
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Trapped unitary two-component Fermi gases with up to ten
particles

X. Y. Yin and D. Blume
Phys. Rev. A 92, 013608 — Published  6 July 2015

DOI: 10.1103/PhysRevA.92.013608

http://dx.doi.org/10.1103/PhysRevA.92.013608


Trapped unitary two-component Fermi gases with up to ten particles
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The properties of two-component Fermi gases with zero-range interactions are universal. We use
an explicitly correlated Gaussian basis set expansion approach to investigate small equal-mass two-
component Fermi gases under spherically symmetric external harmonic confinement. At unitarity,
we determine the ground state energy for systems with up to ten particles interacting through finite-
range two-body potentials for both even and odd number of particles. We extrapolate the energies
to the zero-range limit using a novel scheme that removes the linear and, in some cases, also the
quadratic dependence of the ground state energies on the two-body range. Our extrapolated zero-
range energies are compared with results from the literature. We also calculate the two-body Tan
contact and structural properties.

PACS numbers: 03.75.Ss, 34.50.Cx

I. INTRODUCTION

The properties of two-component Fermi gases interact-
ing through two-body zero-range potentials with s-wave
scattering length as are universal [1, 2]. At unitarity,
i.e., for infinitely large as, the two-body interaction does
not define a meaningful length scale and the strongly-
interacting Fermi gas is characterized by the same num-
ber of length scales as the non-interacting Fermi gas. Ap-
proximate realizations of the unitary Fermi gas include
dilute neutron matter in the crusts of neutron stars [3]
and ultracold atom gases such as 6Li [4] and 40K [5]. The
properties of homogeneous and inhomogeneous unitary
Fermi gases have attracted a great deal of experimen-
tal and theoretical attention. For spherically symmetric
external confinement, the harmonic oscillator length aho

defines the only length scale of the system. It is hence
interesting to determine how the properties of trapped
unitary Fermi gases vary with the number of particles.

Harmonically trapped Fermi gases at unitarity have
been treated by quantum Monte Carlo methods [6–13],
density functional theory (DFT) [11, 14–17], and basis set
expansion approaches. The accuracy of the fixed-node
diffusion Monte Carlo (FN-DMC) energies [7, 8, 11, 12]
depends on the quality of the many-body nodal surface.
The resulting energies provide upper bounds to the exact
ground state energies and the zero-range limit is reached
through extrapolation [11, 12]. Auxiliary-field quantum
Monte Carlo (AFMC) methods, on the other hand, work
on a finite lattice and extrapolation to the infinite lattice
limit is required to obtain fully converged result [12]. The
quality of DFT calculations depends critically on the un-
derlying functional. Since the functional is typically ob-
tained by matching to data for the homogeneous system,
the analysis of results for the trapped system can provide
insights into gradient corrections and other finite size fea-
tures [15–17]. Trapped unitary Fermi gases with up to
six particles have been calculated by explicitly correlated
Gaussian (ECG) basis set expansion approaches [7, 8, 18–
22] with better than about 1% accuracy. Application of
the ECG method to systems with more than six particles

has been challenging due to the rapid increase of the num-
ber of permutations and the larger number of degrees of
freedom. Recently, Ref. [23] treated the (N1, N2) = (4, 4)
system at unitarity using a basis set that accounts for the
most important but not all correlations.

Here, we present results for small trapped unitary
Fermi gases with N ≤ 10 particles, where N = N1 +N2

and N1 −N2 = 0 or 1. Our extrapolated zero-range en-
ergy of the (4,4) system is 0.9% lower than that reported
in Ref. [23]. A new aspect of our work is that we de-
veloped an improved scheme for extrapolating the finite-
range energies to the zero-range limit. This new scheme
eliminates the linear and, in some cases, the quadratic
dependence of the ground state energies on the two-body
range. The scheme provides a consistency check on the
range-dependence of our energies and reduces the errors
that result from the extrapolation to the zero-range limit.
Our results suggest that the developed range correction
scheme allows one to obtain a reliable approximation to
the zero-range energy from a single finite-range calcu-
lation. The scheme can be applied to other numerical
calculations that work with finite-range interactions. We
use our range correction scheme to determine the zero-
range energies and the Tan contact for two-component
Fermi gases with N ≤ 10 at unitarity. In addition, we
present selected structural properties.

The remainder of this paper is organized as follows.
Section II discusses the theoretical framework and our
extrapolation scheme to the zero-range limit. Section III
presents our results for systems with up to ten particles
and compares, where available, with results from the lit-
erature. Lastly, Sec. IV concludes.

II. THEORETICAL FRAMEWORK

We consider equal-mass two-component Fermi gases
with N1 spin-up and N2 spin-down atoms (N = N1 +
N2 and N1 − N2 = 0 or 1) under external spherically
symmetric harmonic confinement with angular trapping
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frequency ω. The system Hamiltonian H(r0) reads

H(r0) =

N∑
i=1

− ~2

2m
∇2
i + Vtr(~r1, ..., ~rN )

+

N1∑
i=1

N∑
j=N1+1

V2b(rij , r0), (1)

where m denotes the atom mass, ~ri denotes the position
vector of the ith particle with respect to the trap center,
and

Vtr(~r1, ..., ~rN ) =

N∑
i=1

1

2
mω2~r2

i (2)

is the trapping potential. V2b is the interspecies two-body
interaction potential that depends on the interparticle
distance rij , rij = |~ri − ~rj |. In our work, it is modeled
by a finite-range Gaussian potential with range r0 and
depth V0 (V0 < 0),

V2b(r, r0) = V0 exp

(
− r2

2r2
0

)
. (3)

For a fixed r0, V0 is adjusted such that V2b(r, r0) has an
infinitely large s-wave scattering length as and supports
one zero-energy two-body bound state in free space. The
ranges r0 considered depend on the size of the system
and vary from 0.01aho to 0.12aho, where aho denotes the
harmonic oscillator length [aho =

√
~/(mω)]. For the

Gaussian potential with one zero-energy bound state, the
effective range reff is approximately equal to 2.032r0.

