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We propose to experimentally explore the Haldane phase in spin-one XXZ antiferromagnetic chains using
trapped ions. We show how to adiabatically prepare the ground states of the Haldane phase, demonstrate their
robustness against sources of experimental noise, and propose ways to detect the Haldane ground states based
on their excitation gap and exponentially decaying correlations, nonvanishing nonlocal string order, and doubly-
degenerate entanglement spectrum.
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I. INTRODUCTION

In a quantum simulation experiment, the behavior of a com-
plex quantum model is examined using controllable system,
which acts as the simulator [1–3]. Collections of trapped
atomic ions have emerged as excellent standards for quan-
tum simulations of interacting spin models. These electrically
charged particles are confined in an electromagnetic trap, mi-
crometers apart from one another [4, 5]. Thanks to precise
spin manipulation capabilities, near-perfect spin readout, and
a variety of cooling [6, 7] and dynamical decoupling tech-
niques [8–16], trapped ions can be made to follow target
Hamiltonians with high fidelity [17, 18], making them one of
the most promising candidates for quantum simulation.

To date, trapped ions have mostly been used to simulate
spin one-half Hamiltonians, showing the phase transition from
the (anti)ferromagnetic to paramagnetic phases in the Ising
model [19–30] and long range correlation functions in the XX
model [31, 32]. By enlarging the spin’s degree and moving
into integer spin chains, new and subtle physics can appear
[33–41]; for example, the local orders vanish and we are left
with hidden orders only [42].

In last few decades considerable efforts have been made
to investigate the non-local physics which appears in integer
spin chains, e.g., a spin-one XXZ antiferromagnetic (AFM)
Hamiltonian

H = ∑
i, j

Ji, j
(
Si

xS j
x +Si

yS j
y +λSi

zS
j
z
)
+D∑

i

(
Si

z
)2
. (1)

In 1983, Haldane conjectured [35] that Heisenberg chains
of integer spins with nearest neighbors antiferromagnetic in-
teractions are gapped, unlike the gap-less half-integer spin
chains. This energy gap corresponds to short-range exponen-
tially decaying correlation functions, compared to the long-
range power law decaying correlations of half-integer spin
systems. Later, Den Nijs and Rommelse [36] suggested that
the Haldane phase of the spin one chain is governed by a hid-
den order, which can be characterized by a nonlocal string
order parameter. It is consistent with a full breaking of a hid-
den Z2×Z2 symmetry, which was revealed using a nonlocal
unitary transformation by Kennedy and Tasaki [37, 38]. In

Figure 1. (Color online) Phase diagram of the spin-one XXZ an-
tiferromagnetic (AFM) Hamiltonian (eq. 1). The first derivation
in this text (as well as the previous derivation [41]) cover 0≤ λ ≤ 2
(in blue), whereas the second derivation in this text covers the whole
positive λ ≥ 0 plane (in blue and red).

2010 Pollmann et al. [39] showed that the Haldane phase
can also be described by the doubly degenerate entanglement
spectrum. These characteristics hint that the Haldane phase
is a topologically protected phase in one dimension. Hence,
quantum simulation of the Haldane phase enables the explo-
ration of topological behavior in relatively simple systems.

Recently an experiment by Senko et al. [40] has used
trapped ions to simulate spins in higher degrees. In this ex-
periment a spin-one Hamiltonian was engineered using state-
dependent laser forces, paving the way toward highly control-
lable quantum simulation experiments that exhibit hidden or-
ders. Previously, we proposed how to engineer the Hamilto-
nian of Eq. 1 using microwave-based forces on the trapped
ion spins [41]. In this previous derivation of the Hamiltonian,
we could cover only 0 ≤ λ ≤ 2 of the phase diagram (Fig.
1). A natural way to extrapolate the microwave approach to a
laser based implementation is to use non co-propagating Ra-
man beams instead of a magnetic field gradient [43] to induce
the spin-phonon coupling.

