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Abstract
In a gas of ultracold atoms whose scattering length is controlled by a magnetic Feshbach reso-

nance, atoms can be associated into universal dimers by an oscillating longitudinal magnetic field.

In addition to the harmonic resonance with frequency near that determined by the dimer bind-

ing energy, there is a subharmonic resonance with half that frequency. If the thermal gas contains

dimers, they can be dissociated into unbound atoms by the oscillating magnetic field. We show that

the transition rates for association and dissociation can be calculated by treating the oscillating

magnetic field as a sinusoidal time-dependent perturbation proportional to the contact operator.

Many-body effects are taken into account through transition matrix elements of the contact opera-

tor. We calculate both the harmonic and subharmonic transition rates analytically for association

in a thermal gas of atoms and for dissociation in a thermal gas of dimers.
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I. INTRODUCTION

The use of magnetic Feshbach resonances to control the interaction strengths of ultracold
atoms has led to significant advances in our understanding of strong interactions in few-body
and many-body physics. The effects of time-dependent strong interactions can be studied
by using a time-dependent longitudinal magnetic field. A particularly interesting case is a
sinusoidal modulation. Atoms can be associated into universal molecules composed of atoms
with a large scattering length by modulating the magnetic field with a frequency near the
binding frequency of the molecule. The measurement of the binding energy of a molecule
by observing a loss resonance near the binding frequency is called magnetic-field modulation
spectroscopy or sometimes wiggle spectroscopy.

The association of atoms into dimers by the longitudinal modulation of the magnetic
field was pioneered by Thompson, Hodby, and Wieman, who used it to associate 85Rb atoms
into dimers [1]. Greiner, Regal, and Jin used magnetic-field modulation to dissociate paired
fermions and excite a collective mode in a gas of 40K atoms in the BCS-BEC crossover region
[2]. Papp and Wieman used magnetic-field modulation spectroscopy to measure the binding
energies of dimers composed of 85Rb and 87Rb atoms [3]. Weber et al. used a modulated
magnetic field to associate 41K and 87Rb atoms into dimers and to measure their binding
energies [4]. They also observed subharmonic resonances near half the binding frequency
of the dimer. Lange et al. used magnetic-field modulation spectroscopy to measure the
binding energies of 133Cs dimers [5]. Pollack et al. used a modulated magnetic field to excite
collective modes in a Bose-Einstein condensate of 7Li atoms [6]. Gross et al. and Machtey
et al. used a modulated magnetic field to associate 7Li atoms into dimers [7, 8] and into
Efimov trimers [9]. Dyke, Pollack, and Hulet used magnetic-field modulation spectroscopy
to measure the binding energies of 7Li dimers in both a Bose-Einstein condensate and a
thermal gas [10]. In the thermal gas, they also observed a subharmonic resonance. Smith
recently pointed out that a sinusoidally oscillating magnetic field near a Feshbach resonance
can be used to control the scattering length, and he showed that the resonance parameters
are universal functions of the magnetic field [11].

A theoretical treatment of the association of atoms into dimers by an oscillating lon-
gitudinal magnetic field was first presented by Hanna, Köhler, and Burnett in 2007 [12].
They described the two-atom system by a two-channel model consisting of a continuum of
atom-pair states and a discrete molecular state. They calculated the probability for the
association of atom pairs into dimers as a function of time by solving the time-dependent
Schrödinger equation for the two coupled channels. Their results for the association proba-
bilities were completely numerical. Brouard and Plata simplified the problem to a two-state
model consisting of an atom-pair state and a molecular state [13]. They deduced some
qualitative aspects of the harmonic and subharmonic association processes from an analytic
approximation to the two-state problem. Bazak, Liverts and Barnea considered the associ-
ation of atoms into dimers by a modulated magnetic field whose oscillatory component is in
an arbitrary direction [14]. They used first-order time dependent perturbation theory and
Fermi’s Golden Rule to obtain an analytic result for the association rate as a function of
the oscillation frequency. Their result vanishes if the oscillatory component of the magnetic
field is longitudinal.

A much simpler approach to this problem was recently introduced in Ref. [15]. It was
inspired by Tan’s adiabatic relation, which expresses the change in the energy E of a system
due to a change in the scattering length a in terms of an extensive thermodynamic variable
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that is conjugate to 1/a called the contact C [16]. In the case of fermions with mass m and
two spin states, the adiabatic relation is

d

d(1/a)
E = − h̄2

4πm
C. (1)

(In the case of identical bosons, the right side should be multiplied by 1/2.) Ref. [15]
pointed out that the transition rates for the association of atoms into universal dimers can
be calculated by treating the oscillating longitudinal magnetic field as a sinusoidal time-
dependent perturbation proportional to the contact operator. The association rates were
calculated for a thermal gas of atoms and for a dilute Bose-Einstein condensate of atoms. In
this approach, many-body effects are taken into account through transition matrix elements
of the contact operator.

In this paper, we extend the approach of Ref. [15] to subharmonic transitions and to
the dissociation rates of universal dimers. In Sections II, we derive general formulas for the
harmonic and subharmonic transition rates using time-dependent perturbation theory. In
Sections III and IV, we calculate the leading harmonic contributions to the association rate
in a thermal gas of atoms and the dissociation rate in a thermal gas of dimers. They come
from a first-order perturbation in the contact operator. In Sections V and VI, we calculate
the dominant subharmonic contributions to the association rate in a thermal gas of atoms
and the dissociation rate in a thermal gas of dimers. They come from a second-order per-
turbation in the contact operator. In Section VII, we describe briefly previous experiments
on association using longitudinal modulation of the magnetic field. In Section VIII, we de-
scribe briefly previous theoretical treatments of association into dimers using longitudinal
modulation of the magnetic field. We summarize our results in Section IX.

II. TRANSITION RATES

In this section, we derive general formulas for transition rates at first order and second
order in time-dependent perturbation theory. We focus on the case of fermionic atoms with
equal mass m and two spin states. (We also give the corresponding results for identical
bosons.)

A. Perturbing Hamiltonians

Near a magnetic Feshbach resonance, the scattering length a of the atoms is a function
of the magnetic field:

a(B) = abg[1−∆/(B −B0)], (2)

where abg is the background scattering length and B0 and B0+∆ are the positions of the pole
and the zero of the scattering length, respectively. We consider a time-dependent magnetic
field with a fixed direction ẑ. Its magnitude has a constant bias value B̄ for t < 0, and it is
modulated with a small amplitude b around that bias value for t > 0:

B(t) = B̄ẑ t < 0, (3a)

=
[
B̄ + b sin(ωt)

]
ẑ t > 0. (3b)
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If the magnetic field B in Eq. (2) is replaced by the oscillating field B̄ + b sin(ωt), it implies
a time-dependent scattering length a(t).

Tan’s adiabatic relation in Eq. (1) implies that the leading perturbation in the Hamilto-
nian for t > 0 is proportional to the contact operator:

H(t)−H(0) = − h̄2

4πm

(
1

a(t)
− 1

ā

)
C, (4)

where ā = a(B̄) is the scattering length for the bias magnetic field. In Appendix A, quantum
field theory methods are used to argue that this is the only perturbation that contributes
in the zero-range limit. The inverse scattering length can be expanded in powers of b:

1

a(t)
=

1

ā
− 1

abg

(
b∆

(∆ +B0 − B̄)2

)
sin(ωt)− 1

abg

(
b2∆

(∆ +B0 − B̄)3

)
sin2(ωt) + . . . . (5)

The coefficients of the powers of b have well-behaved limits as B̄ approaches the Feshbach
resonance at B0. Inserting the expansion in Eq. (5) into Eq. (4), we can identify terms in
the perturbing Hamiltonian that are first and second order in b:

H1(t) =
h̄2

4πmabg

(
b∆

(∆ +B0 − B̄)2

)
C sin(ωt), (6a)

H2(t) =
h̄2

4πmabg

(
b2∆

(∆ +B0 − B̄)3

)
C sin2(ωt). (6b)

(In the case of identical bosons, the right sides should be multiplied by 1/2.) If |b| � |∆|,
the effects of H1 and H2 can be taken into account as time-dependent perturbations. The
first-order perturbation in H1 drives transitions to states whose energies are higher or lower
by h̄ω. We refer to such transitions as harmonic transitions. The first-order perturbation in
H2 and the second-order perturbation in H1 both drive transitions to states whose energies
differ by 0 or ±2h̄ω. We refer to transitions to states whose energies are higher or lower by
2h̄ω as subharmonic transitions.

B. Fermi’s Golden Rule

We first consider transitions from the first-order perturbation in H1. We take the initial
state |i〉 to be an energy eigenstate with energy Ei. We consider the transition to a distinct
energy eigenstate |f〉 with energy Ef . At first order in perturbation theory, the probability
amplitude for the final state |f〉 at time T is

a
(1)
f (T ) =

ih̄

8πmabg

(
b∆

(∆ +B0 − B̄)2

)[
ei(ωfi+ω)T − 1

ωfi + ω
− ei(ωfi−ω)T − 1

ωfi − ω

]
〈f |C|i〉, (7)

where ωfi = (Ef − Ei)/h̄. The two terms inside the brackets have absolute values that
increase linearly with T in the limits ωfi → −ω and ωfi → +ω, respectively. By applying
Fermi’s Golden Rule, we obtain the transition rate summed over final states |f〉:

Γ
(1)
1 (ω) =

h̄2

64π2m2a2
bg

(
b∆

(∆ +B0 − B̄)2

)2∑
f

∣∣〈f |C|i〉∣∣2∑
±

2πδ(ωfi ± ω). (8)
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(In the case of identical bosons, the prefactor should be multiplied by 1/4.) This transition
rate is non-zero only for final states whose energy differs from Ei by ±h̄ω, so it contributes

to the harmonic transition rate Γ1(ω). The superscript (1) on Γ
(1)
1 indicates that it comes

from the first-order perturbation in H1.
We next consider transitions from the first-order perturbation in H2. At first order in

perturbation theory, the probability amplitude for the final state |f〉 at time T is

a
(2)
f (T ) =

h̄

16πmabg

(
b2∆

(∆ +B0 − B̄)3

)[
ei(ωfi+2ω)T − 1

ωfi + 2ω
+
ei(ωfi−2ω)T − 1

ωfi − 2ω
+ . . .

