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We use quantum Monte Carlo and exact diagonalization calculations to study the Mott-insulator
to superconductor quantum phase transition in a two-dimensional fermionic Hubbard model with
attractive interactions in the presence of a superlattice potential. The model introduced offers unique
possibilities to study such transitions in optical lattice experiments. We show that, in regimes with
moderate to strong interactions, the transition belongs to the 3D-XY universality class. We also
explore the character of the lowest energy charge excitations in the insulating and superconducting
phases and show that they can be fermionic or bosonic depending on the parameters chosen.
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I. INTRODUCTION

The traditional microscopic approach to understand-
ing superconductivity scrutinizes the pairing instability
of a “parent” normal state [1]. If this normal state is
not a conventional state of weakly interacting electrons
(i.e., a Fermi liquid or a band-insulator), then the emerg-
ing superconductivity is not ordinary either. Many su-
perconductors fall in this category, including organic,
heavy-fermion, and all high-temperature ones (cuprates
and iron-based). Non-trivial electron correlations be-
hind superconductivity are most famously seen in the
“pseudogap” state of cuprates, and are very difficult to
understand from experimental observations [2–9]. This
is where ultracold-atom systems, which are highly tun-
able, are expected to help. However, the temperatures
required to realize the d-wave pairing of cuprates remain
prohibitively low for current ultracold atom experiments
[10]. Even obtaining long-range antiferromagnetic corre-
lations in a three-dimensional Mott insulator remains a
challenge [11–13].

With these challenges in mind, it is desirable to design
s-wave paired states that would make the “pseudogap”
physics accessible to current experiments with ultracold
fermions. Here, we study a zero temperature Mott in-
sulator of bound Cooper pairs, which gives rise to the
s-wave analogue of a pseudogap state, as well as to a
superconductor upon changing lattice parameters. We
consider a Fermi-Hubbard model in the square lattice in
the presence of a superlattice potential, with Hamiltonian

Ĥ = −t
∑
〈i j〉,σ

(ĉ†iσ ĉjσ + H.c.)− t′
∑
〈〈i j〉〉,σ

(ĉ†iσ ĉjσ + H.c.)

+U
∑
i

(
n̂i↑ −

1

2

)(
n̂i↓ −

1

2

)
+ ∆

∑
i,σ

(−1)(ix+iy)n̂iσ,(1)

where c†iσ (ciσ) are the fermionic creation (annihilation)
operators at site i, with (pseudo-)spin σ =↑, ↓, and

n̂iσ = ĉ†iσ ĉiσ are the corresponding site occupation oper-
ators. The nearest and next-nearest hopping amplitudes

are denoted by t and t′ [〈i j〉 and 〈〈i j〉〉 indicate sums
over nearest and next-nearest neighbor sites i and j],
respectively, the strength of the on-site attractive inter-
action by U < 0, and of the staggered potential by ∆.

In experiments, attractive interactions between atoms
can be generated using Feshbach resonances [14], op-
tical superlattices can be created using arrays of laser
beams [15–17], and periodically modulated optical lat-
tices allow to control the relative amplitudes and phases
between nearest and next-nearest neighbor hopping pa-
rameters [18, 19]. A recent experimental realization of
the Haldane model exemplifies these capabilities [20]. We
stress as a caveat to be kept in mind that, in experiments
using Feshbach resonances, the single-band description
based on Eq. (1) fails when the gap between different
Hubbard bands is not much larger than the other energy
scales involved in the problem [21–23].

To show what makes the model in Eq. (1) special
to study Mott-insulator to superconductor phase transi-
tions, we analyze it in two limits. In the non-interacting
limit (U = 0), Ĥ can be diagonalized in k-space, which

unveils two bands, E(k) = −4t′ cos kx cos ky±
√
ε2k + ∆2,

where the reduced Brillouin zone is given by |kx+ky| ≤ π
and |kx − ky| ≤ π, and εk = −2t [cos(kx) + cos(ky)] is
the dispersion relation in the presence only of nearest
neighbors hopping. For t′ < t/

√
2, an indirect gap opens

for ∆c = 2t′ [between (±π,0) in the lower band and

(±π/2,±π/2) in the upper band]. For t′ > t/
√

2, an
indirect gap opens for ∆c = 4t′ − t2/t′ [between (±π,0)
in the lower band and (0,0) in the upper band]. ∆c is the
critical value of ∆ for the formation of a band insulator
at half filling, i.e., a finite value of t′ stabilizes a metallic
state for nonzero values of ∆.

