalous regime which interests us. Ref. [24],
draws attention to anomalous retrograde motion of parti-
cles in the second band, an approach which complements
our ground-state proposal.

The 1D superlattice can be mapped onto the Harper-
Hofstadter model [4, 30]. The topological numbers
(Chern numbers) associated with charge pumping can be
mapped onto quantized Hall conductances [2, 31]. Recent
experiments involving artificial gauge fields on 2D optical
lattice have aimed to measure these 2D Chern numbers
[32–36]. There are also related studies based on measure-
ment of Hall drift [37], Bloch oscillations [38, 39], Zak
phase [40–42], time-of-flight images [43–45], edge states
[46–51], or density plateaus [52, 53].

In this letter, we study the charge transport in a 1D
sliding superlattice, where the moving lattice period is

an arbitrary rational multiple of the static lattice. We
analytically calculate energy band gaps and the topolog-
ical invariants which give the integrated adiabatic current
per pumping cycle [1]. The fact that this current can be
made arbitrarily large and/or opposite to the direction
of the sliding potential is counterintuitive. We present
a physical interpretation of this phenomenon in terms
of the quantum tunneling of Wannier functions between
minima in the potential. We propose an experiment to
detect this anomalous adiabatic current, and derive the
optimal parameters. Through numerical simulations, we
confirm that a negative integrated current and a non-
trivial Chern number C = −1 is readily measured in an
experiment. We analyze corrections to adiabaticity, the
harmonic trap, multi-band effects, and finite-size effects.

II. MODEL

We consider the Hamiltonian of a 1D superlattice
where one lattice adiabatically slides relative to the other,

H =

∫
dxψ†(x)

(
− ~2

2m
∂2
x + V1(x, ϕ) + V2(x)

)
ψ(x) (1)

where ψ(x) represents the field operator of the particle,
~ is Planck’s constant, and m is the mass of the particle.
The periodic potentials V1(x, ϕ) = 2v1 cos(px − ϕ) and
V2(x) = 2v2 cos(qx) are commensurate, with lattice con-
stants 2π/p and 2π/q, and intensities v1 and v2. We take
the relative phase ϕ to be slowly varying in time. The
period of the Hamiltonian is set by the greatest common
divisor of p and q, i.e., κ ≡ gcd(p, q), as illustrated in
the inset of Fig. 1. Treating 1/κ as the unit length,
we redefine xκ → x, p/κ → p, and q/κ → q. Treating
Er = ~2κ2/m as the unit energy, we redefine H/Er → H,
v1/Er → v1, and v2/Er → v2. The dimensionless Hamil-
tonian in the momentum space is then

H =
∑
k

k2

2
ψ†kψk +

(
v1e
−iϕψ†kψk+p + v2ψ

†
kψk+q + h.c.

)
(2)
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Here ψk = 1√
L

∫
dx eikxψ(x), with dimensionless system

length L and dimensionless momentum k. Since states of
momentum k are coupled only to those of momentum k+
n for integer n, we restrict ourselves to the first Brillouin
zone (0 ≤ k < 1) and rewrite the Hamiltonian,

H =
∑

0≤k<1

∞∑
n=−∞

1

2
(k + n)2ψ†nψn

+
(
v1e
−iϕψ†nψn+p + v2ψ

†
nψn+q + h.c.

)
(3)

where we have suppressed the k index, writing ψn ≡
ψk+n.
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FIG. 1: Band structure of a 1D superlattice for p = 2, q = 3,
showing energy E vs dimensionless wave-vector k for weak
potentials. Inset shows the two potential making up the su-
perlattice, and illustrates the unit cell with period set by the
greatest common divisor κ ≡ gcd(p, q). For this choice of p
and q, the energy gap between the third and fourth band is
set by the potential strength 2v2, the gap between the sec-
ond and third band is set by the potential strength 2v1, and
the small gap between the second and third band scales as
∼ v1v2.