]
〈f |C|i〉.

(9)
Inside the brackets, we have shown explicitly only those terms whose absolute values increase
linearly with T in the limits ωfi → ±2ω. By applying Fermi’s Golden Rule, we obtain the
transition rate summed over final states |f〉:

Γ
(2)
2 (ω) =

h̄2

256π2m2a2
bg

(
b2∆

(∆ +B0 − B̄)3

)2∑
f

∣∣〈f |C|i〉∣∣2∑
±

2πδ(ωfi ± 2ω). (10)

(In the case of identical bosons, the prefactor should be multiplied by 1/4.) This transition
rate is nonzero only for final states whose energy differs from Ei by ±2h̄ω, so it contributes

to the subharmonic transition rate Γ2(ω). The superscript (2) on Γ
(2)
2 indicates that it

comes from the first-order perturbation in H2. The subharmonic transition rate in Eq. (10)
is determined by the same transition matrix element 〈f |C|i〉 of the contact operator as the
harmonic transition rate in Eq. (8). It can be expressed in terms of the leading harmonic
transition rate at twice the frequency:

Γ
(2)
2 (ω) =

1

4

(
b

∆ +B0 − B̄

)2

Γ
(1)
1 (2ω). (11)

Finally we consider transitions from the second-order perturbation in H1. At second
order in perturbation theory, the probability amplitude for the final state |f〉 at time T is

a
(1,1)
f (T ) = − h̄2

64π2m2a2
bg

(
b∆

(∆ +B0 − B̄)2

)2∑
m

〈f |C|m〉〈m|C|i〉

×
[

ei(ωfi+2ω)T − 1

(ωfi + 2ω)(ωmi + ω)
+

ei(ωfi−2ω)T − 1

(ωfi − 2ω)(ωmi − ω)
+ . . .

]
, (12)

where the sum is over intermediate states |m〉. Inside the brackets, we have shown explicitly
only those terms whose absolute values increase linearly with T if ωfi is ±2ω. By applying
Fermi’s Golden Rule, we obtain the transition rate summed over final states |f〉:

Γ
(1,1)
2 (ω) =

h̄4

4096π4m4a4
bg

(
b∆

(∆ +B0 − B̄)2

)4∑
f

∑
±

∣∣∣∣∣∑
m

〈f |C|m〉〈m|C|i〉
ωmi ± ω

∣∣∣∣∣
2

2πδ(ωfi ± 2ω).

(13)
(In the case of identical bosons, the prefactor should be multiplied by 1/16.) This transition
rate is nonzero only for final states whose energy differs from Ei by ±2h̄ω, so it contributes

to the subharmonic transition rate Γ2(ω). The superscript (1,1) on Γ
(1,1)
2 indicates that it
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comes from the second-order perturbation in H1. There is an additional factor of 1/a2
bg in

the prefactor for Γ
(1,1)
2 compared to Γ

(2)
2 . The relative importance of these two contributions

is determined by the canceling length scales provided by the contact matrix elements and the

frequency denominator. If Γ
(1,1)
2 and Γ

(2)
2 have the same order of magnitude, the interference

between the first-order perturbation in H2 and the second-order perturbation in H1 would
have to be taken into account. By explicit calculations of subharmonic transition rates in a

thermal gas, we will find that the additional dimensionless factor in Γ
(1,1)
2 is (ā/abg)2. Thus

Γ
(1,1)
2 is much larger than Γ

(2)
2 if B̄ is near a Feshbach resonance.

C. Thermal System

The transitions rates in Eqs. (8), (10), and (13) apply to an initial state |i〉 that is
an energy eigenstate. A thermal system is described instead by a density matrix. For
a completely thermalized system, the density matrix is ρ = exp(−βH)/Tr(exp(−βH)),
where H is the Hamiltonian and β = 1/kBT . By expressing the modulus-squared of an
amplitude as the product of the amplitude and its complex conjugate, the dependence on
the initial state in Eqs. (8), (10), and (13) can be put in the form of the projection operator
|i〉〈i| multiplied by a function F (Ei) of the initial energy that includes the frequency delta
function. If the density matrix ρ is diagonal in an energy basis, the transition rate is obtained
by making the substitution

F (Ei) |i〉〈i| −→
∑
i

F (Ei) |i〉〈i|ρ|i〉〈i|. (14)

D. Homogeneous System

The contact operator C is an extensive variable. It can be expressed as the integral over
space of the contact density operator:

C =

∫
d3r C(r). (15)

If the initial and final states are homogeneous systems, we can simplify the transition rates
by expressing them in terms of matrix elements of the contact density operator.

The harmonic transition rate Γ
(1)
1 (ω) in Eq. (8) and the subharmonic transition rate

Γ
(2)
2 (ω) in Eq. (10) involve the factor |〈f |C|i〉|2. By inserting the expression for C in Eq. (15),

we obtain matrix elements of the contact density at two different positions. We can use
translational invariance to put both operators at the same position r. One of the integrals
over space then gives a momentum-conserving delta function. The resulting expression for
the modulus-squared of the transition matrix element is∑

f

∣∣〈f |C|i〉∣∣2 =
∑
f

(2π)3δ3(Kf −Ki)

∫
d3r
∣∣〈f |C(r)|i〉

∣∣2, (16)

whereKi andKf are the total wave vectors of the initial and final states of the homogeneous

system, respectively. Homogeneity implies that
∣∣〈f |C(r)|i〉

∣∣2 is independent of the position
r. Thus the integral

∫
d3r in Eq. (16) just gives a factor of the volume V .
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The subharmonic transition rate Γ
(1,1)
2 (ω) in Eq. (13) involves the product of four matrix

elements of C. By inserting the expression for C in Eq. (15), we obtain matrix elements
of the contact density at four different positions. We can use translational invariance to
put all four operators at the same position r. Three of the integrals over space then give
momentum-conserving delta functions. The resulting expression for the factor in Eq. (13)
that involves matrix elements of C is

∑
f

∣∣∣∣∣∑
m

〈f |C|m〉〈m|C|i〉
ωmi ± ω

∣∣∣∣∣
2

=
∑
f

(2π)3δ3(Kf −Ki)

∫
d3r

×
∑
m

(2π)3δ3(Km −Ki)
〈f |C(r)|m〉〈m|C(r)|i〉

ωmi ± ω

×
∑
m′

(2π)3δ3(Km′ −Ki)
〈i|C(r)|m′〉〈m′|C(r)|f〉

ωm′i ± ω
, (17)

where Km and Km′ are the total momenta of the intermediate states |m〉 and |m′〉, respec-
tively. Homogeneity implies that the integrand is independent of the position r. Thus the
integral

∫
d3r just gives a factor of the volume V .

E. Local Density Approximation

For a many-body system whose number density varies slowly with the position r, the
transition rate can be simplified by using the local density approximation. The transition rate
is an extensive quantity. For a homogeneous system, the expressions obtained by inserting
Eq. (16) or Eq. (17) into the transition rate have an explicit factor of the volume

∫
d3r = V .

If the transition rate is also proportional to the total number Ni of some type of particle,
the additional factor must be the intensive combination Ni/V . For a homogeneous system
consisting of fermionic atoms with spin states 1 and 2, the association rate is proportional
to N1N2. The local density approximation for the association rate in a system with local
number densities n1(r) and n2(r) can be obtained by making the substitution

N1N2/V −→
∫
d3r n1(r)n2(r). (18)

For a homogeneous system consisting of dimers, the disssociation rate is proportional to their
total number ND. The local density approximation for the disssociation rate in a system
with local number density nD(r) can be obtained by making the substitution

ND −→
∫
d3r nD(r). (19)

III. HARMONIC ASSOCIATION RATE

A pair of atoms with a large positive scattering length can be associated into a universal
dimer by an oscillating magnetic field. In this section, we calculate the harmonic association
rate in a thermal gas of atoms. We also give the subharmonic association rate from first-
order perturbation theory. We consider a gas of atoms that is in thermal equilibrium at
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temperature T . For simplicity, we take the number densities n1 and n2 of the atoms to be
sufficiently low that their distributions are given by Boltzmann statistics instead of Fermi-
Dirac statistics.

A. Initial and Final States

We first consider a homogeneous gas consisting of N1 atoms of spin state 1 and N2

atoms of spin state 2 in a volume V . The two spin states interact with a large positive
scattering length ā. The universal dimer has a small binding energy h̄2/mā2. For a gas in
thermal equilibrium, the harmonic transition rate is given by Eq. (8) with the substitution
in Eq. (14), where ρ = ρgas is the density matrix for the thermal gas of atoms. To simplify
the presentation, we will temporarily ignore the frequency delta function, which depends on
the energy Ei of the states in the density matrix. The terms in Eq. (8) that depend on the
contact operator can then be expressed compactly as

∑
f〈f |CρgasC|f〉. We will insert the

frequency delta function at the end of the calculation.
In the low-density limit where 3-body and higher-body correlations can be neglected, the

density matrix ρgas can be expressed in terms of the density matrix ρpair for a pair of atoms
in thermal equilibrium: ∑

f

〈f |CρgasC|f〉 = N1N2

∑
f

〈f |CρpairC|f〉. (20)

The factor N1N2 is the number of pairs of fermions in the two spin states. (For a gas of
N identical bosons, the number of pairs is N2/2.) The pair density matrix is normalized:
Tr(ρpair) = 1. On the left side of Eq. (20), the sum over f is over many-body final states
that include a single dimer. On the right side, the sum over f is over two-atom final states
that consist of a single dimer. The density matrix for a pair of atoms in thermal equilibrium
is

ρpair =
λ6

T

V 2

∫
K

∫
k

exp(−βh̄2K2/4m− βh̄2k2/m)|K,k〉〈k,K|, (21)

where β = 1/kBT and λT is the thermal deBroglie wavelength for an atom with mass m:

λT =

√
2πh̄2/mkBT . (22)