The other important limit is the one in which U/t 6=
0 but t′ = 0. Recalling that the attractive Hub-
bard Hamiltonian can be mapped onto a repulsive
one by the down-spin particle-hole transformation [24],

ĉi↓ ↔ (−1)
ix+iy ĉ†i↓, the staggered potential transforms

as ∆
∑

iσ(−1)(ix+iy)n̂iσ → h
∑

i(−1)(ix+iy)Ŝzi , with

Ŝzi = (n̂i↑ − n̂i↓) /2 and h = 2∆. Therefore, at half-
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filling, the staggered potential in the attractive model is
equivalent to a staggered z-magnetic field in the repulsive
one. For h = 0, the ground state of the repulsive Hubbard
model is an SU(2) symmetric Mott insulator that ex-
hibits long-range antiferromagnetic correlations. Those
translate onto long-range s-wave superconducting order
and charge density-wave order in the attractive model
(i.e., a supersolid) [24]. An infinitesimal h breaks SU(2)
symmetry and the ground state of the repulsive model
becomes an Sz antiferromagnet, which translates onto
a (charge density-wave) Mott insulator in the attractive
case, i.e., superconductivity is destroyed for any nonzero
value of ∆. For large values of h, this insulator can be
understood to be the result of pinning the pairs to the
sites with energies −∆, which precludes transport.

Now if one takes the U = 0 limit with t′ 6= 0 and
∆ < ∆c as the starting point, adding weak attractive in-
teractions generates superconductivity, i.e., contrary to
the t′ = 0 case, superconductivity is possible for ∆ 6= 0.
Increasing ∆, one can then destroy the superconductor in
favor of a Mott-insulator. Such a transition is the focus
of this work. It can be driven in real time in ultracold
fermion experiments by tuning lattice parameters. This
is to be contrasted to the Mott-insulator to superconduc-
tor transition in the cuprates, which requires changing
doping, i.e., the filling would need to be changed in real
time to drive such a transition in optical lattices.

We study Hamiltonian (1) in L×L lattices us-
ing two unbiased computational approaches: zero-
temperature (projector) determinantal quantum Monte
Carlo (PDQMC) [25, 26] and Lanczos exact diagonaliza-
tion (ED). We focus on half-filled systems (n = 〈ni↑〉 +
〈ni↓〉 = 1.0, 〈ni↑〉 = 〈ni↓〉), except when analyzing the
nature of the charge excitations. The projector param-
eter in the PDQMC calculations was set to Θt = 40,
ensuring that the we obtain ground state properties for
lattices with up to 256 sites, while the imaginary time
discretization step was taken to be δτ = 0.1. In the ED
calculations, we used translational symmetries, which al-
lowed us to solve lattices with up to 16 sites. t = 1 sets
the energy scale in all results reported in what follows.

II. RESULTS

Figure 1 depicts the phase diagram for Eq. (1), ob-
tained using ED [Fig. 1(a)] and PDQMC [Fig. 1(b)], as
given by the ∆c necessary to drive the superconductor
to Mott-insulator transition as a function of |U | and t′.
Important features visible in Fig. 1 are, (i) ∆c decreases
with increasing |U |, and, (ii) as expected from the dis-
cussion in the noninteracting limit, ∆c increases with in-
creasing t′. The first trend can be understood as both the
attractive interaction and the staggered potential favor
local pair formation and, consequently, reduce long-range
order when ∆ 6= 0 and |U | is increased. The second trend
follows from the fact that the delocalization promoted by
t′ competes with the pinning induced by ∆ and U , and
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FIG. 1. (Color online) Phase diagram of Eq. (1) obtained
via ED (a) and PDQMC (b). For U/t = 0, the dashed line
marks the boundary between the metallic and band-insulating
phases obtained analytically. For nonzero U , the surface
formed by connecting the points (which report ∆c) delim-
its the insulating (∆ > ∆c) and superconducting (∆ < ∆c)
phases. Comparing (a) and (b), one can see that ∆c is over-
estimated in the ED calculations due to finite-size effects.

enhances superconductivity.
In the ED calculations, in order to determine ∆c for

the superconductor to Mott-insulator transition at fixed
U and t′, we use the ground-state fidelity metric [27–33]

g(∆) =
2

L2

1− |〈Ψ0(∆)|Ψ0(∆ + δ∆)〉|
(δ∆)

2 , (2)

where |Ψ0(∆)〉 is the ground-state wavefunction of the
Hamiltonian for a given staggered on-site energy ∆ and
δ∆ is chosen to be small enough that the results for g(∆)
are independent of its value. g(∆) is expected to exhibit
a diverging (with increasing system size) maximum as
one crosses a second order phase transition [27–33].