To illustrate the resulting band structure, we impose
a cut-off on n, and numerically diagonalize the Hamilto-
nian in Eq. (3) for p = 2 and q = 3. The lowest four
energy bands are shown in Fig. 1, and even for this sim-
ple case the gaps display a range of behaviors for small
v1 and v2. The gap between the third and fourth band
is induced by the potential V2(x), and is proportional to
v2 for weak potentials. The gap between the second and
third band is induced by V1(x), and is proportional to
v1. The small gap between the second and third band
is induced by the combination of these two potentials,
which scales as ∼ v1v2. In the following section, we will
discuss the origin of these scalings in the context of un-
derstanding the lowest energy gap.

III. BAND GAPS AND TOPOLOGY

The eigenstates of the Hamiltonian in Eq. (3) can be
found perturbatively in the limit of v1, v2 � 1. Suppress-

ing the index k, we write H = H0 + λH1, with

H0 =

∞∑
n=−∞

1

2
(k + n)2ψ†nψn (4)

λH1 = λpHp + λ−pH−p + λqHq + λ−qH−q, (5)

where Hp =
∑∞
n=−∞ ψ†nψn+p, Hq =

∑∞
n=−∞ ψ†nψn+q,

and λ is a formal small parameter, with λp = λ∗−p =

v1e
−iϕ and λq = λ∗−q = v2.

For small λ and 0 ≤ k < 1, the eigenstates of the
lowest band will be superpositions of |−1〉 and |0〉, where
|m〉 = ψ†m|vac〉. We let δk = k− 1/2 denote the distance
of k from the band crossing point and assume δk > 0.
The physics for δk < 0 is analogous. While ordinary
perturbation theory works far from the crossing (δk � ε,
where ε will be precisely defined below), one must use
higher order degenerate perturbation theory to find the
eigenstates for δk . ε. As argued in the Appendix, the
resulting effective Hamiltonian is of the form

Heff = PH0P +
∑

s+,s−≥0
r+,r−≥0

λs+p λ
s−
−pλ

r+
q λ

r−
−q L(s+,s−,r+,r−) (6)

where P = | − 1〉〈−1|+ |0〉〈0|, and s+, s−, r+, r− are in-
tegers. The operator L(s+,s−,r+,r−) is the contribution
to Heff involving the absorption of η = sp + rq units
of momentum from the lattices, where s = s+ − s−
and r = r+ − r−. By conservation of momentum,
α ≡ 〈−1|L(s+,s−,r+,r−)|0〉 = 0 unless η = 1. We linearize
Heff about δk = 0, and write the operators in the basis
{| − 1〉, |0〉}. At the lowest nontrivial order, we have

Heff =

(
− 1

2δk α∆eiχ

α∆e−iχ 1
2δk

)
+ const., (7)

where ∆ = v
|rm|
1 v

|sm|
2 , χ = −smϕ, and sm, rm correspond

to the absolutely smallest solution to the Diophantine
equation sp + rq = 1. This result agrees with a similar
perturbative analysis carried out by Thouless et. al. [2]
and Niu [3] for related models.

The off-diagonal terms of Eq. (7) split the energy de-
generacy at δk = 0, and create an energy gap of size
∆Eg ≡ 2|α∆|. For example, if p = 2, q = 3, the abso-
lutely smallest solution to the Diophantine equation has
sm = −1, rm = 1, as −p + q = 1. Thus the energy gap
is 2|αv1v2|, as denoted in Fig. 1. For larger |sm| and
|rm|, the energy gap can be extremely small. Ordinary
perturbation theory would have sufficed in the regime
where δk � 2|α∆|, allowing us to identify ε as 2|α∆|.
Properties of higher bands can be analyzed similarly.

By analyzing Eq. (7), we find that the lowest energy
eigenstate of Eq. (4-5) has the form

|k, ϕ〉 = −sin
β

2
eiχ/2| − 1〉+ cos

β

2
e−iχ/2|0〉+ ..., (8)

where tanβ = −2α∆/δk. The neglected terms are higher

order in v1 and v2. For δk � 2|α∆|, sinβ2 ≈ 1 and

cosβ2 ≈ 0, and the coefficients are featureless.
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Slowly changing ϕ generates an adiabatic current [1].
For a completely filled band, the integrated current in
one pumping period (ϕ from 0 to 2π) is [54]

∆Q = 2πC =

∫ 1

0

dk

∫ 2π

0

dϕΩkϕ (9)

where the Berry curvature is

Ωkϕ = i (∂ϕ〈k, ϕ|∂k|k, ϕ〉 − h.c.) =
sm
2
∂kcosβ. (10)

We see Ωkϕ is concentrated near the location of the en-
ergy gap. Integrating the Berry curvature is trivial, yield-
ing the Chern number C = sm. Although our argument
requires that v1 and v2 are small, due to the quantized
nature of C, the result should hold for all nonzero v1 and
v2. In our numerical calculations with larger v1, v2, we
find the curvature is roughly uniform over the Brillouin
zone, but as expected its integral is unchanged.