The two-atom states |K,k〉 in Eq. (21) are labeled by the center-of-mass wave vector K =
k1 + k2 and the relative wave vector k = (k1 − k2)/2. The integrals over the wave vectors
are defined by ∫

k

≡
∫

d3k

(2π)3
. (23)

The wave vector states have delta-function normalizations: 〈k′|k〉 = (2π)3δ3(k′−k). In the
case k′ = k, the infinite norm can be expressed as a factor of the volume: 〈k|k〉 = V . The
energy of a pair of atoms in the state |K,k〉 is

EAA = h̄2K2/4m+ h̄2k2/m. (24)

The sum over final states on the right hand side of Eq. (20) can be expressed as an
integral over the wave vector kD of a dimer:∑

f

〈f |CρpairC|f〉 =

∫
kD

〈kD|CρpairC|kD〉. (25)
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The energy of the dimer is
ED = −h̄2/mā2 + h̄2k2

D/4m. (26)

B. Matrix Elements

Because the system is homogeneous, the analog of Eq. (16) can be used to express the
contact operators C on the right side of Eq. (25) in terms of contact density operators at
the same position r. The wave vector delta function in Eq. (16) reduces to δ3(kD−K), and
it can be used to integrate over kD. The frequency delta function in Eq. (8) reduces to∑

±

2πδ
(
(ED − EAA)/h̄± ω

)
= 2πδ

(
ω − h̄/mā2 − h̄k2/m

)
. (27)

In the sum over ±ω, only the +ω term contributes.
The expression for the transition rate has been reduced to matrix elements of the con-

tact density operator of the form 〈kD|C(r)|K,k〉. The matrix element is calculated in
Appendix B, and is given by Eq. (B12):

〈kD|C(r)|K,k〉 =

√
128π3ā

1− iāk
. (28)

The Gaussian integral over K can be evaluated analytically. The sum over final states of
the matrix element in Eq. (25) reduces to∑

f

〈f |CρgasC
†|f〉 = 128

√
2πāλ3

T

N1N2

V

∫ ∞
0

dk
k2

1 + k2ā2
exp(−βh̄2k2/m). (29)

Before integrating over k, this must be multiplied by the frequency delta function in Eq. (27).

C. Harmonic Association Rate

Our final result for the harmonic association rate Γ
(1)
1 (ω) in the homogeneous gas can

be obtained from Eq. (8) by replacing
∑

f |〈f |C|i〉|2 by the right side of Eq. (29), replacing

the sum of frequency delta functions by the right side of Eq. (27), and then using the delta
function to integrate over k. The local density approximation can be implemented by making
the substitution for N1N2/V in Eq. (18). The threshold angular frequency for association
is h̄/mā2: the emission of a smaller energy from a pair of atoms is not enough to allow a
transition to dimer. For ω > h̄/mā2, the harmonic association rate is

Γ
(1)
1 (ω) =

2
√

2h̄2

m2a2
bgā

(
b∆

(∆ +B0 − B̄)2

)2(∫
d3r n1(r)n2(r)

)
λ3

Tκ(ω)

ω
exp(−βh̄2κ2(ω)/m),

(30)
where

κ(ω) =
√
mω/h̄− 1/ā2. (31)

(The harmonic association rate in a thermal gas of identical bosons with large scattering
length was calculated in Ref. [15]. It can be obtained from Eq. (30) by replacing n1(r)n2(r)
by n2(r)/2, where n(r) is the local number density of identical bosons.) If kBT � h̄2/mā2,
the harmonic association rate in Eq. (30) has a narrow peak with a maximum when ω
is above the threshold h̄/mā2 by approximately 1

2
(kBT/h̄) . For large frequency, the rate

decreases as exp(−h̄ω/kBT ).
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D. First-Order Subharmonic Association Rate

According to Eq. (11), the contribution Γ
(2)
2 (ω) to the subharmonic association rate from

the first-order perturbation in H2 can be expressed in terms of the harmonic association
rate in Eq. (30) at twice the frequency. The threshold angular frequency for subharmonic
association is 1

2
(h̄/mā2). For ω > 1

2
(h̄/mā2), the subharmonic association rate is

Γ
(2)
2 (ω) =

√
2h̄2

4m2a2
bgā

(
b2∆

(∆ +B0 − B̄)3

)2(∫
d3r n1(r)n2(r)

)
λ3

Tκ(2ω)

ω
exp(−βh̄2κ2(2ω)/m),

(32)
where κ(2ω) is the function defined in Eq. (31) with ω replaced by 2ω:

κ(2ω) =
√

2mω/h̄− 1/ā2. (33)

If kBT � h̄2/mā2, this contribution to the subharmonic association rate has a narrow peak
with a maximum when ω is above the threshold 1

2
(h̄/mā2) by approximately 1

4
(kBT/h̄).

The height of the peak is smaller than that of the harmonic association rate by the factor
[b/(∆ +B0 − B̄)]2/4.

IV. HARMONIC DISSOCIATION RATE

A universal dimer can be dissociated by an oscillating magnetic field into its constituent
atoms. In this section, we calculate the harmonic dissociation rate in a thermal gas of
dimers. We also give the subharmonic dissociation rate from first-order perturbation theory.
We consider a gas of dimers in thermal equilibrium at temperature T . For simplicity, we
take the number density nD of dimers to be sufficiently low that their distribution is given
by Boltzmann statistics instead of Bose-Einstein statistics.

A. Initial and Final States

We first consider a homogeneous gas consisting of ND dimers in a volume V . If the gas is
in thermal equilibrium, the harmonic transition rate is given by Eq. (8) with the substitution
in Eq. (14), where ρgas is the density matrix for the thermal gas of dimers. To simplify the
presentation, we will temporarily ignore the frequency delta function, which depends on
the energy Ei of the states in the density matrix. The terms in Eq. (8) that depend on
the contact operator can be expressed compactly as

∑
f〈f |CρgasC|f〉. We will insert the

frequency delta function at the end of the calculation.
In the low-density limit where correlations between dimers can be neglected, the density

matrix ρgas can be expressed in terms of the density matrix ρdimer for a single dimer in
thermal equilibrium: ∑

f

〈f |CρgasC|f〉 = ND

∑
f

〈f |CρdimerC|f〉. (34)

The dimer density matrix is normalized: Tr(ρdimer) = 1. On the left side of Eq. (34), the
sum over f is over many-body final states that include an unbound pair of atoms. On the
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right side, the sum over f is over two-atom final states that consist of an unbound pair of
atoms. The density matrix for a dimer in thermal equilibrium is

ρdimer =
λ3
T

2
√

2V

∫
kD

exp
(
−βh̄2k2

D/4m
)
|kD〉〈kD|, (35)

where λT is the thermal deBroglie wavelength for an atom in Eq. (22). The energy ED of
the dimer is given in Eq. (26).

The sum over final states on the right side of Eq. (34) can be expressed as integrals over
the total wave vector and the relative wave vector of a pair of atoms:∑

f

〈f |CρdimerC|f〉 =

∫
K

∫
k

〈K,k|CρdimerC|K,k〉. (36)

The energy EAA of the pair of atoms is given in Eq. (24).

B. Matrix Elements

Because the system is homogeneous, the analog of Eq. (16) can be used to express the
contact operators C on the right side of Eq. (36) in terms of contact density operators at
the same position r. The wave-vector delta function in Eq. (16) reduces to δ3(K−kD), and
it can be used to integrate over K. The frequency delta function in Eq. (8) reduces to∑

±

2πδ
(
(EAA − ED)/h̄± ω

)
= 2πδ

(
ω − h̄/mā2 − h̄k2/m

)
. (37)

In the sum over ±ω, only the −ω term contributes.
The expression for the transition rate has been reduced to matrix elements of the contact

density operator of the form 〈K,k|C(r)|kD〉. The matrix element is the complex conjugate
of Eq. (28). The Gaussian integral over K can be evaluated analytically. The sum over final
states of the matrix element in Eq. (36) reduces to∑

f

∣∣〈f |CρgasC|f〉
∣∣ = 64πND

∫ ∞
0

dk
k2ā

1 + k2ā2
. (38)

Before integrating over k, this must be multiplied by the frequency delta function in Eq. (37).

C. Harmonic Dissociation Rate

Our final result for the harmonic disssociation rate Γ
(1)
1 (ω) in the homogeneous gas can

be obtained from Eq. (8) by replacing
∑

f |〈f |C|i〉|2 by the right side of Eq. (38), replacing

the sum of frequency delta functions by the right side of Eq. (37), and then using the
delta function to integrate over k. The local density approximation can be implemented by
making the substitution for ND in Eq. (19). The threshold angular frequency for dissociation
is h̄/mā2: the absorption of smaller energy is not enough to break up the dimer. For
ω > h̄/mā2, the harmonic dissociation rate is

Γ
(1)
1 (ω) =

h̄2

m2a2
bgā

(
b∆

(∆ +B0 − B̄)2

)2(∫
d3r nD(r)

)
(mω/h̄− 1/ā2)1/2

ω
. (39)
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(If the universal dimers are composed of identical bosons, the harmonic dissociation rate is
given by this same expression.) The harmonic dissociation rate in Eq. (39) has a maximum
at ω = 2(h̄/mā2), which is twice the threshold angular frequency. For large frequency, the
rate decreases very slowly as ω−1/2. The dissociation rate is independent of the temperature
T . This may be surprising at first, but it is related to the fact that the contact of a thermal
gas of dimers is independent of T .

D. First-Order Subharmonic Dissociation Rate

According to Eq. (11), the contribution Γ
(2)
2 (ω) to the subharmonic dissociation rate from

the first-order perturbation in H2 can be expressed in terms of the harmonic dissociation
rate in Eq. (39) at twice the frequency. The threshold angular frequency for subharmonic
dissociation is 1

2
(h̄/mā2). For ω > 1

2
(h̄/mā2), the transition rate is

Γ
(2)
2 (ω) =

h̄2

8m2a2
bgā

(
b2∆

(∆ +B0 − B̄)3

)2(∫
d3r nD(r)

)
(2mω/h̄− 1/ā2)1/2

ω
. (40)

This contribution to the subharmonic dissociation rate has a maximum at ω = h̄/mā2, which
is twice the threshold angular frequency. The height of the peak is smaller than that of the
harmonic dissociation rate by a factor of [b/(∆ +B0 − B̄)]2/4.