To numerically solve the Schrödinger equation for the
Hamiltonian given in Eq. (1), we separate off the cen-
ter of mass degrees of freedom and expand the eigen-
states of the relative Hamiltonian in terms of ECG ba-
sis functions, which depend on a set of non-linear vari-
ational parameters that are optimized through energy
minimization (see below) [18, 24]. The unsymmetrized
basis functions for states with Lπ = 0+ and 1− sym-
metry (L denotes the relative orbital angular momen-
tum and π the relative parity) read exp(− 1

2~x
TA~x) and

Y10(~uT~x) exp(− 1
2~x

TA~x), respectively, where A is a sym-
metric and positive definite (N − 1)× (N − 1) parameter
matrix, ~u = (u1, u2, ..., uN−1)T is a N − 1 dimensional
vector, and Y10 is a solid spherical harmonic function [24].
~x = (~x1, ~x2, ..., ~xN−1)T collectively denotes a set of N−1
Jacobi vectors. The ground state of even N systems has
0+ symmetry and that of odd N systems has 1− symme-
try. A key advantage of these basis functions is that the
corresponding overlap and Hamiltonian matrix elements
can be calculated analytically [24].

The fermionic exchange symmetry is ensured by acting
with the permutation operator A on the unsymmetrized
basis functions. The number of permutations Np in-
creases factorially with the number of identical fermions.
For the (5, 5) system, e.g., A contains (5!)2 = 14, 400 two-
particle exchange operations with alternating plus and

minus signs. The evaluation of each overlap and Hamil-
tonian matrix element involves a sum over Np terms that
are highly oscillatory. In a standard 16 digit floating
point implementation, numerical challenges arise from
the near-cancellation of the positive and negative terms
for systems with N > 8. The near-cancellation of these
terms of alternating signs can be interpreted as a rel-
ative of the fermion sign problem known from Monte
Carlo simulations [25, 26]. To ensure that the matrix
elements for the largest systems considered are accurate
to at least ten significant digits, we implemented our C
codes using extended precision. The eigenenergies and
expansion coefficients are obtained by solving a gener-
alized eigenvalue problem that involves the Hamiltonian
matrix and the overlap matrix. The numerical error of
the resulting eigenenergies is several orders of magnitude
smaller than the errors that arise from the use of a finite
basis set and the extrapolation to the zero-range limit.
In Sec. III, we report the total ground state energy E(r0)
of the Hamiltonian H(r0), i.e., we add the center of mass
energy of 3Eho/2 to the relative energy obtained by the
ECG approach. Here, Eho denotes the harmonic oscilla-
tor energy (Eho = ~ω).
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FIG. 1. (Color online) Illustration of the Jacobi coordinates
employed in our work for the (N1, N2) = (5, 4) system. The
dark vectors show the Jacobi vectors ~x1, ~x2, ..., ~x8. The spin-
up and spin-down fermions are represented by light vertical
up and down arrows.

We use a semi-stochastic variational approach to
choose and optimize the variational parameters contained
in A and ~u [24]. Our Jacobi coordinates are chosen such
that the first N2 Jacobi vectors correspond to distance
vectors between unlike particle pairs. The next N2/2 Ja-
cobi vectors correspond to the distance vectors between
the center of mass of the first pair and the second pair,
the distance vector between the center of mass of the
third pair and the fourth pair, and so on. The remain-
ing Jacobi vectors connect the larger sub-units and, for
odd N , the Nth particle (see Fig. 1 for an illustration
for N = 9). For this choice of Jacobi coordinates, the
first N2 diagonal elements of the A matrix represent
correlations between unlike particles. We expect that
these interspecies distances are, on average, smaller and
more strongly correlated than those between like parti-
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cles. This motivates us to choose the first N2 diagonal
elements of the A matrix for each basis function from
a preset non-linear grid. Specifically, the minimum and
maximum Gaussian widths for the unlike pairs are set
to r0/2 and 2aho, and a cubic grid, which places more
points in the small width region, is employed. The other
diagonal elements are chosen stochastically from preset
parameter windows. As in Ref. [23], we start with ba-
sis functions that are diagonal in A. These basis func-
tions account for the most important correlations. Once
a certain basis set size is reached (for the larger systems
around Nb = 500), we reoptimize the variational param-
eters contained in the diagonal of A, and for odd N in
~u, and allow for off-diagonal A matrix elements. The
off-diagonal matrix element at position (i, j) of the A
matrix is chosen from 0 to the geometric mean of the
ith and jth diagonal elements. We find that this choice
results with high probability in positive-definite A matri-
ces. The positive-definiteness of the A matrix is tested
through diagonalization. We refer to the reoptimization
of all variational parameters contained in A and, if appli-
cable, ~u of all Nb basis functions as a reoptimization cy-
cle. The re-optimization cycle is repeated until the lowest
energy changes by less than a preset value. After that,
we extend the basis set by a hundred to several hundred
basis functions and reoptimize the variational parame-
ters of the enlarged basis set using a variable number
of reoptimization cycles. This process is repeated a few
times. At the end, the basis is enlarged to around 2000
basis functions without additional reoptimization of the
non-linear variational parameters.

The basis set errors reported in Tables I and II of
Sec. III and Tables I-VI of the Supplemental Material [27]
are estimated by analyzing the energy decrease that re-
sults from the basis set enlargements and the reoptimiza-
tion cycles. Specifically, we find that the energy decrease
decreases with each consecutive reoptimization cycle and
enlargement of the basis set by the same number of basis
functions, suggesting that the ground state energy is con-
verging. Based on extensive calculations for the smaller
systems and selected tests for the larger systems, we es-
timate that the basis set error is roughly equal to three
times the combined energy decrease of the last reopti-
mization cycle and the final basis set enlargement. It
should be noted that our estimation of the basis set er-
ror depends on our implementation of the reoptimization
cycle (e.g., how many “trials” are used to optimize each
non-linear variational parameter, etc.).