In this paper, we first propose a new approach to achieving
the same result as in [41], but with a laser based implemen-
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tation. Then, we propose a new approach for quantum engi-
neering eq. 1, while covering the whole positive λ ≥ 0 plane
of the phase diagram (Fig. 1). Instead of having the XX (flip-
flop) Hamiltonian Si

yS j
y +Si

xS j
x as our starting point, in the new

approach we engineer a Mølmer-Sørensen (MS) like gate [44]
for spin-one systems that takes the form of an Ising Hamilto-
nian Si

xS j
x.

We have found three ways to implement the MS gate for
spin-one systems [44–46]. These schemes were originally
proposed for two-level system (qubits), but can be extrapo-
lated to three-level systems (qutrits). For simplicity, we con-
sider the first and second approaches for laser based designs,
although a similar derivation exists for the third one, and also
for microwave based implementations.

We explain how to move experimentally to the interaction
picture: namely, how to measure in the appropriate basis. Fur-
thermore, we give a detailed explanation of the adiabatic path
for reaching the Haldane phase. We stress that our model is
robust to the main noise sources in experiments, exploiting
dressing fields as a dynamical decoupling technique, and op-
erating in a decoherence free subspace, enabling longer adia-
batic evolution times.

II. MODEL

The phonons— In our model we have N trapped ions each
of mass m and electric charge e, forming a linear chain along
the z axis, r0

i,z. The ion formation is determined according to
the equilibrium of the Coulomb repulsion between the ions,
and the trapping forces. The vibrations of the ions around their
settled points, ∆riα , are solved in the harmonic approximation
obtaining the normal modes Mα

i,n and να
n , which are the eigen-

states and the eigenvalues of the nth mode and the ith ion in the
α direction respectively. Thus, the ion displacements are rep-
resented as ∆riα =∑n Mα

i,n

√
h̄/2mνα

n

(
b†

nα +bnα

)
, and the vi-

bration Hamiltonian is represented as Hvib = ∑n,α να
n b†

nα bnα ,
where b†

nα ,bnα are the creation and annihilation of a phonon
respectively [47–49].

The spin— The second quantum degree of freedom in this
model is the spin. For our derivation, we consider the hyper-
fine structure of the 171Yb+ion (fig. 2), with microwave en-
ergy separation between the singlet and the three triplet states
[50, 51]. Removing the mF = 0 state (|0′〉) from the triplet,
we are left with three energy levels for modeling the simulated
spin-one system. Quantum manipulation can occur using Ra-
man transitions via virtual excited states, or using microwave
driving fields. Note that any other ion having three different
energy states in the microwave regime would suffice for mod-
eling the spin-one particle, as long as there is a virtual excited
state, through which the Raman transitions between the three
levels can occur [52].

The interaction— In trapped ion systems, the spin-spin in-
teraction takes place by exchanging a virtual phonon between
the different ions; therefore, a spin-phonon coupling term is
needed. Using laser Raman beams, the spin-phonon coupling
term is achieved by a sufficiently large Lamb-Dicke parame-

Figure 2. (Color online)171Yb+ground states used for modeling
the spin-one particle (in green). The beat frequencies between non-
co-propagating Raman beams (in red) drive the δ detuned transitions
between |−1〉→ |0〉 and |1〉→ |0〉 (in blue), generating the spin-laser
interaction in eq. 2).

ter of the non co-propagating beams [52]. For antiferromag-
netic interactions, we typically choose a radial vibration mode
as the mediator between the spins [53, 54]. Therefore, three
counter-propagating Raman beams having a momentum dif-
ference along the radial direction perform the two beat fre-
quencies corresponding to the δ detuned transitions between
|−1〉 → |0〉 and |1〉 → |0〉, with a π phase difference (fig. 2).
In the interaction picture with respect to the radial vibration
Hamiltonian and the bare state energy structure, we obtain the
red sideband transition for a three-level system:

Hred = ∑
n, j

iΩη j,n

2
√

2

(
F j
+eiδ t −h.c

)(
b†

neiνnt +h.c
)
. (2)

After applying the Lamb-Dicke approximation
η j,n
√

Nn +1 � 1, where Nn is the average number of
phonons of the nth mode, η j,n = kLM j,n

√
h̄/2mνn is the

Lamb-Dicke parameter, kL is the laser’s wavenumber, and
F j
+ =

√
2
(
|1〉 j 〈0|+ |0〉 j 〈−1|

)
. In the second-order pertur-

bation approach, this results in a XX Hamiltonian in addition
to a residual term [40]:

HXX = ∑
i≤ j

Je f f
i j

(F i
x F j

x +F i
y F j

y
)
(1−δi, j)−

(
F j

z

)2

2
δi, j

 ,

Hres = ∑
j,n,m

Jres
jnmF j

z

(
b†

nbm +
1
2

δn,m

)
e−i(νn−νm)t ,

(3)

where

Je f f
i j = ∑

n

ηi,nη j,n

2
νnΩ2

δ 2−ν2
n

∝

∣∣∣~r0
i −

~r0
j

∣∣∣−ξ

i6= j
,

Jres
jnm = Ω

2
δ

η j,nη j,m

4

(
1

δ 2−ν2
n
+

1
δ 2−ν2

m

)
.

(4)

Our model can be decoupled from the residual term if Jres
jnm

is approximately uniform across the chain, such that Hres ∝
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∑i F i
z . This is due to the fact that the model’s relevant ground

states, as we will see later in this paper, have a vanishing
projection over the z axis, thus the experiment is performed
in the decoherence-free subspace. As was suggested in Ref.
[40], this residual term can be eliminated, by adding addi-
tional beat frequencies that generate the blue sideband transi-
tions together with the red sideband ones, such that the MS
transitions for spin-one systems are realized. By applying
the MS transitions in the spin one-half (qubit) case [44], the
A.C Stark shift term which is coupled to phonons disappears.
Therefore, Hres in our spin-one case, which is the equivalent
term, is eliminated as well.

Moreover, using trapped ions, the spin-spin interaction is
not the nearest-neighbor-only as the classic Haldane work has
considered, but rather a power-law decay [53, 54]. However,
as Ref. [56, 57] shows, the Haldane phase can still be found
in power-law interacting systems.

Up to this stage of the derivation of the AFM XXZ Hamil-
tonian, we have shown how to generate the first two terms of
eq. 1. We now pursue the two other tunable terms, the D and
λ terms.

Generation of the control anisotropy D-term — Generat-
ing the tunable D-term can be done in two ways: (1) using
an additional transition to generate the A.C. Stark shift, from
which the D-term will arise (Fig. 3 a); (2) imposing detun-
ings on all the previous driving fields,such that the D-term is
set aside from the bare state energy structure (Fig. 3 b). To
generate the A.C. Stark shift we can apply an additional ∆D
detuned microwave driving field, corresponding to the transi-
tion between the two zero states of the triplet and the singlet,
|0′〉 ←→ |0〉 (fig.3 a). Similarly we can obtain the same result
by applying co-propagating Raman beams corresponding to
the same transition. Thus we obtain:

ΩD

2
|0〉
〈
0′
∣∣ei∆Dt +h.c, (5)

which yields an A.C. Stark shift term D′(Fz)
2 with D′=− Ω2

D
4∆D

,

in the second order perturbation approach, assuming ΩD
2 �

∆D. We also assume that

ΩΩD

8
√

2

(
1

∆D
+

1
δ

)
� ∆D−δ

Ωη j,nΩD

8
√

2

(
1

∆D
+

1
δ −νn

)
� ∆D− (δ −νn)

(6)

such that every undesired Raman-like coupling between the
∆D detuned transition and the carrier or sideband transitions
of the counter-propagating Raman beams are suppressed.