V. SUBHARMONIC ASSOCIATION RATE

In this section, we calculate the subharmonic association rate in a thermal gas of atoms
from the second-order perturbation in H1. We will find that this contribution is much larger
than that from the first-order perturbation in H2 if B̄ is near a Feshbach resonance.

A. Initial, Final, and Intermediate States

We first consider a homogeneous gas consisting of N1 atoms of spin state 1 and N2 atoms
of spin state 2 in a volume V . If the gas is in thermal equilibrium, the harmonic transition
rate is given by Eq. (13) with the substitution in Eq. (14), where ρ = ρgas is the density
matrix for the thermal gas of atoms. In the low-density limit where 3-body and higher-
body correlations can be neglected, the density matrix ρgas can be expressed in terms of the
density matrix ρpair for a pair of atoms in thermal equilibrium, as in Eq. (20). That density
matrix ρpair is given in Eq. (21). The sum over final states reduces to an integral over the
wave vector kD of the dimer, as in Eq. (25).

Once the matrix elements have been reduced to matrix elements in the two-atom sector,
the sum over intermediate states in Eq. (13) reduces to a sum over atom-pair states and
dimer states. If the initial state is an atom pair with total energy EAA, the sum over states
is ∑

m

|m〉〈m|
ωmi ± ω

=

∫
K′

∫
k′

|K ′,k′〉〈k′,K ′|
(E ′AA − EAA)/h̄± ω

+

∫
k′
D

|k′D〉〈k′D|
(E ′D − EAA)/h̄± ω

, (41)

where E ′AA and E ′D are given by Eqs. (24) and (26) with primes on the wavenumber variables.
In the transition rate given by inserting Eq. (17) into Eq. (13), there are four possibilities
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for the intermediate states |m〉 and |m′〉 in the amplitude and its complex conjugate: each
one can be either an atom pair or a dimer. The transition rate can be expressed accordingly
as the sum of four terms:

Γ
(1,1)
2 = ΓAA,AA + ΓD,D + ΓAA,D + ΓD,AA. (42)

We will calculate each of these terms individually.

B. Matrix Elements

Because the system is homogeneous, the matrix elements of the contact C in Eq. (13)
can be expressed in terms of matrix elements of the contact density operator using Eq. (17).
In addition to the matrix element in Eq. (28) and its complex conjugate, we also need
the matrix elements of C(r) between atom-pair states and between dimer states. They are
calculated in Appendix B and given in Eqs. (B11) and Eqs. (B13):

〈K ′,k′|C(r)|K,k〉 =
16π2ā2

(1 + iāk′)(1− iāk)
, (43a)

〈k′D|C(r)|kD〉 = 8π/ā. (43b)

The integrals over the total wave vectors of the intermediate states and over the wave
vector of the final-state dimer can be evaluated using the delta functions in Eq. (17). The
Gaussian integral over the total wave vector of the initial atom-pair state can then be
evaluated analytically. The frequency delta function reduces to∑

±

2πδ
(
(ED − EAA)/h̄± 2ω

)
= 2πδ

(
2ω − h̄/mā2 − h̄k2/m

)
. (44)

In the sum over ±2ω, only the +2ω term contributes.

1. Intermediate atom-pair states

The contribution from intermediate atom-pair states to the factor in the transition rate
involving matrix elements reduces to

∑
i

∑
f

∣∣∣∣∣∑
m

〈f |C|m〉〈m|C|i〉
ωmi + ω

∣∣∣∣∣
2

N1N2〈i|ρpair|i〉 = 8192
√

2π
m2λ3

T

h̄2ā

N1N2

V

×
∫ ∞

0

dk
k2 exp(−βh̄2k2/m)

k2 + 1/ā2

[∫ ∞
0

dk
′ k

′2

(k′2 + 1/ā2)(k′2 − k2 +mω/h̄)

]2

.(45)

Before integrating over k, this must be multiplied by the frequency delta function in Eq. (44).
The threshold angular frequency for subharmonic association is 1

2
(h̄/mā2). For ω >

h̄/mā2, the integral over k′ in Eq. (45) has a pole on the integration contour. In this region
of ω, this contribution to the transition rate is a subleading correction of order b4 to the
harmonic transition rate of order b2 in Eq. (30). We therefore consider only the frequency
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interval 1
2
(h̄/mā2) < ω < h̄/mā2, where this contribution to the transition rate is leading

order in b. In this region of ω, the integral over k
′

in Eq. (45) is∫ ∞
0

dk
′ k

′2

(k′2 + 1/ā2)(k′2 − k2 +mω/h̄)
=

πā

2
(
1 + ā

√
mω/h̄− k2

) . (46)

The frequency delta function in Eq. (44) can be used to evaluate the integral over k in
Eq. (45). The resulting contribution to the transition rate is

ΓAA,AA =

√
2h̄2λ3

T ā

4m2a4
bg

(
b∆

(∆ +B0 − B̄)2

)4
N1N2

V

κ(2ω) exp
(
− βh̄2κ2(2ω)/m

)
ω
(
1 +

√
1−mωā2/h̄

)2 , (47)

where κ(2ω) is given in Eq. (33).

2. Intermediate dimer states

The contribution from intermediate dimer states to the factor in the transition rate
involving matrix elements reduces to

∑
i

∑
f

∣∣∣∣∣∑
m

〈f |C|m〉〈m|C|i〉
ωmi + ω

∣∣∣∣∣
2

N1N2〈i|ρpair|i〉

= 8192
√

2π3m
2λ3

T

h̄2ā3

N1N2

V

∫ ∞
0

dk
k2 exp(−βh̄2k2/m)

(k2 + 1/ā2)(k2 + 1/ā2 −mω/h̄)2
. (48)

Before integrating over k, this must be multiplied by the frequency delta function in Eq. (44).
The frequency delta function can be used to evaluate the integral over k in Eq. (48). The
resulting contribution to the transition rate is

ΓD,D =

√
2h̄4λ3

T

m4a4
bgā

3

(
b∆

(∆ +B0 − B̄)2

)4
N1N2

V

κ(2ω)

ω3
exp

(
−βh̄2κ2(2ω)/m

)
. (49)

3. Interference between Atom-Pair and Dimer States

The contribution to the factor in the transition rate involving matrix elements from
intermediate atom-pair states in the amplitude and from intermediate dimer states in its
complex conjugate reduces to∑

i

∑
f

∑
m

〈f |C|m〉〈m|C|i〉
ωmi + ω

∑
m′

〈i|C|m′〉〈m′|C|f〉
ωm′i + ω

N1N2〈i|ρpair|i〉

= −8192
√

2π2m
2λ2

T

h̄2ā2

N1N2

V

∫ ∞
0

dk
k2 exp(−βh̄2k2/m)

(k2 + 1/ā2)(k2 + 1/ā2 − ω/h̄)

×
∫ ∞

0

dk
′ k

′2

(k′2 + 1/ā2)(k′2 − k2 +mω/h̄)
. (50)

14



Before integrating over k, this must be multiplied by the frequency delta function in Eq. (44).
The integral over k

′
is given in Eq. (46). The frequency delta function can be used to evaluate

the integral over k in Eq. (48). The resulting contribution to the transition rate is

ΓAA,D = − h̄3λ3
T√

2m3a4
bgā

(
b∆

(∆ +B0 − B̄)2

)4
N1N2

V

κ(2ω) exp
(
− βh̄2κ2(2ω)/m

)
ω2
(
1 +

√
1−mωā2/h̄

) . (51)

The contribution ΓD,AA from intermediate dimer states in the amplitude and intermediate
atom-pair states in its complex conjugate is the same as Eq. (51) for frequencies in the range
1
2
(h̄/mā2) < ω < h̄/mā2. The contributions ΓAA,D = ΓD,AA are negative, because there is

destructive interference between atom-pair and dimer intermediate states.

C. Total subharmonic transition rate

The total subharmonic transition rate in Eq. (42) from the second-order perturbation in
H1 is given by adding Eqs. (47) and (49) and twice Eq. (51). The local density approximation
can be implemented by making the substitution for N1N2/V in Eq. (18). For frequencies in
the range 1

2
(h̄/mā2) < ω < h̄/mā2, the subharmonic transition rate is

Γ
(1,1)
2 (ω) =

√
2h̄2ā

4m2a4
bg

(
b∆

(∆ +B0 − B̄)2

)4(∫
d3r n1(r)n2(r)

)

×λ
3
Tκ(2ω)

ω
exp

(
−βh̄2κ2(2ω)/m

)( 1

1 +
√

1−mωā2/h̄
− 2

mωā2/h̄

)2

,(52)

where κ(2ω) is given by Eq. (33). (The corresponding result for identical bosons can be
obtained by replacing n1(r)n2(r) by n2(r)/2, where n(r) is the local number density.)

If kBT � h̄2/mā2, the subharmonic association rate in Eq. (52) has a narrow peak with
a maximum when ω is above the threshold 1

2
(h̄/mā2) by approximately 1

4
(kBT/h̄). In the

region near the threshold and the peak, the largest contribution comes from intermediate
dimer states. The intermediate atom-pair states give a contribution that is smaller at thresh-
old by a factor of (3− 2

√
2)/8 ≈ 0.021. The cross terms give a negative contribution that is

smaller at threshold by a factor of (2−
√

2)/2 ≈ 0.29. The subharmonic association rate in
Eq. (52) is much smaller than the harmonic association rate in Eq. (30). The ratio of their
maximum values is

Γ
(1,1)
2,max

Γ
(1)
1,max

= 2.914

(
b∆

(∆ +B0 − B̄)2

)2(
ā

abg

)2(
1− 1.21

kBTmā
2

h̄2 + . . .