To reach the universal regime where aho defines the
only length scale in the system, we need to extrapolate
the numerically calculated finite-range energies to the
zero-range limit. In previous ECG works [18, 19, 21–
23], this was done by fitting the finite-range energies by
a linear or quadratic function. We refer to this tra-
ditional extrapolation scheme as the zeroth-order ex-
trapolation scheme. The difference between the finite-
range energies and the extrapolated zero-range energies
is, typically, at the order of a few percent and can intro-

duce a non-negligible extrapolation error. Moreover, for
larger systems, it is computationally expensive, maybe
even prohibitively expensive, to obtain energies at very
small ranges. It should also be noted that the extrapo-
lated zero-range energies do not provide variational up-
per bounds even though the finite-range ECG energies
do. It is thus desirable to remove the linear and, ideally,
quadratic range dependence. Motivated by the general-
ized virial theorem

E(0) = 2Vtr(0) (4)

[Vtr(0) denotes the expectation value of Vtr(~r1, ..., ~rN ) for
r0 → 0] at unitarity, Werner [28] proposed to remove the
linear range-dependence of the ground state energy by
combining it with the expectation value Vtr(r0) of the
trapping potential Vtr(~r1, ..., ~rN ) calculated for the same
r0,

E(0) = 3E(r0)− 4Vtr(r0) +O(r2
0). (5)

While Eq. (5) removes the leading-order range depen-
dence, it is associated with errorbars that come from the
basis set errors of E(r0) and Vtr(r0). In our ECG method,
the basis set is optimized by minimizing the ground state
energy. Not surprisingly, we find that the convergence of
the expectation value of the trapping potential is not as
good as that of the energy. This motivates us to propose
an alternative scheme that can be carried out to higher
orders.

The ground state energy E(r0) of the N -particle sys-
tem is a smooth function of the two-body interaction
range r0. The nmaxth order Taylor series of E(r̄0) around
r0 is

E(r̄0) =

nmax∑
n=0

E(n)(r0)
1

n!
(r̄0 − r0)n (6)

+O[(r̄0 − r0)nmax+1],

where

E(n)(r0) =
∂nE(r̄0)

∂r̄n0

∣∣∣∣
r̄0=r0

(7)

is the nth order derivative of the ground state energy with
respect to the range evaluated at r0. E(0)(r0) is simply
the ground state energy E(r0) of H(r0). E(1)(r0) can be
obtained through the Hellmann-Feynman theorem [29],

E(1)(r0) =

〈
∂H(r̄0)

∂r̄0

∣∣∣∣
r̄0=r0

〉
, (8)

which is exact in the limit that the basis set is complete.
The matrix elements needed to evaluate E(1)(r0) reduce
to compact analytical expressions. E(2)(r0) can be ob-
tained by the finite difference method, i.e., by evaluating
E(1)(r0) at two nearby r0.

Our goal is to obtain the zero-range energy E(0). Set-
ting r̄0 in Eq. (6) to 0, we obtain

E(0) = EZRA,nmax
(r0) +O(rnmax+1

0 ), (9)
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where

EZRA,nmax(r0) =

nmax∑
n=0

E(n)(r0)
1

n!
(−r0)n (10)

is the nmaxth order approximation to the zero-range en-
ergy. Equations (9) and (10) establish a relation be-
tween the zero-range energy E(0) and the finite-range
energy E(r0) and its derivatives with respect to the two-
body range. EZRA,0(r0) is simply the finite-range en-
ergy E(r0) with linear leading-order range-dependence.
The leading-order range-dependence of EZRA,1(r0) and
EZRA,2(r0) is quadratic and cubic, respectively. Cru-
cial is that EZRA,1(r0) and EZRA,2(r0) are obtained
at finite r0 without extrapolation. They provide bet-
ter approximations to the zero-range energy E(0) than
EZRA,0(r0). We refer to the extrapolations of EZRA,1(r0)
and EZRA,2(r0) to the zero-range limit as the first- and
second-order extrapolation schemes. For a complete ba-
sis, EZRA,1(r0) coincides with the quantity 3E(r0) −
4Vtr(r0), i.e., formally Eq. (9) with nmax = 1 is equiv-
alent to Eq. (5). It turns out, however, that our ECG
implementation provides a more accurate estimate for
E(1)(r0) than for Vtr(r0). In Sec. III, we independently
fit EZRA,0(r0), EZRA,1(r0), and EZRA,2(r0) and compare
the resulting zero-range energies. Appendix A shows
that the functional forms of EZRA,0(r0), EZRA,1(r0), and
EZRA,2(r0) are correlated and presents the results of
a single combined fit of EZRA,0(r0), EZRA,1(r0), and
EZRA,2(r0). The resulting zero-range energy is found to
be consistent with the zero-range energies obtained from
the independent fits.

The ECG calculations become numerically more chal-
lenging with decreasing two-body interaction range r0.
The challenges arise from the need to resolve length scales
of different orders of magnitude. In previous ECG cal-
culations [21, 22], much effort was put on solving the
Schrödinger equation for systems with small r0. In this
work, we show that a reliable approximation to the zero-
range energy can be obtained by calculating EZRA,2(r0)
at a range r0 ≈ 0.1aho. We demonstrate in Sec. III that
EZRA,1(r0) and EZRA,2(r0) play important roles in ob-
taining the zero-range energy E(0) and its errorbar.

To calculate the two-body Tan contact C(r0) at uni-
tarity, we use the adiabatic energy relation [30],

C(r0) =
4πm

~2

∂E(r0)

∂(−a−1
s )

∣∣∣∣
a−1
s =0

. (11)

To obtain the two-body contact for r0 = 0, we use the
zeroth- and first-order zero-range extrapolation schemes,
i.e., we extrapolate CZRA,0(r0) and

CZRA,1(r0) = C(r0)− ∂C(r̄0)

∂r̄0

∣∣∣∣
r̄0→r0

r0 (12)

to the zero-range limit.
The contact can alternatively be calculated through

the pair relation

C(r0) = N1 ×N2 × lim
r→0,r�r0

(4π)2P12(r)r2, (13)

where P12(r) denotes the pair distribution func-
tion. The quantity r2P12(r) with normalization
4π
∫∞

0
P12(r)r2dr = 1 tells one the likelihood of find-

ing two unlike particles at distance r from each other.
The behavior of 4πP12(r)r2 around r ≈ r0 depends on
the details of the two-body interaction potential. Specif-
ically, for finite-range potentials the quantity 4πP12(r)r2

goes to zero as r → 0. For the zero-range potential, in
contrast, 4πP12(r)r2 remains finite as r → 0. Thus, to
extract the finite-range contact via the pair relation, we
consider the region where r � r0 but r � aho. In prac-
tice, the condition r � r0 translates to r & 2r0

We also consider the spherically symmetric radial den-
sity Pj(r) of species j, j = 1 and 2. For even N ,
we have P1(r) = P2(r). The quantity Pj(r) tells one
the likelihood of finding a particle at distance r from
the trap center. The normalization is chosen such that
4π
∫∞

0
Pj(r)r

2dr = 1.