Generating a tunable D-term can alternatively be achieved
by regarding the |0〉 bare state energy level as D′-shifted, cor-
responding to its real value in the hyperfine structure (fig.3
b). In other words, we impose D′-detuning on all the driving
fields generating the XX Hamiltonian (eq. 3). Therefore, we
are left with the term −D′ |0〉〈0| = D′(Fz)

2. In order to tune
this term we have to shift all the driving fields transitions con-
tinuously, as was recently demonstrated in [40]. Note that the
anisotropy D-term is slightly different from these D′ terms,

Figure 3. (Color online) Generating the D-term Generating the D-
term in eq. 1 is done in two ways: (1) (a.) Applying two additional
co-propagating Raman beams, corresponding to a ∆D detuned tran-
sition between |0′〉 ←→ |0〉 results in an A.C. Stark shift Ω2

D
4∆D
|0〉〈0|.

This could alternatively be generated using a ∆D detuned microwave
driving field. (2) (b.) Within the non-copropagating Raman beams
(red) (fig. 2), we regard the |0〉 state as D′-shifted, and move to the
interaction picture with respect to the D′-shifted bare energy struc-
ture. Thus, we are left with −D′ |0〉〈0|, which is D′F2

z . In our later
derivation (which covers the entire λ ≥ 0 plane), we will impose a
2D′ detuning rather than a D′ detuning.

Figure 4. (Color online) Generating Ω′Fz cosθ for the λ -
generating trick. There are two ways of generating this term: (1)
(a.) Additional copropagating Raman beams (red) perform the ±∆z
detuned transitions between |±1〉↔ |0〉 respectively, with a Rabi fre-
quency of Ωz. These effective transitions can alternatively be real-
ized using detuned microwave driving fields (blue). Therefore, we
obtain the desired term from the A.C. Stark shifts where Ω′ cosθ =
Ω2

z/∆z. (2) (b.) Adding detunings to the non-copropagating Raman
beams (red) (fig. 2), such that δ ′ = δ +Ω′ cosθ . In this way we are
left with the desired term, after moving to the interaction picture with
respect to the detuned bare energy structure.

since the model is θ rotated while generating the λ -term, as is
explained below.

Generation of the Ising-like λ -term — The Ising-like
anisotropy term λJi, jF i

z F j
z is produced using a technique,

which is revealed by considering the interaction picture. It is
done by adding a spin operator term, θ -rotated from the z axis,
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Figure 5. (Color online) Generating Ω′Fα sinθ for the λ -
generating trick. (a.) We apply carrier transitions using additional
copropagating Raman beams (red), or alternatively microwave driv-
ing fields (blue), while keeping the imposed detunings for generat-
ing the D-term (fig. 3 a) and the Ω′Fz cosθ term (fig. 4 a). Here,
Ωcar = Ω′ sinθ

√
2, and α = α1−α−1 is determined by the initial

phase difference of the two effective transitions. The same carrier
transitions, only without detunings, are used in our later approach as
dressing fields that transform the system into the dressed state basis
(b.), thus protecting it from the magnetic noise.

namely, Ω′Fz,θ = Ω′ (Fz cosθ +Fα sinθ), where α can be ei-
ther x or y or their superposition (XY plane), and generating
each component separately. Ω′Fz cosθ can be produced simi-
larly to the two ways that the D term was generated. The first
way is to drive the transitions between |±1〉 ↔ |0〉 with ±∆z
detunings respectively. These transitions can be generated us-
ing co-propagating Raman beams, or alternatively using mi-
crowave driving fields, with a Rabi frequency Ωz, such that the
effective A.C. Stark shifts result in the Ω′Fz cosθ term, with
Ω′ cosθ = Ω2

z/∆z (Fig. 4 a), under the assumption Ωz� ∆z.
Similarly to the D generating case (eq. 6), we have to keep ∆z
far detuned from all the other detunings, such that every unde-
sired Raman-like transitions, coming from coupling between
this term to the D generating transitions or the counter prop-
agating Raman beams, will be suppressed. The second way
to induce Ω′Fz cosθ is by imposing detunings on the non co-
propagating Raman beams; i.e., by imposing±Ω′ cosθ detun-
ings on the transitions between |±1〉 ↔ |0〉 respectively, such
that the Fz cosθ term is set aside from the bare state energy
structure (Fig. 4 b).