)
. (53)

The contribution Γ
(2)
2 to the subharmonic transition rate from the first-order perturbation

in H2 is given in Eq. (32). Near the subharmonic threshold frequency, Γ
(1,1)
2 differs from Γ

(2)
2

by a factor of 11.6 (ā/abg)2[∆/(∆ + B0 − B̄)]2. If B̄ is near the Feshbach resonance, Γ
(2)
2

is much smaller. It is therefore unnecessary to consider interference between the first-order
perturbation in H1 and the second-order perturbation in H2.
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VI. SUBHARMONIC DISSOCIATION RATE

In this section, we calculate the subharmonic dissociation rate in a thermal gas of dimers
from the second-order perturbation in H1. We first consider a homogeneous gas of ND dimers
in a volume V in thermal equilibrium at temperature T . The subharmonic transition rate is
given by Eq. (13) with Eq. (17) inserted and with |i〉〈i| replaced by the density matrix ρgas

for the thermal gas of dimers. In the low-density limit where correlations between dimers
can be neglected, ρgas can be expressed in terms of the density matrix ρdimer for a dimer in
thermal equilibrium, as in Eq. (34). The density matrix ρdimer is given in Eq. (35). The sum
over final states reduces to an integral over center-of-mass wave vector K and relative wave
vector k of a pair of atoms, as in Eq. (36). The frequency delta function reduces to∑

±

2πδ
(
(EAA − ED)/h̄± 2ω

)
= 2πδ

(
2ω − h̄/mā2 − h̄k2/m

)
. (54)

In the sum over ±2ω, only the −2ω term contributes. In the sums over intermediate states
in the amplitude and its complex conjugate, both intermediate states can be either an atom
pair or a dimer. The calculation of the individual contributions proceeds in the same way
as for the association rate. They can be obtained from those in Eqs. (47), (49), and (51) by
replacing N1N2/V by ND and replacing λ3

T exp
(
−βh̄2κ2(2ω)/m

)
by
√

2/4.
In the local density approximation, the factor ND is replaced by

∫
d3r nD(r). For fre-

quencies in the range 1
2
(h̄/mā2) < ω < h̄/mā2, the subharmonic dissociation rate is

Γ
(1,1)
2 (ω) =

h̄2ā

8m2a4
bg

(
b∆

(∆ +B0 − B̄)2

)4(∫
d3r nD(r)

)

×κ(2ω)

ω

(
1

1 +
√

1−mωā2/h̄
− 2

mωā2/h̄

)2

, (55)

where κ(2ω) is given by Eq. (33). (If the universal dimers are composed of identical bosons,
the subharmonic dissociation rate is given by this same expression.) Like the harmonic
dissociation rate in Eq. (39), the subharmonic dissociation rate in Eq. (55) is independent
of the temperature T . The subharmonic dissociation rate has a maximum at an angular
frequency ω that is above the threshold 1

2
(h̄/mā2) by approximately 0.082(h̄/mā2). The

subharmonic dissociation rate in Eq. (52) is much smaller than the harmonic dissociation
rate in Eq. (39). The ratio of their maximum values is

Γ
(1,1)
2,max

Γ
(1)
1,max

= 1.39

(
b∆

(∆ +B0 − B̄)2

)2(
ā

abg

)2

. (56)

The contribution Γ
(2)
2 to the subharmonic transition rate from the first-order perturbation

in H2 is given in Eq. (40). Near the subharmonic threshold frequency, Γ
(1,1)
2 differs from Γ

(2)
2

by a factor of 11.6 (ā/abg)2[∆/(∆ + B0 − B̄)]2. If B̄ is near the Feshbach resonance, Γ
(2)
2

is much smaller. It is therefore unnecessary to consider interference between the first-order
perturbation in H1 and the second-order perturbation in H2.
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VII. PREVIOUS EXPERIMENTS WITH ULTRACOLD ATOMS

In this section, we briefly describe previous experiments on the association of atoms into
molecules using longitudinal modulation of the magnetic field. The association of atoms
into molecules was observed through the loss of trapped atoms, presumably from inelastic
collisions of the molecules with atoms. The number of atoms remaining in the trap after
some modulation time was measured as a function of the oscillation frequency. A loss
resonance provided the signature for the molecule. The first such experiments were carried
out at JILA in Boulder using 85Rb atoms [1] and using a mixture of 85Rb and 87Rb atoms
[3]. An experiment using a mixture of 41K and 87Rb atoms was carried out at LENS in
Florence [4]. An experiment using 133Cs atoms was carried out at University of Innsbruck
[5]. Experiments using 7Li atoms have been carried out at Bar-Ilan University [7–9] and at
Rice University [10]. After describing those experiments, we illustrate our theoretical results
for association and dissociation rates using the conditions of the Rice University experiment.

A. JILA Experiments

The measurements of the binding energies of dimers using longitudinal modulation of
the magnetic field was pioneered by Thompson, Hodby, and Wieman using 85Rb atoms
[1]. The scattering length was controlled using the Feshbach resonance at 155.0 G for
85Rb atoms in the |F = 2,mF = −2〉 hyperfine state. The measurements were made on
thermal gases of trapped atoms with temperatures ranging from 20 to 80 nK. The modulation
amplitude ranged from 130 to 280 mG. The resonance frequency was determined by fitting
the number of atoms lost as a function of frequency to a Lorentzian distribution. The shift
in the resonance angular frequency with temperature was determined to be approximately
linear, corresponding to about 0.6 (kBT/h̄). Thus is close to our result 1

2
(kBT/h̄) for the

thermal shift in the angular frequency at which the harmonic association rate is maximum.
Thompson et al. also measured the resonance frequency in Bose-Einstein condensates with
a 50% condensate fraction. The resonance frequency was higher than that predicted from
the mixture of a 0-temperature condensate and a thermal cloud.

Papp and Wieman used longitudinal modulation of the magnetic field to measure the
binding energies of universal dimers in a mixture of 85Rb and 87Rb atoms [1, 3]. The
scattering length was controlled using the Feshbach resonance at 265.4 G for 85Rb atoms in
the |2,−2〉 hyperfine state and 87Rb atoms in the |1,−1〉 hyperfine state. The modulation
amplitude ranged from 0.6 to 1.0 G. The resonance frequency was determined by fitting the
number of atoms lost as a function of frequency to a Gaussian distribution. Their results
for the binding energy of the dimer as a function of the bias magnetic field were consistent
with the universal result proportional to 1/a2.

B. LENS Experiment

Weber, Barontini, Catani, Thalhammer, Inguscio, and Minardi, used longitudinal mod-
ulation of the magnetic field to measure the binding energies of dimers composed of 41K
and 87Rb atoms [4]. The scattering length was controlled using the Feshbach resonances
for 41K atoms in the |1,+1〉 hyperfine state and 87Rb atoms in the |1,+1〉 hyperfine state
near 38.4 G and 78.7 G. The measurements were made on thermal gases of trapped atoms
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with typical temperatures ranging from 200 to 600 nK. The typical modulation amplitude
was 130 mG. The dimer binding energy was determined by fitting the number of atoms lost
as a function of frequency to a model that they developed. The model involved nonlinear
differential equations for three amplitudes associated with a 41K atom, a 87Rb atom, and a
molecule. They observed dependence of the resonant modulation frequency on the modula-
tion amplitude b that was approximately linear in b2. They also observed subharmonic loss
features. They used the first subharmonic loss feature to extend their measurements of the
binding energy to higher frequency.

C. Innsbruck Experiment

Lange, Pilch, Prantner, Ferlaino, Engeser, Nägerl, Grimm, and Chin used longitudinal
modulation of the magnetic field to measure the binding energies of dimers of 133Cs atoms
[5]. The scattering length was controlled using the Feshbach resonances at 48 G and 53 G for
133Cs atoms in the |3,+3〉 hyperfine state. The measurements were made on thermal gases
of trapped atoms with a typical temperature of 100 nK. The modulation amplitude typically
ranged from 100 to 600 mG. The dimer binding energy was determined by fitting the number
of atoms lost as a function of frequency to a Gaussian distribution. The measurements of
the binding energy as a function of the bias magnetic field B̄ were used to improve the
determinations of the Feshbach resonance parameters.

D. Bar-Ilan Experiments

Gross, Shotan, Kokkelmans, and Khaykovich used longitudinal modulation of the mag-
netic field to measure the binding energies of dimers of 7Li atoms in the |1,+1〉 hyperfine
state [7]. The scattering length was controlled using the Feshbach resonance at 738.2 G.
Gross, Shotan, Machtey, Kokkelmans, and Khaykovich used the same method to measure
the binding energies of dimers of 7Li atoms in the |1, 0〉 hyperfine state [8]. The scat-
tering length was controlled using the Feshbach resonance at 893.7 G. The measurements
were made on thermal gases of trapped atoms with a typical temperature of 1.5 µK. The
modulation amplitude ranged from 150 mG to 750 mG. The dimer binding energy was de-
termined by fitting the number of atoms lost as a function of frequency to the convolution of
a Maxwell-Boltzmann distribution and a Gaussian distribution. The measurements of the
binding energies as functions of B̄ were used to improve the determinations of the Feshbach
resonance parameters.

In a subsequent experiment, Machtey, Shotan, Gross and Khayokovich used longitudinal
modulation of the magnetic field to observe the association of 7Li atoms in the |1, 0〉 hyperfine
state into Efimov trimers [9]. The measurements were made on thermal gases of trapped
atoms with a typical temperature of 1.5 µK. The modulation amplitude ranged up to 1.6 G.
The number of atoms remaining in the trap was measured as a function of the frequency of
the oscillating magnetic field for different values of the bias magnetic field. There was a deep
minimum in the remaining number of atoms at the dimer binding frequency. The association
of atoms into the Efimov trimer was observed as a second less-pronounced minimum or as
a shoulder in the loss feature associated with the dimer. The difference between the trimer
and dimer binding energies was determined by fitting the number of atoms lost as a function
of frequency to a double-peak Gaussian distribution.
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E. Rice Experiment

Dyke, Pollack, and Hulet used longitudinal modulation of the magnetic field to measure
the binding energies of dimers of 7Li atoms [10]. The scattering length was controlled using
the Feshbach resonance at B0 = 737.7 G for 7Li atoms in the |1,+1〉 hyperfine state. The
other parameters in the expression for the scattering length in Eq. (2), as determined in
Ref. [10], are abg = −20.0 a0 and ∆ = −174 G. The measurements were carried out for both
a Bose-Einstein condensate and a thermal gas of 7Li atoms.