IV. ANOMALOUS CHARGE PUMPING

By appropriately choosing p and q, one can make
C = sm an arbitrary integer [3, 55–58]. This means that
in one pumping cycle a single particle may move arbi-
trarily far and/or opposite to the direction of the sliding
potential. Such long-distance and/or retrograde trans-
port seems unphysical. The magic comes from the adia-
batic process: If the potential moves sufficiently slowly,
the particles always stay in a global minimum of the po-
tential. Due to the structure of the superlattice, a slight
motion of the potential could result in a dramatic change
of the locations of the global minima (see Fig. 2(a)).
Within a small portion of a pumping cycle, the particles
may “tunnel” to the new global minima which could be
a large distance away from the old minima.

To further quantify our interpretations, we calculate
the integrated current

∆Q(ϕ) =
1

2π

∫ 1

0

dk

∫ ϕ

0

dϕ′ Ωkϕ′ , (11)

and the Wannier function at lattice site j [59]

Wj(x, ϕ) =
∑

0≤k<1

eikjΨk(x, ϕ), (12)

where the Bloch wave function is

Ψk(x, ϕ) =
1√
L

∞∑
n=−∞

〈n|k, ϕ〉e−i(n+k)x. (13)

Here we choose a smooth gauge for the Bloch wave func-
tion, so the Wannier function is well localized [60].

Fig. 2(d) shows the integrated current as a function
of ϕ, calculated from Eq. (11) using a similar method
to Ref. [61]. We see the function is “step-like”: Flat
regions correspond to slow transport, while the particle
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FIG. 2: (Color online) (a) Illustration of adiabatic charge
transport in a 1D superlattice, where the particle “travels”
through three unit cells to the left when the lattice poten-
tial moves to the right by one period. Solid lines show the
potential V1(x, ϕ) + V2(x) for different values of ϕ. Arrows
schematically show how the locations of the minima shift dis-
continuously. (b) illustrates evolution of two separated poten-
tials of the superlattice: the right-sliding potential V1(x, ϕ)
(solid red) and the static potential V2(x) (dashed black). (c)
Evolution of Wannier function. Arrows indicate the “tunnel-
ing” process. (d) shows the evolution of integrated adiabatic
current as a function of ϕ. In these plots we choose p = 2
and q = 7, so the Chern number is C = sm = −3. Other
parameters are v1 = 0.5 and v2 = 0.25.

motion is rapid in the steep regions. This is further illus-
trated by the Wannier function in Fig. 2(c). During the
slow transport, the Wannier function slowly drifts, while
during the rapid transport, one peak drops in amplitude,
and a second peak rises. This corresponds to tunneling.

For small v1, v2, the timescale for adiabaticity τ is re-

lated to the size of the gap, 1/τ ∼ |α∆| ∼ v
|sm|
1 v

|rm|
2 .

Thus when the Chern number C = sm is large and
the potentials are weak, adiabaticity is hard to main-
tain in a practical experiment. For large v1, v2, the gap
again falls, owing to the large potential barriers. Fig. 3
shows the energy gap ∆Eg as a function of v1 and v2

for p = 2, q = 3. The gap has a maximium value of
∆Eg ≈ 0.09 at v1 = 0.23 and v2 = 0.95. An optimized
experiment would be performed with these parameters.