The second term Ω′Fα sinθ is obtained using the carrier
transitions, where their relative phase difference determines
the resulting operator direction α . The carrier transitions can
be applied either using co propagating laser Raman beams, or
simply using microwave driving fields, with a Rabi frequency
Ωcar = Ω′ sinθ

√
2 (fig. 5 a).

By applying a θ rotation around the perpendicular axis,
such that Fz,θ is transformed into Fz, the new spin operators
and the new basis are θ rotated as well. If we move to the
interaction picture with respect to the new term we have built

Ω′Fz, and use the RWA where we require (Ωη j,n)
2

8(δ−νn)
� Ω′ �

δ −νn, we end up with the following effective Hamiltonian:

He f f = ∑
i< j

Je f f
i j

{(
F i

x F j
x +F i

y F j
y

) 1+ cos2 θ

2
+F i

z F j
z sin2

θ

}

+∑
i

(
D′−

Je f f
ii
2

)(
cos2 θ

2
− sin2

θ

)
(F i

z )
2.

(7)

We have obtained the required spin-one XXZ AFM Hamilto-
nian, where we can only cover 0 ≤ λ ≤ 2. Experimentally,
the following parameters are realistic: νn = 2π · 5MHz, δ =
2π ·5.1MHz, Ω = 2π ·500kHz,ηn, j ≈ 0.14, Ω′ = 2π ·10kHz,
which give Je f f

i,i+1 ≈ 2π ·1kHz, such that 0 < D < 2π ·10kHz.
An important advantage over the previous derivation in

[41], is that in order to obtain the antiferromagnetic interac-
tions, δ should be larger than the secular frequencies of the ra-
dial vibrational modes, rather than the Rabi frequency Ω/

√
2.

Since one of the main experimental challenges is to reach a
high Rabi frequency, in the present derivation we overcome
this technical obstacle. As for the residual terms we dropped
on the way, such as the carrier transition that yields a four-
photon A.C. Stark shift and was neglected from eq. 2, and
the neglected fast rotating terms and the residual from eq. 3,
these terms operate with ∑ j F j

z . Since the model’s relevant
ground states have a vanishing projection over the z axis, we
are decoupled from these undesired terms.

In this scheme, we move more than once to different inter-
action pictures. In the following section, we explain how this
can be done experimentally.

III. MOVING TO THE INTERACTION PICTURE
EXPERIMENTALLY

Since the measurement is taken in the lab frame and the
effective Hamiltonian is derived after moving to several inter-
action pictures, we now show how the dynamics of the state
in the lab frame relates to the dynamics determined by the last
interaction picture. For this purpose, we take the general case
where in the lab frame the evolution of the Schrodinger state
is described as follows:

Hs(t) = H0 +Hint(t)

Us(t) = T exp
(
−i
∫ t

0
Hs(t ′)dt ′

)
|Ψs(t)〉=Us(t) |Ψs(0)〉

(8)

where T is the time ordering operator. Moving to the interac-
tion picture, the dynamics is described as:

U†
0 (t) = exp(iH0t)

HI0(t) =U†
0 (t)Hint(t)U0(t)

UI0(t) = T exp
(
−i
∫ t

0
HI0(t

′)dt ′
)

∣∣ΨI0(t)
〉
=UI0(t)

∣∣ΨI0(0)
〉
,

(9)
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Usually, the first interaction picture H0 is time-independent
since it is the bare state energy structure. However, in
general, H0 can also be time-dependent, where U†

0 (t) =

exp
(
i
∫ t

0 H0(t ′)dt ′
)
. Here, we only assume that H0 is a single

particle operator or a global rotation; i.e., it does not create en-
tanglement. In fact, if the realization of the D control parame-
ter is achieved using detunings, varying it during the Haldane
phase simulation experiment effectively results in having the
first interaction picture H0(t) time-dependent.