In the experiment on the BEC of 7Li atoms in Ref. [10], they observed a narrow loss
resonance as a function of the frequency, with the fraction of atoms remaining decreasing
almost to 0. The dimer binding energy was determined by fitting the fraction of atoms lost
as a function of the frequency to a Lorentzian distribution. Their results for the fraction
of atoms remaining as a function of the frequency were shown for the bias magnetic field
B̄ = 734.5 G. The fit gave the binding energy h(450 kHz), from which the scattering length
was determined to be ā ≈ 1100 a0.

In the experiment on the thermal gas of 7Li atoms in Ref. [10], they observed broader loss
resonances as functions of the frequency. Their results for the fraction of atoms remaining
as a function of the frequency were shown for the bias magnetic field B̄ = 734.5 G and for
three combinations of the amplitude b of the modulated magnetic field and the temperature
T : (b, T )=(0.57 G, 3µK), (0.14 G, 3µK), and (0.57 G, 10µK). The duration of modulation
was in the range from 25 µs to 500 µs, but its value was not specified for each individual
set (b, T ). The number of atoms in the thermal clouds were also not specified in Ref. [10].
For each (b, T ), there was a harmonic peak just above ωD. A subharmonic peak just above
1
2
ωD was evident only for (0.57 G, 3µK). For this (b, T ), the minimum fractions remaining

were about 0.3 in the harmonic loss feature and about 0.5 in the subharmonic loss feature.
In Ref. [10], the dimer binding energy was determined by fitting the fraction of atoms lost
to the convolution of a Lorentzian and a thermal Boltzmann distribution. In the fits to
the harmonic loss features, the deviations of the minima from the dimer binding frequency
were about 0.7 (kBT/h̄) for both (0.57 G, 3µK) and (0.14 G, 3µK). Thus is close to our
simple result 1

2
(kBT/h̄) for the thermal shift in the angular frequency at which the harmonic

association rate is maximum, which applies if kBT � h̄ω. The deviation of the minimum
from the dimer binding frequency was about 1.3 (kBT/h̄) for (0.57 G, 10µK). This is about
3 times larger than our simple result, but the temperature is too high for that simple result
to be accurate. In the fit to the subharmonic loss feature, the deviation of the minima
from half the dimer binding frequency is about 0.3 (kBT/h̄) for (0.57 G, 3µK). Thus is close
to our simple result 1

4
(kBT/h̄) for the thermal shift in the angular frequency at which the

subharmonic association rate is maximum.

F. Association and Dissociation Rates

We use the conditions of the Rice experiment in Ref. [10] to illustrate our theoretical
results on the association rates into dimers in a thermal gas of atoms. We also illustrate our
results on the dissociation rates in a thermal gas of dimers. We consider 7Li atoms in the
|1,+1〉 hyperfine state at the bias magnetic field B̄ = 734.5 G, and we consider the same
three combinations of the amplitude b of the modulated magnetic field and the temperature
T : (b, T )=(0.57 G, 3µK), (0.14 G, 3µK), and (0.57 G, 10µK).

In Fig. 1, we show our results for the association rates as functions of the angular frequency
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FIG. 1: Association rate Γ/N〈n〉 for a thermal gas of 7Li atoms as a function of the modulation

frequency of the magnetic field. The angular frequency ω is normalized to the angular binding

frequency ωD of the dimer. The bias field is B̄ = 734.5 G, which corresponds to ā ≈ 1100 a0. The

three sets of curves are for different values of the modulation amplitude b and the temperature T :

(b, T )=(0.57 G, 3µK) (highest peak value, red), (0.57 G, 10µK) (green), and (0.14 G, 3µK) (lowest

peak value, blue). The association rates in the region ω < ωD have been multiplied by 10 to make

the subharmonic transitions more visible.

ω for the three sets of values of (b, T ) for which the atom loss was measured in Ref. [10].
The ratio of kBT/h̄ to the binding frequency ωD = h̄/mā2 of the dimer is 0.15 and 0.49 at
the temperatures 3µK and 10µK, respectively. Thus the condition kBT � h̄2/mā2 is much
better satisfied at 3µK. In Fig. 1, the curves for ω > ωD are the harmonic association rates

Γ
(1)
1 (ω) in Eq. (30) with

∫
d3r n1n2 replaced by

∫
d3r n2/2. The curves for ω < ωD are the

subharmonic association rates Γ
(1,1)
2 (ω) in Eq. (52) with

∫
d3r n1n2 replaced by

∫
d3r n2/2.

The subharmonic association rates Γ
(2)
2 (ω) are completely negligible: their peak values are

smaller than those for Γ
(1,1)
2 by factors of about 3× 10−5. The association rates in Fig. 1 are

divided by
∫
d3r n2(r) = N〈n〉 to obtain rates Γ/N〈n〉 that do not depend on the number of

atoms. The angular frequency is normalized to the angular binding frequency ωD = h̄/mā2

of the dimer. The heights of the harmonic and subharmonic peaks for (b, T )=(0.57 G, 3µK)
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are larger than those for (0.14 G, 3µK) by the ratio of the values of b2, which is 12.8. The
maxima of the harmonic association rates are at angular frequencies ω that are above the
threshold ωD by approximately kBT/2h̄. The maxima of the subharmonic association rates
are at angular frequencies that are above the threshold 1

2
ωD by approximately kBT/4h̄.

The ratios of the maximum of the harmonic peak to the maximum of the subharmonic
peak are 11.4, 190, and 13.8 for (b, T )=(0.57 G, 3µK), (0.14 G, 3µK), and (0.57 G, 10µK),
respectively. They can be compared to the ratios 11.9, 198, and 24.1 predicted using Eq. (53).
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FIG. 2: Dissociation rate Γ/ND for a thermal gas of 7Li dimers as a function of the angular

frequency ω of the modulated magnetic field. The angular frequency ω is normalized to the

binding angular frequency ωD of the dimer. The bias field is B̄ = 734.5 G, which corresponds to

ā ≈ 1100 a0. The dissociation rate is independent of the temperature. The two sets of curves are

for different values of the modulation amplitude b: 0.57 G (higher peak value, red) and 0.14 G

(lower peak value, blue). The dissociation rates in the region ω < ωD have been multiplied by 10

to make the subharmonic transitions more visible.

Our results for dissociation rates in a thermal gas of dimers as functions of the angular
frequency ω are illustrated in Fig. 2 using the two values of b for which the atom loss was
measured in Ref. [10]. The dissociation rates in Fig. 2 are divided by the number ND

of dimers to obtain rates Γ/ND that do not depend on ND. The angular frequency ω is
normalized to the binding angular frequency ωD of the dimer. The curves for ω > ωD
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are the harmonic dissociation rates Γ
(1)
1 (ω) in Eq. (39). The curves for ω < ωD are the

subharmonic dissociation rates Γ
(1,1)
2 (ω) in Eq. (55). The subharmonic association rates

Γ
(2)
2 (ω) are completely negligible: their peak values are smaller than those for Γ

(1,1)
2 by

factors of about 3×10−5. The heights of the harmonic and subharmonic peaks for b = 0.57 G
are larger than those for b = 0.14 G by the ratio of the values of b2, which is 12.8. The
maxima of the harmonic association rates are at twice the threshold angular frequency
h̄/mā2. For large ω, the harmonic rates decrease very slowly as ω−1/2. The maxima of the
subharmonic dissociation rates are above the threshold angular frequency 1

2
(h̄/mā2) by only

about 0.08 h̄/mā2. The ratio of the maximum of the harmonic peak to the maximum of
the subharmonic peak is given in Eq. (56). The ratios for b = 0.57 G and b = 0.14 G are
approximately 21 and 340, respectively.

VIII. PREVIOUS THEORETICAL WORK

In this section, we describe previous theoretical treatments of the association of atoms
into dimers using longitudinal modulation of the magnetic field by Hanna, Köhler, and
Burnett [12], by Brouard and Plata [13], and by Bazak, Liverts, and Barnea [14].

A. Hanna, Köhler, and Burnett

A theoretical treatment of the association of atoms into dimers using longitudinal modu-
lation of the magnetic field was first presented by Hanna, Köhler, and Burnett in 2007 [12].
They used a two-channel model for the two-atom system, with one channel consisting of a
continuum of atom pairs labelled by the relative momentum vector p and a second channel
consisting of a single discrete molecular state. The parameters of the model were not speci-
fied clearly. The eigenstate of the time-independent coupled-channel problem corresponding
to the bias magnetic field B̄ are a continuum of positive energy atom-pair states and a
single discrete negative-energy state, which is the dimer. The parameters of the model were
presumably chosen so that the dimer binding energy has its physical value, which can be
approximated by h̄2/mā2. The time-dependent problem in Ref. [12] was obtained by adding
µb sin(ωt) to the energy of the discrete molecular state, where µ is the difference between the
magnetic moments of the closed-channel molecule responsible for the Feshbach resonance
and a pair of atoms in the open channel. They solved the time-dependent Schrödinger equa-
tion for the two-channel model numerically to obtain the probability for association of a pair
of atoms with relative momentum p into the dimer as a function of time. They compared
the results with first-order time-dependent perturbation theory in b. They calculated the
conversion efficiency for atoms into dimers in a homogeneous gas by averaging the transi-
tion probabilities over a Gaussian thermal distribution of atom pairs. Hanna, Köhler, and
Burnett also calculated the conversion efficiency in a Bose-Einstein condensate using a com-
pletely different method that involved solving numerically an integro-differential equation
for the mean-field of a homogeneous BEC. Subharmonic transitions were not discussed in
Ref. [12].