III. RESULTS
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FIG. 2. (Color online) Ground state energy of the (3,2)
system at unitarity as a function of r0. Circles, squares,
and diamonds show the energies EZRA,0(r0), EZRA,1(r0), and
EZRA,2(r0), respectively, reported in the last three columns
of Table I. The uncertainty of ∆E(r0) is not accounted for
by the errorbars. Solid, dashed, and dotted lines show poly-
nomial fits to EZRA,0(r0), EZRA,1(r0), and EZRA,2(r0).

This section discusses the energies and other observ-
ables of the systems with N ≤ 10 obtained by the ECG
method. We use the (3,2) system to explain our new
range correction scheme. Column 2 of Table I shows
the finite-range energies E(r0) obtained by the ECG ap-
proach for various two-body interaction ranges r0. The
reported energies are obtained for the largest basis set
considered. They provide variational upper bounds for
the finite-range Hamiltonian with Gaussian interaction.
Column 3 reports the estimated basis set error ∆E(r0).
For all r0 considered, the basis set error is less than
0.02%. Columns 4 and 5 show the quantities E(1)(r0) and
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TABLE I. Ground state energy of the (3,2) system at unitarity. Column 2 shows the finite-range energy for the largest basis

set considered. The estimated basis set error ∆E(r0) is reported in column 3. Columns 4 and 5 report the quantities E(1)(r0)

and E(2)(r0); errorbars are given in parenthesis. The energy derivatives are calculated for the largest basis set considered.
Columns 6-8 report the energies EZRA,0(r0), EZRA,1(r0), and EZRA,2(r0). These energies account for the estimated basis set
extrapolation error, i.e., E(r0)−∆E(r0) is being used to calculate EZRA,j(r0) for j = 0, 1, and 2. The errorbars of EZRA,1(r0)

and EZRA,2(r0) account for the uncertainties of E(1)(r0) and E(2)(r0) but do not account for the uncertainty of ∆E(r0). The
last row reports the extrapolation of EZRA,j(r0) to the zero-range limit.

r0
aho

E(r0)
Eho

∆E(r0)
Eho

E(1)(r0) aho
Eho

E(2)(r0)
a2
ho

Eho

EZRA,0(r0)

Eho

EZRA,1(r0)

Eho

EZRA,2(r0)

Eho

0.07 7.5449 0.0001 1.148(7) −5.13(12) 7.5448 7.4644(5) 7.4518(8)
0.06 7.5332 0.0001 1.201(8) −4.61(25) 7.5331 7.4610(5) 7.4527(9)
0.05 7.5211 0.0004 1.240(12) −4.11(28) 7.5207 7.4587(6) 7.4536(10)
0.04 7.5084 0.0004 1.284(15) −2.85(33) 7.5080 7.4566(6) 7.4543(9)
0.03 7.4954 0.0006 1.297(26) −0.32(46) 7.4948 7.4559(8) 7.4557(10)
0.02 7.4825 0.0009 1.290(120) 0.24(96) 7.4816 7.4558(24) 7.4559(26)

0 7.4557 7.4550 7.4563

E(2)(r0), respectively. While E(1)(r0) increases slightly
with decreasing range r0, this increase is smaller than
the decrease of r0, implying that the range correction
E(1)(r0)r0 decreases with decreasing r0. The magnitude
of E(2)(r0) decreases with decreasing r0. Note that we
are not able to estimate E(2)(r0) reliably for small r0

(the errorbars are larger than the quantity itself). Yet,
the errorbars of E(2)(r0) allow us to estimate the max-
imal correction proportional to r2

0 for each r0, thereby
providing us with another means to estimate errorbars.
Columns 6-8 of Table I show EZRA,j(r0) with j = 0,
1, and 2. These values are obtained by subtracting the
basis set error ∆E(r0). The leading-order range depen-
dence of EZRA,0(r0) is linear and we perform a fit of the
form c0 +c1r0 +c2r

2
0 +c3r

3
0. The extrapolated zero-range

energy is reported in the last row of column 6. The lead-
ing order range dependence of EZRA,1(r0) is quadratic
and we perform a fit of the form c0 + c2r

2
0 + c3r

3
0 + c4r

4
0,

weighted by the inverse square of the uncertainty. The
extrapolated zero-range energy is reported in the last
row of column 7. The leading-order range dependence
of EZRA,2(r0) is cubic and we perform a fit of the form
c0 + c3r

3
0 + c4r

4
0, weighted by the inverse square of the

uncertainty. The extrapolated zero-range energy is re-
ported in the last row of column 8. Table I shows
that the zeroth-, first- and second-order extrapolation
schemes yield zero-range energies that differ by at most
0.0013Eho. This confirms that the range-dependence of
the (3,2) ground state energy for the r0 considered is well
described by a Taylor series. Moreover, we note that
EZRA,2(r0) for r0 = 0.07aho differs by only 0.0045Eho

from the extrapolated zero-range energy. This suggests
that EZRA,2(r0) obtained at a single (relatively large)
range provides a very good estimate for the zero-range
energy. Circles, squares, and diamonds in Fig. 2 show
the energies EZRA,0(r0), EZRA,1(r0), and EZRA,2(r0), re-
spectively. The fits (see the discussion above) are shown
by lines.