Figures 2(a)–2(c) depict the fidelity metric for different
values of the onsite interaction (U = −2, −4 and −6, re-
spectively) and for four values of t′ (t′ = 0.0, 0.2, 0.4 and
0.6). For t′ = 0 and all values of U , one can see that there
is a single peak in g for ∆ ' 0. This peak signals the su-
persolid to Mott-insulator transition previously discussed
for the limit U 6= 0 but t′ = 0. The signature of such a
transition can still be seen for t′ 6= 0 in the form of a
peak at ∆ ' 0 with a height that decreases with increas-
ing t′ (notice the log scale in the y-axes). A second peak
then emerges for t′ 6= 0 signaling the superconductor to
Mott-insulator transition with increasing ∆. We take the
position of the maximum of this peak as the value of ∆c

predicted by ED. The compilation of these peak positions
provides the phase diagram reported in Fig. 1(a). Notice
that, with increasing |U |, the positions of the peaks for a
given value of t′ move towards smaller values of ∆. They
also become broader and at some point merge with the
one at ∆ ' 0. At that point, we cannot determine ∆c

using ED. This is why the phase diagram in Fig. 1(a) is
missing points for large |U | and small t′ values.

Other quantities also show clear signatures of the tran-
sition. In the presence of the superlattice potential, the
sublattices forming the bipartite square lattice possess
different onsite energies and, consequently, the site occu-
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FIG. 2. (Color online) ED results for the fidelity metric
vs ∆ in 4 × 4 lattices at half-filling, for fours values of t′

(t′ = 0, 0.2, 0.4 and 0.6), and three values of U [U = −2
(a), −4 (b) and −6 (c)]. For t′ = 0, the only peak seen in
g is the one associated with the destruction of superconduc-
tivity for any nonzero value of ∆, whereas for finite values of
t′ a second peak appears at finite values of ∆ signaling the
superconductor to Mott-insulator transition.

pation is different in the two site species. Figures 3(a)–
3(d) display the site occupation in each sublattice as a
function of ∆ for U = −2 and several values of t′. As ex-
pected, as ∆ increases, the difference between the site oc-
cupation in the sublattices increases. Remarkably, there
is a sharp increase in this difference that occurs exactly
at the value of ∆ for which the fidelity metric predicts the
superconductor to Mott-insulator transition. This sharp
increase leads to a sharp peak in the derivative of the site
occupation with respect to ∆, see Figs. 3(e)–3(h), which
resembles the peak seen in the fidelity metric.

Another observable that exhibits clear signatures of
the superconductor to Mott-insulator transition is the
binding energy

Eb = 2E0(n+ 1)− E0(n+ 2)− E0(n), (3)

where E0(n) correspond to the ground state energy of a
system with n fermions.

Figure 4 shows the binding energy vs ∆ for different
values of U and t′. The trend is similar in all of them:
for small values of ∆, before the superconductor to Mott-
insulator transition for nonzero t′ takes place, the energy
associated with the pairs decreases, and then a dip oc-
curs exactly at the transition point as detected by the
fidelity metric. For larger values of ∆, in the Mott insu-
lating phase, the binding energy steadily increases with
increasing ∆.