The results for the conversion efficiency in Ref. [12] are completely numerical. They cal-
culated the conversion efficiency in a homogeneous gas as a function of the modulation time
t, the modulation frequency ω, and the modulation amplitude b at several temperatures T .
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They did not provide sufficient information to allow quantitative comparisons of the normal-
izations of their numerical results and our analytic results. They specified the magnetic field
offset B̄ and the dimer binding energy, but this is insufficient to determined the Feshbach
resonance parameters abg, B0, and ∆ that appear in our normalization factor. The only
quantitative comparisons we can make are therefore of dimensionless ratios of conversion
efficiencies. Their conversion efficiency initially increases approximately quadratically with
t, but then increases a little less than linearly with t. Since we used Fermi’s Golden Rule
to derive our transition rates, the predicted increase in the conversion efficiency is strictly
linear in t. Beyond the initial quadratic region of t, the ratios of their conversion efficiencies
at three different temperatures agree with our analytic results to better than 10%. They
calculated the conversion efficiency as a function of ω for four combinations of t and T . The
ratios of the peak values of their conversion efficiencies agree with our analytic results to
better than 10%. They also calculated the conversion efficiency as a function of b. It first
increases approximately quadratically with b. It reaches a maximum, then decreases to near
0, and then increases to a second maximum. Since we used first order perturbation theory to
derive our harmonic association rate, the predicted dependence on the conversion efficiency
is strictly quadratic in b.

B. Brouard and Plata

Brouard and Plata have recently presented a different theoretical treatment of the asso-
ciation of atoms into dimers using longitudinal modulation of the magnetic field [13]. They
described the two-atom system at the bias magnetic field B̄ by a two-channel model, with
one channel consisting of a continuum of atom pair states labelled by their energy E and
the second channel consisting of a single discrete molecular state. The eigenstates of the
time-independent coupled-channel problem are a continuum of positive-energy atom-pair
states and a single discrete negative-energy state, whose binding energy Ed is that of the
dimer. The time-dependent problem in Ref. [13] was obtained by adding µb sin(ωt) to the
energy of the discrete molecular state, as in Ref. [12]. However, rather than solving the time-
dependent Schrödinger equation for their two-channel model, they reduced it to a two-state
model consisting of the dimer and a single atom-pair state. They used a time-dependent
unitary transformation to move all the time-dependence in the Hamiltonian into off-diagonal
terms between the dimer state and the atom-pair state and change the dimer-dimer entry to
−Ed + lω, where l is an integer. They interpreted the time-average of the 2×2 Hamiltonian
with l = 1 and with l = 2 as effective Hamiltonians that describe harmonic and subharmonic
transitions, respectively. The entries of the effective Hamiltonian were given analytically as
functions of ω, b, and the parameters of their time-independent two-state model. Brouard
and Plata inferred some qualitative features of the association of atoms into dimers from
these effective Hamiltonians.

In Ref. [13], Brouard and Plata also calculated the conversion efficiencies as functions of
the modulation time and the frequency using a nonlinear equation for the amplitude of two
coupled channels that represent the dimer and an atom pair. These results are all completely
numerical.
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C. Bazak, Liverts, and Barnea

The association rate of atoms into dimers using an oscillating magnetic field was cal-
culated by Bazak, Liverts, and Barnea in 2012 [14]. They considered a time-dependent
magnetic field B(t) that is the sum of the bias magnetic field B̄ẑ and a small oscillatory
term b sin(ωt) from an electromagnetic wave with polarization in an arbitrary direction. The
term in the Hamiltonian that involves the magnetic field is −gµBS ·B(t), where gµBh̄/2 is
the magnetic moment of an electron and S is the spin of the valence electron of an alkali
metal atom. They treated the time-dependent term from the oscillating magnetic field as
a first-order perturbation. They used Fermi’s Golden Rule to obtain an expression for the
transition rate from a pair of atoms to a final state that consists of a dimer and an emitted
photon. The transition matrix was simplified using the multipole expansion for the emit-
ted photon. The leading terms are quadratic in the photon momentum, and consist of an
s-wave term and a d-wave term. The matrix elements of the multipole operators between
an atom-pair state and a dimer state were evaluated under the assumption that the atoms
have a large scattering length and taking into account their effective range reff .

Bazak, Liverts, and Barnea give an analytic result for the association rate into dimers
[14]. Their result can be simplified by taking the limit reff � ā. The factors that depend on
the scattering length ā and on the oscillation frequency ω are

Γ(ω) ∝ κ(ω)

ā3

(
1 +

16

5

h̄ā2κ4(ω)

mω

)
exp(−βh̄2κ2(ω)/m), (57)

where κ(ω) is given by Eq. (31). The two terms inside the parenthesis are the s-wave
and d-wave contributions, respectively. Near the harmonic threshold, the d-wave term is

suppressed by a factor of (κā)4. Our harmonic transition rate Γ
(1)
1 in Eq. (30) has the same

thermal factor exp(−βh̄2κ2/m). The remaining dependence on ω is in the factor κ/ω. The
remaining dependence on ω in Eq. (57) is in the factor κ in the s-wave term and in the factor
κ5/ω in the d-wave term. The different dependence on ω may be due to the assumption
in Ref. [14] that the transition proceeds through the absorption of a real photon from an
electromagnetic wave. In our derivation of the harmonic association rate, we assumed that
the transition proceeds through the absorption of a quantum of energy from the oscillating
magnetic field.

In Ref. [14], the prefactor of the expression on the right side of Eq. (57) is a product of
many factors. Some of the factors are fundamental constants. There is a factor that depends
on the direction and polarization of the electromagnetic wave and is maximal when the os-
cillating magnetic field is longitudinal. However there are other factors that are ill-defined.
Those factors are the number of photons in the initial state with a specified momentum
and polarization and a temperature-dependent factor that depends on an unphysical spher-
ical confinement radius. Thus the normalization of the transition rate is not predicted in
Ref. [14].

IX. SUMMARY

In this paper, we have further developed the new approach to transitions from longitudinal
modulation of the magnetic field that was introduced in Ref. [15]. That approach was based
on the realization that the leading effect of a longitudinal modulation of the magnetic field
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near a Feshbach resonance can be treated as a time-dependent perturbation proportional
to the contact operator C. In Appendix A, we presented a quantum field theory argument
that the perturbation proportional to C can also be used beyond first order. Fermi’s Golden
Rule is used to obtain general expressions for transition rates in terms of transition matrix

elements of C. Our general formula for the harmonic transition rate Γ
(1)
1 (ω) in Eq. (8) comes

from the first-order perturbation in C and was obtained previously in Ref. [15]. There is a

contribution Γ
(2)
2 (ω) to the subharmonic transition rate from the first-order perturbation in

C that is related in a simple way to the harmonic rate and is given in Eq. (11). However

the second-order perturbation in C gives another contribution Γ
(1,1)
2 (ω) to the subharmonic

transition rate that is given in Eq. (13). Near the Feshbach resonance, Γ
(1,1)
2 is larger than

Γ
(2)
2 by a factor of (ā/abg)2.

For a homogeneous system, our general expressions for the transition rates can be sim-
plified by expressing the transition matrix elements of the contact operator C in terms of
transition matrix elements of the contact density operator C. The harmonic transition rate

Γ
(1)
1 in Eq. (8) can be simplified by inserting Eq. (16). The subharmonic transition rate

Γ
(1,1)
2 in Eq. (13) can be simplified by inserting Eq. (17). For a nonhomogeneous system

in the local density approximation, these simplifications can first be used to calculate the
transition rates for the homogeneous system. Substitutions such as those in Eqs. (18) and
(19) can then be used to obtain the transitions rate for the nonhomogenous system.

To obtain association rates in a thermal gas of atoms and dissociation rates in a thermal
gas of dimers, we first exploited the low density to reduce the transition matrix elements of C
in the thermal gas to transition matrix elements of C in the two-body problem. Those matrix
elements were calculated in Appendix B using the quantum field theory formulation of the
problem of atoms with zero-range interactions. In the two-atom sector, this is equivalent
to a single-channel model for atoms with large scattering length, with the dimer arising
dynamically as a bound state. This allowed us to calculate the matrix elements of the
contact density operator analytically.

Our final results for the harmonic and subharmonic association rates in a thermal gas of
atoms are given in Eqs. (30) and (52). Our final results for the harmonic and subharmonic
disssociation rates in a thermal gas of dimers are given in Eqs. (39) and (55). These results
are analytic functions of all the relevant parameters: the oscillation parameters ω, b, and
ā or B̄, the Feshbach resonance parameters abg, B0, and ∆, and the temperature T . The
association rates in a thermal gas of fermions with two spin states depend on the local
number densities n1(r) and n2(r) only through the multiplicative factor

∫
d3r n1n2. The

dissociation rates in a thermal gas of dimers depend on the local number density nD(r)
only through the multiplicative factor

∫
d3r nD. Our analytic results should be useful for

analyzing experiments on association into dimers and dissociation of dimers. They should
also be useful for designing experiments that optimize the number of dimers created or
destroyed by the modulated magnetic field. For a thermal gas of atoms with kBT � h̄2/mā2,
the maximum in the harmonic association rate is at an angular frequency ω that is above the
threshold h̄/mā2 by approximately 1

2
(kBT/h̄). The maximum in the subharmonic association

rate is at an angular frequency that is above the threshold 1
2
(h̄/mā2) by approximately

1
4
(kBT/h̄). For a thermal gas of dimers, the maximum in the harmonic dissociation rate is

at an angular frequency ω that is approximately twice the threshold h̄/mā2. The maximum
in the subharmonic dissociation rate is at an angular frequency that is above the threshold
1
2
(h̄/mā2) by approximately 0.08 (h̄/mā2).
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Our general results for the harmonic and subharmonic transition rates in terms of matrix
elements of the contact density operator can also be applied to other systems. That reduces
the problem to calculating transition matrix elements of the contact density operator be-
tween many-body states of the homogeneous system. An analytic result for the association
rate in a dilute Bose-Einstein condensate of identical bosons was given in Ref. [15]. It should
also be possible to obtain analytic results for superfluids of fermions with two spin states
at zero temperature, including the dissociation rate of dimers in the BEC limit and the
dissociation rate of Cooper pairs in the BCS limit. The dissociation rate of paired fermions
in the unitary limit is more challenging, but it is an important problem because it would
allow the first direct measurements of the gap for the unitary Fermi gas.
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Appendix A: Quantum Field Theory Derivation of Perturbing Hamiltonian

Particles with a scattering length a that is large compared to the range r0 of their in-
teractions can be described by a local quantum field theory. For a fermion with two spin
states, there are two fermionic quantum fields ψ1 and ψ2. The interactions of the quantum
field theory are made local by taking the zero-range limit at the expense of introducing
an ultraviolet cutoff Λ on the momenta of virtual particles. The interaction Hamiltonian
density is

Hint = (λ0/m)ψ†1ψ
†
2ψ2ψ1, (A1)

where λ0 is the bare coupling constant. If h̄ is set to 1, λ0 has dimensions of length. The
field theory describes particles with scattering length a if the bare coupling constant is

λ0 =
4π

1/a− 2Λ/π
. (A2)

Matrix elements of the operator ψ†1ψ
†
2ψ2ψ1 diverge as Λ2 as the cutoff is increased to ∞.