Using the definition of the interaction picture∣∣ΨI0(t)
〉
=U†

0 (t) |Ψs(t)〉 , (10)

we obtain the relation between the interaction and the
Schrodinger pictures:

UI0(t) =U†
0 (t)Us(t), (11)

since
∣∣ΨI0(0)

〉
= |Ψs(0)〉.

Suppose that the first interaction frame is by itself a
”Schrodinger” frame for the next interaction picture, such
that:

HI0(t) = H1(t)+H int
I0 (t), (12)

where H1(t) is a single particle operator in the first interaction
frame. As before

U†
1 (t) = exp

(
i
∫ t

0
H1(t ′)dt ′

)
HI1(t) =U†

1 (t)H
int
I0 (t)U1(t)

UI1(t) = T exp
(
−i
∫ t

0
HI1(t

′)

)
dt ′

|ΨI1(t)〉=UI1(t) |ΨI1(0)〉 ,

(13)

thus,

UI1(t) =U1
†(t)UI0(t). (14)

Substituting eq. 11 in eq. 14 we obtain

Us(t) =U0(t)U1(t)UI1(t); |Ψs(t)〉=U0(t)U1(t) |ΨI1(t)〉
(15)

For N +1 interaction pictures in our derivation, we obtain

Us(t) =U0(t)U1(t)...UN(t)UIN (t)
|Ψs(t)〉=U0(t)U1(t)...UN(t) |ΨIN (t)〉 .

(16)

In order to move experimentally to the interaction picture,
such that the Schrodinger state will evolve according to the
last interaction Hamiltonian, we have to rotate the system back
to counter U0(t)U1(t)...UN(t). There are two main ways to
move experimentally to the interaction picture, as will be dis-
cussed next.

The first and straightforward way is by applying N concate-
nated global rotations for each interaction picture, except for
the first one. Suppose we want to measure the system after
time τ , in which all the driving fields were on. In order to
counter the last interaction unitary UN(τ), we only block the

driving fields that generate the simulated Hamiltonian UIN (τ),
while operating with all the driving fields that are responsible
for the interaction pictures. This will be done for time tN , such
that we obtain:

Us(τ + tN) =U0(τ + tN)U1(τ + tN)...UN(τ + tN)UIN (τ), (17)

and tN is determined by UN(τ + tN) = I. The same approach
can be used to counter all the other interaction unitary, obtain-
ing the following pulse sequence:
(1). All the driving fields for the experiment time τ .
(2). All the driving fields that are responsible for the H1(t) to
HN(t) interaction pictures for tN time.
(3). All the driving fields that are responsible for the H1(t) to
HN−1(t) interaction pictures for tN−1 time.
...
(N). Only the driving fields that are responsible for the H1(t)
interaction pictures for t1 time.

In that way, we obtain the following relation between the
last interaction picture and the Schrodinger one:

Us(τ + tN + ...+ t1) =
U0(τ + tN + ...+ t1)U1(τ + tN + ...+ t1)...UN(τ + tN)UIN (τ).

(18)

Setting Uk(τ + tN + ... + tk) = I for all 1 ≤ k ≤ N, the
Schrodinger state therefore evolves according to the last in-
teraction picture

Us(τ + tN + ...+ t1) =U0(τ + tN + ...+ t1)UIN (τ). (19)

with an additional phase U0(τ + tN + ...+ t1), which we do
not measure. If we want to measure in any different basis, we
can rotate the system using any one of Uk(τ + tN + ...+ tk) =
eiσαk θk .