In turn, similar robustness against the selection of the
observable used to characterize the transition is seen in
the PDQMC calculations of much larger lattice sizes than
those amenable to exact diagonalization. An observable
of much interest in experiments with ultracold fermions
in optical lattices is the double occupancy. It was used,
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FIG. 3. (Color online) (a)–(d) Site occupation 〈n̂i↑ + n̂i↓〉
in each sublattice (labeled by n+∆ and n−∆) as a function
of ∆ for different values of t′ and U = −2. Vertical dashed
lines mark the superconductor-insulator transition obtained
through the fidelity metric. (e)–(h) Derivative of the site
occupations in (a)–(d) with respect to ∆. All results were
obtained by means of ED in a 4× 4 lattice at half-filling.

e.g., in Ref. [34] to detect the Mott insulating phase
when increasing the onsite repulsion between fermions.
In Fig. 5, we plot the double occupancy in the two sub-
lattices vs ∆ for U = −4 and different values of t′ in a
14×14 lattice. A kink can be seen in the behavior of this
observable around (slightly after) the critical value of ∆
obtained in the finite size scaling of the pair structure
factor (see the following subsection).

Another local quantity that exhibits a clear signature
of the superconductor to Mott-insulator transition is the

0 0.5 1
∆

0.02

0.03

0.04

0.05

0.06

0.07

0.08

E
b
in
d
in
g
/N

0 0.2 0.4 0.6
∆

0.06

0.08

0.1

0.12

0.14

t’ = 0

t’ = 0.2

t’ = 0.4

t’ = 0.6

0 0.2 0.4
∆

0.12

0.14

0.16

0.18

0.2

0.22

0.24
(a) U = -2 (b) U = -4 (c) U = -6

FIG. 4. (Color online) Binding energy as a function of ∆ for
U = −2,−4 and −6, and different values of t′. The dashed
lines, which coincide with the minimum in the dips of the
binding energy, report the values of ∆c provided by the fi-
delity metric. All results were obtained by means of ED in a
4× 4 lattice with n = 16.
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values of t′ in systems with U = −4 and 14 × 14 sites. The
vertical dashed lines show the value of ∆c as obtained in the
finite-size scaling analysis of the pair structure factor.

kinetic energy associated with next-nearest neighbor hop-

pings, i.e., kNNN = −(t′/N)
∑
〈〈i j〉〉,σ〈ĉ

†
iσ ĉjσ + ĉ†jσ ĉiσ〉),

where N = L × L. As shown in Figs. 6(a)–6(c), the ab-
solute value of kNNN decreases with increasing ∆. This
observable also exhibits a kink right after ∆c as predicted
by the scaling analysis. The derivatives of kNNN with re-
spect to ∆, shown in Figs. 6(d)–6(f), exhibit clear peaks
about ∆c with maxima right before the value of ∆c re-
ported in the phase diagram.

Summarizing, the ED and the PDQMC results for var-
ious observables studied indicate the occurrence of the
superconductor to Mott-insulator transition at exactly
the same value of ∆ as the fidelity metric. Hence, the

results reported in the phase diagram (Fig. 1) are robust
against the selection of the observable.

A. Universality class of the transition

The PDQMC calculations have the advantage that
they allow us to study much larger lattice sizes and, after
a proper finite-size scaling analysis, determine ∆c in the
thermodynamic limit. We take the pair structure factor

P =
∑
i,j〈P̂jP̂

†
i 〉, with P̂i = ĉi↑ĉi↓, to be the order pa-

rameter to locate the superconductor to Mott-insulator
transition (as mentioned in the previous section, other
observables give similar results). The limit |U |/t� 1, for
t′ = 0, provides guidance on the nature of the supercon-
ductor to Mott-insulator transition for strong attractive
interactions. Second-order perturbation theory in t/|U |
reveals that Eq. (1) becomes equivalent to a Hamilto-
nian for hard-core bosons with site creation (annihila-

tion) operator b̂†i = P̂ †i (b̂i = P̂i) [24, 35] in a superlat-
tice. The phase diagram for the latter model was studied
in Refs. [36, 37] in two (2D) and three (3D) dimensions.
At half-filling, this model exhibits a superfluid to Mott-
insulator transition with increasing ∆ that belongs to
the (d+1)-XY universality class [36, 37], like the integer
filling Mott transition in the Bose-Hubbard model [38].
The addition of t′ to the hard-core boson model does
not break its particle-hole symmetry. Hence, it does not
qualitatively change the phase diagram in Refs. [36, 37].