For systems with up to six particles (see the Supple-
mental Material [27] for a summary), we believe that our

0 0.04 0.08
r
0
/a

ho

12

12.1

12.2

12.3

E
/E

h
o

0 0.04 0.08
r
0
/a

ho

(a) (b)

FIG. 3. (Color online) Ground state energy of the (4,4) sys-
tem at unitarity. (a) Circles, squares, and diamonds show
EZRA,0(r0), EZRA,1(r0), and EZRA,2(r0), respectively, for the
largest basis set considered. The errorbars of EZRA,0(r0) show
the estimated basis set error ∆E(r0) (see column 3 of Ta-
ble II); they extend below the data points but not above. The
errorbars of EZRA,1(r0) combine the estimated basis set error

and the error of E(1)(r0) (see column 4 of Table II). Lastly,
the errorbars of EZRA,2(r0) combine the estimated basis set

error, and the errors of E(1)(r0) and E(2)(r0) (see column 5
of Table II). Solid and dashed lines show the extrapolations
of EZRA,0(r0) and EZRA,1(r0) to the zero-range limit. (b)
Same quantities as in (a) but corrected for the estimated basis
set errors. The open symbols show the energies EZRA,0(r0),
EZRA,1(r0), and EZRA,2(r0) reported in the last three columns
of Table II. The uncertainty of ∆E(r0) is not accounted for
by the errorbars. It can be seen that the basis set error low-
ers the zero-range energy by about 0.05Eho or, equivalently,
0.4%.

basis sets for all r0 are very close to complete. Specifi-
cally, (i) the energy changes very little upon further en-
largement of the basis set, (ii) the first- and second-order
derivatives E(1)(r0) and E(2)(r0) are stable and their er-
rorbars can be estimated reliably, (iii) the extrapolations
of EZRA,0(r0), EZRA,1(r0), and EZRA,2(r0) are in very
good agreement, and (iv) the quantities 3E(r0)−4Vtr(r0)
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TABLE II. Same as Table I but for the (4,4) system at unitarity.

r0
aho

E(r0)
Eho

∆E(r0)
Eho

E(1)(r0) aho
Eho

E(2)(r0)
a2
ho

Eho

EZRA,0(r0)

Eho

EZRA,1(r0)

Eho

EZRA,2(r0)

Eho

0.1 12.329 0.010 2.07(10) −18(3) 12.319 12.113(10) 12.011(25)
0.08 12.287 0.018 2.44(16) −16(4) 12.269 12.073(13) 12.015(26)
0.06 12.230 0.022 2.72(25) 12.208 12.045(15)
0.05 12.204 0.025 2.71(32) 12.179 12.043(16)
0.04 12.184 0.035 2.56(55) 12.149 12.047(22)

0 12.015 12.019

and EZRA,1(r0) agree quite well [see the discussion af-
ter Eq. (10)]. For systems with more than six particles,
the construction of a nearly complete basis set is more
challenging, especially for small r0. As an example, we
discuss the (4,4) system; for the (4,3), (5,4), and (5,5)
systems, the reader is referred to the Supplemental Ma-
terial [27].

Table II summarizes our ECG results for the (4,4) sys-
tem; the format is the same as that in Table I for the
(3,2) system. The smallest range considered and the
errorbars for the N = 8 system are larger than those
for the N = 5 system. For a fixed r0, the quantities
E(1)(r0) and E(2)(r0) for the N = 8 system are about
twice as large as for the N = 5 system and their er-
rorbars are notably larger. The overall trends, however,
are similar: (i) the energy E(r0) decreases with decreas-
ing range, (ii) E(1)(r0) increases with decreasing range
for r0 ≥ 0.06aho (for smaller r0, the trend reverses; we
believe that this is a consequence of the numerics and
not a real trend), and (iii) E(2)(r0) becomes less nega-
tive with decreasing range. Our numerics are not good
enough to determine E(2)(r0) for r0 ≤ 0.06aho. It can
be seen, however, that the EZRA,2(r0) for r0 = 0.1aho

and 0.08aho agree quite well with the energies obtained
by extrapolating EZRA,0(r0) and EZRA,1(r0) to the zero-
range limit (see the last row of Table II). Since the basis
set error is non-negligible for N = 8, Fig. 3 shows the
energies EZRA,0(r0) (circles), EZRA,1(r0) (squares), and
EZRA,2(r0) (diamonds) before correcting for the basis set
error [Fig. 3(a)] and after correcting for the basis set error
[Fig. 3(b)]. We extrapolate EZRA,0(r0) and EZRA,1(r0)
for both the largest basis set considered [Fig. 3(a)] and
the infinite basis set [Fig. 3(b)] to the zero-range limit by
performing fits of the form c0 + c1r0 + c2r

2
0 and c0 + c2r

2
0,

respectively (see solid and dashed lines in Fig. 3). To fit
a function to EZRA,1(r0), the data points are weighted
by the inverse square of the uncertainty. For the (4,4)
and larger systems, we do not fit to higher-order poly-
nomials because (i) the number of data points is five or
less and (ii) the errorbars are too large to determine the
r3
0 dependence reliably. An alternative fit approach that

includes the r3
0 term is discussed in Appendix A.

Table III summarizes our zero-range ground state en-
ergies E(0) (column 2) obtained by extrapolating the en-
ergies EZRA,1(r0), which have been shifted down by the
estimated basis set error, to the zero-range limit. The
errorbars given in parenthesis are estimated by combin-

ing the zero-range extrapolation error, the uncertainty of
the basis set error, and the uncertainty of E(1)(r0).