Since λ0 scales as 1/Λ, matrix elements of the interaction Hamiltonian density in Eq. (A1)
therefore diverge as Λ. In matrix elements of the complete Hamiltonian density, the diver-
gence is cancelled by a corresponding divergence in matrix elements of the kinetic energy
density. In matrix elements of the operator ψ†1ψ

†
2ψ2ψ1, subleading terms that diverge as Λ

give finite contributions to the energy density. The contact density operator in the quantum
field theory is [18]

C = λ2
0ψ
†
1ψ
†
2ψ2ψ1. (A3)

This operator has finite matrix elements, because the divergence in the matrix element of
ψ†1ψ

†
2ψ2ψ1 proportional to Λ2 is compensated by a factor of 1/Λ2 from λ2

0.
The local quantum field theory can describe particles with a time-dependent scattering

length a(t) provided the time scale a/ȧ is large compared to the time scale mr2
0/h̄ set by the

range. In the interaction Hamiltonian density in Eq. (A1), the time-dependent bare coupling
constant λ0(t) is obtained by replacing a in Eq. (A2) by a(t). If the time dependence consists
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of small deviations in the inverse scattering length from some value 1/ā, the bare coupling
constant can be expanded around the corresponding value λ̄0:

λ0(t) = λ̄0 −
λ̄2

0

4π

(
1

a(t)
− 1

ā

)
+

λ̄3
0

(4π)2

(
1

a(t)
− 1

ā

)2

+ . . . . (A4)

When this is inserted into the interaction Hamiltonian density in Eq. (A1), the term linear
in 1/a(t) is proportional to the contact density operator in Eq. (A3). The term quadratic
in 1/a(t) is suppressed by 1/Λ from the additional power of λ̄0. The higher order terms are
even more highly suppressed. Thus the interaction Hamiltonian density in the zero-range
limit can be reduced to

Hint(t) =
λ̄0

m
ψ†1ψ

†
2ψ2ψ1 −

1

4πm

(
1

a(t)
− 1

ā

)
C. (A5)

Appendix B: Matrix Elements of the Contact density operator

The field theoretic definition of the contact density operator in Eq. (A3) can be expressed
as

C(r) = φ†(r)φ(r), (B1)

where the contact field φ = λ0ψ2ψ1 is a local operator that annihilates two atoms at a point.
In the case a > 0, φ(r) has a nonzero amplitude to annihilate a dimer, so it can also be
referred to as the dimer field. The transition matrix element of the contact density operator
can be expressed as

〈f |C(r)|i〉 =
∑
n

〈f |φ†(r)|n〉〈n|φ(r)|i〉. (B2)

A complete set of states
∑

n |n〉〈n| = 1 has been inserted between φ† and φ. If only one term
in the sum is nonzero, the matrix element factors into a matrix element of φ that involves
the initial state and a matrix element of φ† that involves the final state.

In order to calculate transition rates in a thermal gas of atoms or dimers, one needs
to calculate transition matrix elements of the contact density operator C(r) between two-
atom states, which are either a pair of unbound atoms or a dimer. We will calculate these
matrix elements in the Zero-range Model defined by the interaction Hamiltonian density in
Eq. (A1). The Feynman rules for the atom propagator and the 2-atom–to–2-atom vertex are
specified in the appendix of Ref. [19]. The 2-atom–to–molecule coupling constant g0 should
be set to 0. Using these Feynman rules, the calculation of transition matrix elements of the
contact density operator can be reduced to evaluating Feynman diagrams.

The transition amplitude A(Ecm) is the amplitude for the transition between a pair of
atoms in the asymptotic past and a pair of atoms in the asymptotic future. It is a function
only of the energy Ecm of the pair of atoms in their center-of-mass frame:

Ecm = E −K2/4m, (B3)

where E is their total energy and K is their total momentum. (We set h̄ = 1 in this
Appendix.) The transition amplitude can be calculated by solving the Lippmann-Schwinger
equation shown in Figure 3:

iA(Ecm) = −i(λ0/m) + (λ0/m)I(Ecm)A(Ecm). (B4)
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The loop integral I(Ecm) in the last diagram in Figure 3 is

I(Ecm) =
λ2

0

m

∫
q

1

q2 −mEcm − iε
, (B5)

where q is the loop momentum. Using the expression for the bare coupling constant in
Eq. (A2), the solution can be expressed as

A(Ecm) =
4π/m

−1/a+
√
−mEcm − iε

. (B6)

This amplitude has a pole in the energy at E = K2/4m − 1/ma2. The residue of the pole
is −ZD, where

ZD = 8π/m2a. (B7)

FIG. 3: The Lippmann-Schwinger equation for the transition amplitude A(Ecm). The blob repre-

sents iA(Ecm). The vertex factor is −iλ0/m.

The standard Feynman rules can be used to calculate matrix elements of local operators
between states in the asymptotic past and states in the asymptotic future. However we need
matrix elements between initial and final states at the same time. We will use the Feynman
rules to calculate matrix elements of the contact field operator φ† between the vacuum and
two-atom states in the asymptotic future. We will then calculate matrix elements of the
contact density operator φ†φ between two-atom states in the asymptotic future by expressing
them in terms of matrix elements of φ† and φ.

1. Vacuum-to-pair matrix element of φ†

FIG. 4: Feynman diagrams for the matrix element of φ†(r) between the vacuum and the atom-pair

state |K,k〉. The open dot represents the φ† operator, whose Feynman rule is λ0. The residue of

the pole in the energy in the second diagram can be used to determine the matrix element of φ†(r)

between the vacuum and the dimer state |kD〉.
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The matrix element of φ†(r) between the vacuum |0〉 and an atom-pair state |K,k〉 with
total momentumK and relative momentum k can be calculated from the Feynman diagrams
in Fig. 4. The atoms are on their energy shells with total energy E = K2/4m+ k2/m. The
matrix element is

〈K,k|φ†(r)|0〉 = λ0

[
1 + iI(Ecm)A(Ecm)

]
,

= −mA(Ecm). (B8)

The energy Ecm of the atom pair in their center-of-mass frame depends only on their relative
momentum:

Ecm = k2/m. (B9)

2. Vacuum-to-dimer matrix element of φ†

The matrix element of φ†(r) between the vacuum |0〉 and a dimer state |kD〉 with momen-
tum kD can be calculated from second Feynman diagram in Fig. 4. That diagram has a pole
in the total energy E of the final-state atoms, which must be off their energy shells. At the
pole, the center-of-mass energy is equal to the binding energy of the dimer: Ecm = −1/ma2.

The residue of the pole is the product of the desired matrix element and Z
1/2
D , where ZD is

the residue factor given in Eq. (B7). The matrix element is therefore

〈kD|φ†(r)|0〉 = iλ0I(Ecm)(−ZD)Z
−1/2
D ,

=
√

8π/a. (B10)

3. Pair-to-pair matrix element of φ†φ

The matrix element of φ†φ between the atom-pair states |K,k〉 and |K ′
,k

′〉 in the
asymptotic future can be calculated by inserting a complete set of states between φ† and φ,
as in Eq. (B2) . Since the operator φ annihilates the initial-state atoms, the only term that
contributes is the vacuum state. The matrix element factors into the vacuum–to–atom-pair
matrix element and its complex conjugate:

〈K ′
,k

′ |φ†(r)φ(r)|K,k〉 = 〈K ′
,k

′ |φ†(r)|0〉〈0|φ†(r)|K,k〉,
= m2A∗(Ecm)A(E ′cm), (B11)

where Ecm is given in Eq. (B3) and E ′cm is the same expression with k replace by k′.
The expression for this matrix element given in Ref. [19] is incorrect: the factor A∗(Ecm)

was not complex conjugated. It is easy to see that this is incorrect by setting the final
state equal to the initial state: K

′
= K, k

′
= k. Since the operator is hermitian, the

matrix element must be real. This condition is satisfied by Eq. (B11). The error made in
Ref. [19] was that the matrix element was calculated not between atom-pair states at the
same time, but between an atom-pair state in the asymptotic past and an atom-pair state
in the asymptotic future.
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4. Pair-to-dimer matrix element of φ†φ

The matrix element of φ†φ between the atom-pair state |K,k〉 in the asymptotic future
and the dimer state |kD〉 in the asymptotic future can be calculated by inserting a complete
set of states between φ† and φ, as in Eq. (B2) . Since the operator φ annihilates the initial-
state atoms, the only term that contributes is the vacuum state. The matrix element factors
into a vacuum–to–dimer matrix element and the complex conjugate of a vacuum–to–atom-
pair matrix element:

〈kD|φ†(r)φ(r)|K,k〉 = 〈kD|φ†(r)|0〉〈0|φ(r)|K,k〉,
= −m

√
8π/aA∗(Ecm), (B12)

where Ecm is given by Eq. (B3).

5. Dimer-to-dimer matrix element of φ†φ

The matrix element of φ†φ between the dimer states |kD〉 and |k′D〉 in the asymptotic
future can be calculated by inserting a complete set of states between φ† and φ, as in Eq. (B2).
Since the operator φ annihilates the initial-state dimer, the only term that contributes is
the vacuum state. The matrix element factors into a vacuum–to–dimer matrix element and
its complex conjugate:

〈k′

D|φ†(r)φ(r)|kD〉 = 〈k′

D|φ†(r)|0〉〈0|φ(r)|kD〉,
= 8π/a. (B13)
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