Remarkably, at half-filling, the pair structure fac-

tor can be written as P =
∑
i,j〈P̂

†
i P̂j〉, i.e., it maps

onto the zero momentum mode occupation in the hard-

core boson model, mk=0 =
∑
i,j〈b̂

†
i b̂j〉. In the insulat-

ing phase of the latter quantum system in 2D one ex-

pects 〈b̂†i b̂i+r〉 ∝ r−(1+η)e−r/ξ at long distances, as in
the corresponding disordered 3D classical phase, where
η(= 0.0381 ± 0.0002 [39]) is the anomalous scaling di-
mension and ξ the correlation length. Near the tran-
sition, mk=0 diverges with ξ as mk=0 ∼ ξ1−η [40, 41]
and the fraction f0 of pairs that condense in a finite
system (ξ → L) vanishes as f0 ∼ L−(1+η) [40, 41].
Hence, f0 scales as f0L

1+η = F (|∆−∆c|L1/ν) [41], with
ν = 0.6717 ± 0.0001 [39]. Turning back to fermions, we
can write

(P/Npairs)L
1+η = F (|∆−∆c|L1/ν), (4)

where the number of pairs is Npairs = L2/2.
Figure 7 shows the scaled pair-structure factor vs ∆

for two values of U and two values of t′. In all cases the
curves cross at a single point (∆c), as expected from the
scaling ansatz (4). That point moves toward larger val-
ues of ∆, from Fig. 7(a) to Fig. 7(b), as t′ is increased at
constant U , and moves toward smaller values of ∆, from
Fig. 7(b) to Fig. 7(c), as |U | is increased at constant
t′. The insets show that, close to the crossing points,
the data exhibits an almost perfect collapse according to
the scaling ansatz (4). To further test this scaling hy-
pothesis, we calculate the sum of the squared residuals
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FIG. 7. (Color online) (a)–(c) show the scaled pair-structure
factor as a function of ∆ for different values of U and t′. The
curves cross at ∆c. The insets, show the scaling collapse for
the same parameters as in the main panels. (d)–(f) show
contour plots of the sum of the squared residuals S(∆c, ν, η)
of fits of F with eight-degree polynomials, for the parame-
ters in panels (a)–(c), respectively. We set the value of η to
0.0381 [39] and found the minima of S, as signaled by the
white dots, for the unknown parameters ν and ∆c. ν at the
minima is close to the expected ν = 0.67 result.

S(∆c, ν, η = 0.0381) of fits of F with high-order polyno-
mials (orders 6, 8 and 10) in a fine mesh of values for ∆c

and ν. The value of ν at which S is minimum for those
polynomials is close to ν = 0.67, and the average value
is 0.65± 0.08, 0.66± 0.04 and 0.64± 0.02 [42] for the pa-
rameters in Figs. 7(a)–7(c), respectively. These analyses
show that, for those values of U , the superconductor to
Mott-insulator transition in our fermionic model belongs
to the 3D XY universality class. This despite the fact
that the results are for a regime in which |U | is of the
order of 1/2 the bandwidth of the noninteracting system
with ∆ = t′ = 0 and, as such, strong coupling perturba-
tion theory is not appropriate to describe the system. A
compilation of crossing points as those in Fig. 7 allowed
us to generate the phase diagram in Fig. 1(b). Unfortu-
nately, for |U | < 4 and t′ 6= 0, the values of the projec-
tion parameters Θ needed to obtain ground-state results
are too large and the PDQMC calculations become pro-
hibitively long and unstable, so we do not report results
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FIG. 8. (Color online) ED results for the ground state en-
ergy (GS), as well as the energies of the first fermionic (FE)
and bosonic (BE) charge excitations vs ∆ for different values
of U and t′. The crossing points between the BE and FE
curves (marked by the vertical dotted line) signal a change
in the character of the lowest charge excitations. We report
the energies per particle, E/N where N is the total number
of particles, in 4 × 4 lattices. Dashed and dash-dotted line
signal the superconductor-insulator transition using ED and
PDQMC, respectively.

in the phase diagram for |U | < 4. Still, for U = −4, we
can compare the ED and PDQMC results. They show
that the values of ∆c in the former are overestimated due
to finite size effects.