Our ground state energy for the (2,1) system agrees ex-
cellently with the semi-analytic energy obtained using the
zero-range framework of Ref. [31]. For comparison, Ta-
ble III includes the ground state energies from the litera-
ture obtained by various methods. Column 3 of Table III
reports the zero-range ground state energies EECG calcu-
lated by the ECG method in previous works [18, 20, 23].
Our results for the (2,2), (3,2) and (3,3) systems agree
within errorbars with the literature results. For the (3,3)
system, we provide a notably tighter errorbar. The ECG
energy for the (4,4) system by Bradly et al. [23] is about
0.9% higher than our (4,4) energy. Bradly et al. esti-
mate that the error due to the use of a restricted ba-
sis set is about 0.6% for the relative energy, translating
to 0.53% for the total energy. This estimate is in rea-
sonable agreement with the difference between their en-
ergy and our energy. Column 5 reports the FN-DMC
energies EDMC1 calculated for the square well potential
with range 0.01aho [7]. The deviations between the FN-
DMC and our ECG energies are due to the positive effec-
tive range correction and the approximate nature of the
nodal surface of the trial wave function (the latter domi-
nates). Column 7 reports highly-improved FN-DMC en-
ergies EDMC2 [12]. These energies have been extrapo-
lated to the zero-range limit. The FN-DMC energies
from Ref. [12] agree very well with our ECG energies
(the agreement is better than 0.6% and, for N = 8 and
10, the errorbars overlap). Unfortunately, Ref. [12] con-
sidered only spin-balanced systems. Columns 9 and 11
report the energies EAFMC2 and EAFMC4 calculated us-
ing the AFMC approach with q2 and q2 + q4 dispersion
relations, respectively [12]. These energies have been ob-
tained by applying a leading-order correction scheme to
convert the finite lattice results to the infinite lattice limit
but have not been extrapolated to the infinite lattice size
limit [12, 32]. Note that the AFMC energies for fixed
N but different dispersion relations do not agree within
errorbars. The reason may be that the corrections due to
the finite lattice spacing behave differently for the differ-
ent dispersion relations and that the errorbars are purely
statistical. Column 13 reports the configuration interac-
tion (CI) energies ECI obtained using a limited CI shell
model space [13]. The authors of Ref. [13] noted that the
two-body interaction strength was renormalized using an
approach that could be improved upon. Improvement to
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TABLE III. Summary of our zero-range ground state energies at unitarity and comparison with literature results for systems
with N ≤ 10 and N1 −N2 ≤ 1. Column 2 reports the zero-range ground state energies E(0) calculated in this work. Columns
3 to 16 report ground state energies from the literature calculated by different methods and their percentage differences from
E(0). All energies are reported in units of Eho. The ground state energy of the (2,1) system, obtained semi-analytically [31],
is 4.272724Eho. See text for more details.

(N1, N2) E(0) EECG % EDMC1
a % EDMC2

b % EAFMC2
c % EAFMC4

c % ECI
d % Elattice

e %
(2,1) 4.2727(1) 4.281(4) 0.2 4.279 0.1
(2,2) 5.0091(4) 5.0092(4)f 5.051(9) 0.8 5.028(2) 0.4 5.138 2.6 5.071(+32/−75) 1.2
(3,2) 7.455(1) 7.457(3)g 7.61(1) 2.1
(3,3) 8.337(4) 8.34(9)g 8.64(3) 3.6 8.377(3) 0.5 8.26(1) −0.9 8.21(1) −1.6 8.601 3.2 8.347(+80/−66) 0.1
(4,3) 11.01(2) 11.36(2) 3.2 11.021 0.1
(4,4) 12.02(3) 12.13(1)h 0.9 12.58(3) 4.7 12.04(1) 0.2 11.82(2) −1.7 11.76(3) −2.2 12.179 1.3 11.64(+11/−12) −3.2
(5,4) 15.24(9) 15.69(1) 3.0
(5,5) 16.12(6) 16.80(4) 4.2 16.10(1) −0.1 16.05(+3/−7) −0.4

a From Table II of Ref. [7]; the energies have been calculated for the square well potential with range r0 = 0.01aho, which—at
unitarity—corresponds to reff = 0.01aho.

b Read off from Fig. 4 of Ref. [12]; the FN-DMC energies have been extrapolated to the zero-range limit.
c Read off from Fig. 4 of Ref. [12]; the errorbars only account for the statistical uncertainty. A leading-order correction scheme has been

applied to convert the finite lattice results to the infinite lattice limit [12, 32].
d From Table I of Ref. [13]; the CI energies have been obtained for a finite shell model space and the two-body coupling constant has

been renormalized by matching the two-particle ground state energy to the exact energy.
e From Table VI of Ref. [10]; the upper and lower limits of the errorbars are different and separated by a slash. The errorbars account

for statistical, fitting, finite volume, and spatial discretization errors, but do not account for systematic errors due to the contributions
from excited states. We note that odd N systems were considered in Ref. [9]. The results in Ref. [9] were described as “preliminary”
and are not included here.

f From Ref. [20]; the energy has been obtained by solving the hyperangular Schrödinger equation.
g From Table XXI of Ref. [18]; the energies have been extrapolated to the zero-range limit using the zeroth-order extrapolation scheme.
h From Table II of Ref. [23]; the energy has been extrapolated to the zero-range limit using the zeroth-order extrapolation scheme.

both these aspects (enlarged CI model space and refined
renormalization approach) could change the CI energies.
Interestingly, the odd N CI energies agree quite well with
our ECG energies while the even N CI energies are higher
by between 1.3% and 3.2%. It is not clear to us what the
origin of the different even and odd N behaviors is. Col-
umn 15 reports the lattice MC energies Elattice [10]. The
lattice MC energies exhibit shell effects that are absent
in the FN-DMC, AFMC, and—for small N—ECG ener-
gies (our energies for N ≤ 10 do not exhibit shell effects).
The lattice MC energy for N = 8 is 3.2% lower than our
ECG, reflecting the shell effects exhibited by the lattice
MC energies in the small N regime. For systems with
N > 10, the lattice MC energies are higher than or equal
to (within errorbars) the FN-DMC energies EDMC2 from
Ref. [12]. The difference between the lattice MC ener-
gies and FN-DMC energies for N > 10 is smallest for
closed shell systems. Besides the results summarized in
Table III, we also compared our ground state energies
with DFT energies [14] for both even and odd N sys-
tems. The DFT energies are 5% to 10% higher than our
ECG energies.