V. EXPERIMENTAL PROPOSAL

To observe this anomalous current, we envision a Fermi
gas confined to a quasi-1D tube, such that only one trans-
verse mode is occupied. Although the present analysis
is 1D, we expect the phenomena will persist for more
general transverse confinement. Along the tube we en-
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FIG. 3: Energy gap ∆Eg as a function of v1, v2 for p = 2, q =
3. The gap has a maximium value of ∆Eg ≈ 0.09 at v1 = 0.23
and v2 = 0.95.

gineer two longitudinal periodic potentials V1(x, ϕ) =
2v1 cos(px− ϕ) and V2(x) = 2v2 cos(qx) via two pairs of
counter-propagating laser beams. The time-dependent
phase ϕ = δω t is produced by a frequency difference
δω between two of the beams. To satisfy the adiabatic
condition, we require ~δω � ∆Eg. The resulting adia-
batic particle current can be detected by observing the
motion of the center of mass of the cloud: After time
t = 2πN/δω, the center of mass should move a distance
rc = 2πCN/κ. A dimensionless measure of this displace-
ment is xc = κrc. The displacement can be measured
in-situ [62–64] or after time-of-flight [65]. Similar experi-
ments were proposed by Chiang and Niu [24], and Wang,
Troyer and Dai [27].

We propose studying the case p = 2, q = 3, as this
yields retrograde motion and has relatively large gaps
(see Fig. 3).

In modeling this experiment, one must account for the
finite cloud size. We include this physics by adding a
harmonic potential along the tube, V (x) = mω2

0x
2/2.

Such potentials are always found in such experiments.
Within a local density approximation, the lowest band
will be filled at the center of the cloud, but only partially
filled near the edge. Although our Chern number argu-
ment only applies to the central region, we still expect
the center of mass motion to be nearly quantized. For
~ω0 � v1, v2, and the particle number is much greater
than one, only a very small portion of particles live at
boundaries. Our numerical simulations (detailed below)
confirm this results. For a typical experiment, ω0 ∼ 10
Hz, and v1/~, v2/~ ∼ 100 kHz [67].

Because of the trap, the displacement rc cannot be
made arbitrarily large. When mω2

0r
2
c/2 is of order of the

band gap ∆Eg, atoms can tunnel to the higher bands. In
our numerical simulation, we see that for small δω, the
maximum displacement scales as 1/ω0.
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FIG. 4: (Color online) Displacement of the center of mass (in
units of the superlattice) after one pumping period T = 2π/δω
for ν = 63 fermions in a superlattice with p = 2, q = 3, v1 =
0.23Er, v2 = 0.95Er, and a harmonic trap ~ω0 = 2.2×10−3Er.
Physically, δω is the detuning between the beams producing
the lattice with wave-number p. We see xc/2π → C = −1 as
δω decreases. Inset shows the evolution of the center of mass
for ~δω = 0.002Er. [c.f. Fig. 2(d)]

VI. NUMERICAL SIMULATION

In order to see the feasibility of our experimental pro-
posal, we numerically simulate the dynamical evolution
of a 1D Fermi gas. We take the many-body state to be
a Slater determinant, made up from single-particle wave
functions ψi(x, t) with 1 ≤ i ≤ ν, where ν = 63 is the
number of fermions. This number is chosen because it is
similar to typical atom numbers in 1D experiments [66].
At time t = 0, ψi(x, 0) is the ith eigenstate of the Hamil-
tonian. We evolve ψi(x, t) via the time-dependent single-
particle Schrödinger equation, and then calculate the cen-
ter of mass xc(t) ≡ 1/ν

∑ν
i=1

∫
x|ψi(x, t)|2dx. Fig. 4

shows the results for p = 2, q = 3 where the Chern num-
ber is C = −1. We see xc < 0, meaning that the par-
ticles travel in the opposite direction to the sliding po-
tential. Remarkably this retrograde motion persists even
for relatively large δω. As δω → 0 the motion becomes
quantized. A typical experiment has Er/~ ∼ 100 kHz
[67], so the Chern number C = −1 is readily extracted
when δω . 200 Hz. The inset of Fig. 4 shows the evo-
lution of the center of mass in one pumping cycle for
~δω = 0.002Er. We see the function is “step-like”, simi-
lar to the ideal case (no harmonic trap and adiabatic) in
Fig. 2(d).