B. Charge excitations

The observed universality class of the superconductor–
Mott-insulator transition indicates that the lowest-
energy charge excitations have bosonic character in both
the superconducting and insulating phases near the tran-
sition. However, those excitations must be fermionic
deep in the insulating phase. The insulating region with
bosonic low-energy excitations is the s-wave equivalent
of the pseudogap state (a crossover regime rather than
a thermodynamic phase). In what follows, we explore
when the lowest charge excitations change from bosonic
to fermionic. In Fig. 8, we show the ground-state energy
at half-filling as well as the energies of the lowest excited
states with two extra fermions (Sz = 0, lowest energy
bosonic excitation) and an extra fermion (Sz = 1/2, low-
est energy fermionic excitation) as a function of ∆ for
two values of U and two values of t′.

Figures 8(a) and 8(b) show that, for the values of ∆
at which the superconductor to Mott-insulator transi-
tion occurs for U = −6, the lowest energy excitations
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in both phases are bosonic. However, there is a value
of ∆ > ∆c for which those excitations (within the Mott
phase) change from bosonic to fermionic. That value of
∆ decreases as t′ increases [Fig. 8(a) vs Fig. 8(b)] and as
U decreases [left vs right panels in Fig. 8]. For U = −4
[Figs. 8(c) and 8(d)], the ED calculations predict that the
transition from bosonic to fermionic excitations occurs
in the Mott phase for t′ = 0 and in the superconducting
phase for t′ = 0.2. The latter is attributed to finite size ef-
fects as it contradicts the expectation from the PDQMC
results. Also, in the weak coupling limit, field-theory
arguments anticipate the transition to be in the XY uni-
versality class [43, 44]. These results are nontrivial, even
though any attractive short-range potential gives rise to
bound states (Cooper “molecules”) in 2D, because if in-
teractions are not strong enough those “molecules” need
not be small in comparison to the interparticle separa-
tion, i.e., bound-state condensation need not occur.

III. SUMMARY

We have introduced and studied a 2D model that un-
dergoes a superconductor to insulator transition. We
determined its phase diagram using ED and PDQMC
calculations, and showed that, in the parameter regime
accessible to PDQMC, the transition belongs to the 3D-

XY universality class. Our results echo the well-known
XY transition of the bosonic Hubbard model, but in a
fermionic system. We explored the nature of the lowest
energy charge excitations and showed that they change
from bosonic to fermionic in the insulating phase. Our
numerical demonstration of “pseudogap” physics in a re-
alizable model enables a new route for the experimental
exploration of high-temperature superconductivity using
ultracold atoms. While there are many microscopic dif-
ferences between our model and real superconductors,
there are also several universal similarities that can be
exploited. Most notably, the dynamics of our system
shares a lot in common with charge and vortex dynamics
near the superconducting transition in layered or quasi-
2D superconductors.
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[16] S. Fölling, S. Trotzky, P. Cheinet, M. Feld, R. Saers,
A. Widera, T. Müller, and I. Bloch, Nature 448, 1029
(2007).

[17] P. J. Lee, M. Anderlini, B. L. Brown, J. Sebby-Strabley,
W. D. Phillips, and J. V. Porto, Phys. Rev. Lett. 99,
020402 (2007).

[18] H. Lignier, C. Sias, D. Ciampini, Y. Singh, A. Zenesini,
O. Morsch, and E. Arimondo, Phys. Rev. Lett. 99,
220403 (2007).

[19] A. Zenesini, H. Lignier, D. Ciampini, O. Morsch, and
E. Arimondo, Phys. Rev. Lett. 102, 100403 (2009).

[20] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat,
T. Uehlinger, D. Greif, and T. Esslinger, Nature 515,
237 (2014).

[21] L.-M. Duan, Physical review letters 95, 243202 (2005).
[22] R. B. Diener and T.-L. Ho, Physical review letters 96,

010402 (2006).
[23] J. K. Chin, D. Miller, Y. Liu, C. Stan, W. Setiawan,

C. Sanner, K. Xu, and W. Ketterle, Nature 443, 961
(2006).



7

[24] R. Micnas, J. Ranninger, and S. Robaszkiewicz, Rev.
Mod. Phys. 62, 113 (1990).

[25] A. Muramatsu, “Quantum monte carlo methods in
physics and chemistry,” (Kluwer Academic, 1999) pp.
343–373.

[26] F. F. Assaad, “Quantum simulations of complex many-
body systems: From theory to algorithms,” (John von
Neumann Institute for Computing (NIC), 2002) pp. 99–
155.

[27] P. Zanardi and N. Paunković, Phys. Rev. E 74, 031123
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