In addition to the energies, we calculate the contact at
unitarity. To remove the leading-order range dependence,
we analyze the quantities CZRA,0(r0) and CZRA,1(r0).
While the energies EZRA,0(r0) and EZRA,1(r0) approach
the r0 = 0 limit from above and below, respectively, for
all N considered, the contacts CZRA,0(r0) and CZRA,1(r0)
approach the r0 = 0 limit from either above or below.

TABLE IV. Zero-range contact C(0) at unitarity for N = 3−
10. Column 2 reports the zero-range contact C(0) determined
using the adiabatic energy relation. C(0) for the (1, 1) system,
obtained analytically from the implicit eigenequation derived
in Ref. [33], is 4

√
2πa−1

ho = 10.026513a−1
ho . C(0) for the (2, 1)

system, obtained semi-analytically using the hyperspherical
coordinate framework [31, 34, 35], is 10.468967a−1

ho .

(N1, N2) C(0)aho

(2,1) 10.469(1)
(2,2) 25.74(1)
(3,2) 25.20(1)
(3,3) 40.39(8)
(3,4) 38.2(2)
(4,4) 55.4(5)
(5,4) 56.9(9)
(5,5) 72.3(8)

Specifically, fitting CZRA,0(r0) to a function of the form
c0 + c1r0 + c2r

2
0, we find that c1 is positive for N = 4,

very close to zero for N = 6, negative for N = 8, and
again positive for N = 10. For the odd N systems, c1 is
always positive. The pair distribution functions exhibit
an analogous range-dependence in the r0 � r � aho re-
gion (see Figs. 9 and 10 of the Supplemental Material for
the N = 5 and 8 systems), suggesting that the intricate
N and r0 dependence of the contact is a real effect and
not an artifact of our numerics. Our convergence studies
support this interpretation. Table IV reports the zero-
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range contact C(0) for N = 3− 10 at unitarity obtained
by extrapolating CZRA,1(r0) to the zero-range limit. The
errorbars in parenthesis account for the zero-range ex-
trapolation error and the basis set error. The r0 = 0 ex-
trapolations of CZRA,0(r0) and of the contact extracted
from the pair distribution functions agree with the val-
ues reported in Table IV but have larger errorbars. The
contact exhibits an interesting even-odd pattern. Specif-
ically, for the N = 4 and 5 systems (and the 6 and
7 systems, and the 8 and 9 systems), the contacts are
roughly equal, reflecting the fact that these neighboring
even-odd systems contain the same number of pairs. To
zeroth-order, the contact scales as N2 times the contact
of the two-body system, i.e., linearly with the number of
pairs. Since C(0) scales with N2, the r0 � r � aho re-
gion of the scaled pair distribution functions 4πP12(r)r2

approximately collapse to a single curve if multiplied by
N1. This approximate collapse is illustrated in Figs. 4(c)
and 4(d).
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FIG. 4. (Color online) Panels (a) and (c) show the scaled pair
distribution functions 4πP12(r)r2 and 4πN1P12(r)r2, respec-
tively, of the ground state at unitarity for the (2,2) system
(solid line), (3,3) system (dashed line), (4,4) system (dotted
line), and (5,5) system (dash-dotted line). Panels (b) and (d)
show the scaled pair distribution functions 4πP12(r)r2 and
4πN1P12(r)r2, respectively, of the ground state at unitarity
for the (2,1) system (solid line), (3,2) system (dashed line),
(4,3) system (dotted line), and (5,4) system (dash-dotted
line). The calculations are performed for r0 = 0.06aho.

Figure 5 shows the radial density P1(r) of the ground
state at unitarity for even N and r0 = 0.06aho. We
note that the convergence of the radial density in the
small r regime is not as good as that of the pair distribu-
tion function, especially for large N and small r0. P1(r)
peaks at r = 0 for the (2,2) system, is relatively flat
in the small r region for the (3,3) and (5,5) systems, and
peaks around 0.6aho for the (4,4) system. To estimate the
range dependence, we calculate P1(r) for different r0 for
the (2,2), (3,3), and (4,4) systems. For a given system,
the r . 0.5aho region of P1(r) increases with decreas-
ing two-body range r0 (see Fig. 8 of the Supplemental
Material [27]). The changes with r0 are relatively small

and the densities displayed in Fig. 5 show the generic
behavior of trapped Fermi gases with short-range inter-
actions. Figure 6 shows Pj(r), j = 1 and 2, for the odd
N systems at unitarity for r0 = 0.06aho. P1(r) and P2(r)
peak at r = 0 for the (2,1) system, are relatively flat in
the small r region for the (3,2) and (5,4) systems, and
peak around 0.5aho for the (4,3) system. We find that
the range-dependence of the radial density for the odd
N systems is similar to that for the even N systems (see
Fig. 7 of the Supplemental Material [27]).
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FIG. 5. (Color online) Radial density P1(r) of the ground
state at unitarity for the (2,2) system (solid line), (3,3) system
(dashed line), (4,4) system (dotted line), and (5,5) system
(dash-dotted line). The calculations are performed for r0 =
0.06aho.
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FIG. 6. (Color online) Panels (a) and (b) show the radial
density of the majority species P1(r) and the minority species
P2(r), respectively, for the ground state of the (2,1) system
(solid line), (3,2) system (dashed line), (4,3) system (dotted
line), and (5,4) system (dash-dotted line). The calculations
are performed for r0 = 0.06aho.

To gain insights into the pairing of the particles, Fig. 7
shows the integrated quantities N̄j(r),

N̄j(r) = 4πNj

∫ r

0

Pj(r
′)r′2dr′, (14)
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for the oddN systems. Solid and dashed lines show N̄j(r)
for the majority (j = 1) and minority (j = 2) species,
respectively. N̄j(r) monitors the number of particles of
species j located between zero and r, and approaches
Nj in the large r limit. We find that N̄1(r) and N̄2(r)
take, for N fixed, different values for all r, suggesting
that there exists no core region where the systems are
fully paired. This is in contrast to an earlier FN-DMC
study [8], which suggested that the N = 9 system has a
fully paired core. It should be noted that a fully paired
core is expected in the large N limit [36]; however, how
many particles are needed to be in the large N limit is
not clear.
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FIG. 7. (Color online) Solid and dashed lines show the in-
tegrated quantities N̄1(r) and N̄2(r), respectively, for odd N
systems as a function of r. From bottom to top, the curves
correspond to systems with N = 3, 5, 7, and 9. The hori-
zontal dotted lines at 1 to 5 serve as a guide to the eye. The
calculations are performed for r0 = 0.06aho.