VII. SUMMARY

To summarize, we studied topological charge pump-
ing in a 1D sliding superlattice, with particular focus on
the anomalous regimes where the particles move faster
than the potential, or backwards. We presented a physi-
cal interpretation of this behavior in terms of the quan-
tum tunneling of Wannier functions between minima in
the potential. We proposed a practical cold-atom ex-
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periment to detect this phenomenon and calculated op-
timized parameters. Through numerical simulations, we
confirmed that a negative integrated current and a non-
trivial Chern number C = −1 is readily measured.
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IX. APPENDIX

Here we derive an effective Hamiltonian for Eq. ((4)-
(5)) in the main text. For small λ, the eigenstates of
the lowest band will be superpositions of | − 1〉 and |0〉,
motivating projection operators

P = | − 1〉〈−1|+ |0〉〈0| (14)

Q = 1− P. (15)

The states |m〉 = ψ†m|vac〉, satisfy H0|m〉 = 1
2 (kx +

m)2|m〉. We seek eigenstates H|ψ〉 = E|ψ〉. We break

the wave function into two parts

|ψ〉 = P |ψ〉+Q|ψ〉 ≡ |ψ0〉+ |ψex〉, (16)

where |ψ0〉 is in the low energy sector, and |ψex〉 is a
superposition of the higher-energy states. The eigen-
equation is then decoupled into two equations

PH|ψ〉 = PE|ψ〉 = E|ψ0〉 (17)

QH|ψ〉 = QE|ψ〉 = E|ψex〉. (18)

Inserting the identity P 2 + Q2 = P + Q = 1 on the left
hand side of Eq. (17)-(18) and substituting |ψex〉 in terms
of |ψ0〉, we obtain a closed equation for |ψ0〉,

Heff |ψ0〉 = E|ψ0〉, (19)

where

Heff ≡ PHP + PHQ
1

E −QHQQHP. (20)

Using the identity PH0Q = 0 and expanding the second
term of Eq. (20), we obtain

Heff = PH0P + λPH1P + λ2PH1Q

∞∑
j=0

1

E −QH0Q

(
λ

QH1Q

E −QH0Q

)j
QH1P. (21)

This equation can be written as

Heff = PH0P +
∑

s+,s−≥0
r+,r−≥0

λs+p λ
s−
−pλ

r+
q λ

r−
−q L(s+,s−,r+,r−)

(22)

where the momentum conservation implies that α ≡
〈−1|L(s+,s−,r+,r−)|0〉 = 0 unless sp + rq = 1, where
s = s+− s− and r = r+− r−. In our problem, the lowest
order contribution to α has either s+ = 0 or s− = 0.
Similarly r+ = 0 or r− = 0. The lowest order contribu-

tion to the diagonal elements of Heff corresponds to an
identity matrix.

Linearizing Heff about δk = 0, and writing the opera-
tors in the basis {| − 1〉, |0〉}, we have

Heff =

(
− 1

2δk α∆eiχ

α∆e−iχ 1
2δk

)
+ const., (23)

where ∆ = v
|rm|
1 v

|sm|
2 , χ = −smϕ, and sm, rm correspond

to the absolutely smallest solution to the Diophantine
equation sp+ rq = 1.
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Lett. 100, 070402 (2008).

[53] L. B. Shao, S.-L. Zhu, L. Sheng, D. Y. Xing, and Z. D.
Wang, Phys. Rev. Lett. 101, 246810 (2008).

[54] D. Xiao, M. Chang, Q. Niu, Rev. Mod. Phys. 82, 1959
(2010).

[55] M. Kohmoto, J. Phys. Soc. Jpn. 61, 2645 (1992).
[56] D. Osadchy and J. E. Avron, J. Math. Phys., 42, 5665

(2001).
[57] N. Goldman, J. Phys. B: At. Mol. Opt. Phys. 42, 055302

(2009).
[58] J. E. Avron, O. Kenneth and G. Yehoshua, J. Phys. A:

Math. Theor. 47, 185202 (2014).
[59] Q. Niu, Phys. Rev. Lett. 64, 1812 (1990).
[60] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, D. Van-

derbilt, Rev. Mod. Phys. 84, 1419 (2012).
[61] T. Fukui, Y. Hatsugai and Hiroshi Suzuki, M. Kohmoto,

J. Phys. Soc. Jpn. 74, 1674 (2005).
[62] W. S. Bakr, A. Peng, M. E. Tai, R. Ma, J. Simon, J.
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