IV. CONCLUSIONS

This paper considered the ground state properties of
trapped two-component Fermi gases at unitarity with
up to ten particles. The calculations were performed
for interspecies finite-range Gaussian interaction poten-
tials using the ECG approach. Previous ECG calcula-
tions were limited to N = 3 − 6 and 8. The present
work additionally considered the spin-imbalanced N = 7
and 9 systems with Lπ = 1− symmetry and the spin-
balanced N = 10 system with Lπ = 0+ symmetry. A
new range-correction scheme, which allows for the lead-
ing and—in some cases—the sub-leading range depen-
dence to be removed, was introduced. The accuracy of
the range correction scheme was tested extensively for
small N systems (N ≤ 6) and then applied to larger sys-
tems (N = 7−10). Our final results for the ground state
energy, reported in column 2 of Table III, are obtained
by extrapolating EZRA,1(r0)—corrected for by the basis
set error—to the zero-range limit. The resulting extrapo-
lated zero-range energies have errorbars that range from
0.002% for N = 3 to 0.6% and 0.4% for N = 9 and
10. The energies agree well with the FN-DMC energies
from Ref. [12], suggesting that the zero-range energies of

harmonically trapped two-component Fermi gases with
N ≤ 10 (N1 − N2 = 0 or 1) are now known with an
accuracy better than 1%. The finite-range energies were
reported for finite r0 and all N . These finite-range ener-
gies provide variational upper bounds and are expected
to help assess the accuracy of future finite-range calcula-
tions (the range r0 can be easily converted to the effective
range). In addition to the energy, the pair distribution
functions and radial densities were analyzed. The Tan
contacts obtained through the adiabatic and pair rela-
tions were found to agree within errorbars.
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Appendix A: Additional comments on the
range-correction scheme

In the main text, we independently fit the quantities
EZRA,0(r0), EZRA,1(r0), and EZRA,2(r0). The resulting
zero-range energies were found to be in good agreement.
This appendix discusses that a single correlated fit yields
results that are consistent with those obtained from the
independent fits.

We assume that the ground state energy E(r0) =
EZRA,0(r0) is a polynomial in the two-body interaction
range r0,

E(r0) = c0 + c1r0 + c2r
2
0 + c3r

3
0 +O(r4

0). (A1)

Using Eq. (A1) to calculate E(1)(r0) and E(2)(r0) and
inserting the results into Eq. (10), we find

EZRA,1(r0) = c0 − c2r2
0 − 2c3r

3
0 +O(r4

0) (A2)

and

EZRA,2(r0) = c0 + c3r
3
0 +O(r4

0). (A3)

As expected, the leading-order range-dependencies of
EZRA,1(r0) and EZRA,2(r0) are quadratic and cubic, re-
spectively, and the functional forms of EZRA,j(r0) are
not independent. Specifically, the quadratic coefficient of
EZRA,1(r0) has the opposite sign but the same magnitude
as that of EZRA,0(r0), the cubic coefficient of EZRA,1(r0)
has the opposite sign but twice the magnitude as that
of EZRA,0(r0), and the cubic coefficient of EZRA,2(r0) is
the same as that of EZRA,0(r0). Interestingly, our in-
dependent fits shown in Figs. 2 and 3 of the main text
and Figs. 1-6 of the Supplemental Material are largely
consistent with Eqs. (A1)-(A3). For example, our fits
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of EZRA,0(r0) yield a negative r2
0 coefficient and those

of EZRA,1(r0) yield a positive r2
0 coefficient. The magni-

tudes of these coefficients, however, depend fairly sensi-
tively on the number of terms included in the indepen-
dent fits.

As an alternative, we perform a simultaneous four-
parameter fit of EZRA,0(r0), EZRA,1(r0), and EZRA,2(r0)
using Eqs. (A1)-(A3). Each data point is weighted by the
inverse square of the uncertainty [for EZRA,0(r0) we as-
sume an uncertainty of 0.3∆E(r0) and the uncertainties
of EZRA,1(r0) and EZRA,2(r0) are given in Tables I and II
of the main text and Tables I-VI of the Supplemental Ma-
terial]. The resulting zero-range energies for N = 3− 10
are 4.2726Eho, 5.0088Eho, 7.454Eho, 8.335Eho, 11.01Eho,
12.02Eho, 15.25Eho, and 16.12Eho, respectively. These
energies lie within the errorbars of the zero-range ener-
gies reported in Table III. The simultaneous fit yields a
positive c1 coefficient and negative c2 and c3 coefficients
for all N . The c1 coefficient obtained from the indepen-
dent fit of EZRA,0(r0) differs from that obtained from the

simultaneous fit by less than 10% for all N .
We also apply the simultaneous fit approach to the

contact. We fit our numerically obtained CZRA,0(r0) and
CZRA,1(r0) to functions of the form c0 + c1r0 + c2r

2
0 +

c3r
3
0 and c0 − c2r2

0 − 2c3r
3
0, respectively, for N < 6, and

to functions of the form c0 + c1r0 + c2r
2
0 and c0 − c2r2

0,
respectively, for N = 7 − 10. The resulting zero-range
contacts C(0) for N = 3− 10 lie within the errorbars of
the zero-range contacts reported in Table IV.

The observed leading and sub-leading corrections to
the ground state energy for systems at unitarity with
N1 −N2 = 0 or 1 (positive c1 and negative c2) have the
same sign as those reported for the homogeneous system
(see, e.g., Ref. [11]). For the two-particle system, this
can be seen directly from the analytically known solu-
tions given in Refs. [33, 37–39]. It is interesting that this
behavior does not change with increasing number of par-
ticles. Importantly, though, the sign of the leading-order
range correction of the trapped system does depend on
the s-wave scattering length (see, e.g., Ref. [19]).
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