The second way to move experimentally to the interaction
picture is simpler. Since the pre-factor of UIN (τ) is a global ro-
tation U0(τ)U1(τ)...UN(τ) = eiσαtot θtot , we can apply just one
global rotation to counter the total interaction unitary rotations
all together. Since any rotation in the Bloch sphere can be gen-
erated by two independent rotations (e.g. two orthogonal rota-
tions), it is sufficient to use the first and second interaction pic-
tures, namely H0(t) and H1(t), which are orthogonal rotations
for that task. Measuring in any other basis can be achieved
by an additional rotation, which can be added to all the inter-
action unitary, and thus be represented effectively with H0(t)
and H1(t). Next, we explicitly show how to apply the first
approach in the two derivations of the XXZ-D Hamiltonian.

Experimental realization— While generating the XXZ-D
Hamiltonian we move twice to different interaction pictures:
the first one is with respect to the bare energy gap of the qutrit,
yielding the following interaction unitary:

U0(τ)= exp
(
−i
[
(ω0−D′) |0〉〈0|+λ1 |1〉〈1|−λ1 |−1〉〈−1|

]
τ
)

(20)
where we used the detuning approach to generate the D
term. The second interaction picture is with respect to the
λ−generating term, resulting in the following interaction uni-
tary:

U1(τ) = exp
(
−iΩ′ [cosθFz + sinθFα ]τ

)
, (21)
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with α = x,y. Moving to these interaction pictures results in
the effective Hamiltonian (eq. 7) which yields the simulated
evolution UI1(τ).

As was discussed above, in order to move to the interaction
frame, we first have to shut down the effective Hamiltonian.
This is done by blocking the two non-copropagating Raman
beams (setting Ω = 0), and eliminating the D′ term. Shut-
ting down the effective Hamiltonian should take t1 such that
U1(τ + t1) = I.

There is no need to counter U0 since it only yields an un-
measured phase. Leaving the experiment at this point results
in measuring the state in the Fz basis. Now, if we want to mea-
sure in the simulated basis, namely Fz = cosθFz + sinθFα for
α = x,y, we need to rotate the system around a perpendic-
ular axis. Since by using the carrier transitions we generate
Ω′ sinθFα , we have to rotate the system with an Fβ operation,
with β ⊥ α . This can be achieved after countering U1, by a
π/2 phase change of the laser or microwave driving field, such
that instead of operating with Fx the driving field will operate
with Fy. In a similar way we can measure in any basis we
choose.

IV. ADIABATIC QUANTUM SIMULATION

Once we know how to quantum engineer the Hamiltonian
of the system under investigation with tunable parameters, the
adiabatic quantum simulation proceeds as explained below.
We initialize the system in a trivial phase by appropriately set-
ting the parameters of the Hamiltonian, and we initialize the
system’s state in its trivial ground state. Then, we change the
Hamiltonian parameters adiabatically, slower than the energy
gap, such that the system stays in the ground state of the in-
stantaneous Hamiltonian, until it reaches the ground state of
the non-trivial phase that we want to investigate.

In our case the system under investigation is the Antiferro-
magnetic XXZ-D spin-1 Hamiltonian, and its trivial phase is
the large-D phase, with a tensor product of |0〉 in each site, as
its trivial ground state. Since we are operating with a rotated
basis Fz = cosθFz + sinθFα , we can initialize the system in a
tensor product of |0〉 in the Fz basis using polarization [50, 51].
Then we can rotate the state with orthogonal operations: Fβ

(with α ⊥ β ), similarly to what was described above. Now,
we set a large D parameter of the Hamiltonian, and start the
adiabatic variation of the D parameter until we reach the Hal-
dane phase regime.

When getting closer to the thermodynamic limit, the en-
ergy gap in the second order phase transition closes [58]; thus
the adiabatic approximation cannot hold for increasingly long
chains. Overcoming this problem takes advantage of the fact
that the Haldane phase is a symmetry-protected topological
phase. Thus, we can use a symmetry-breaking perturbation
in order to go around the D→ H phase transition, while still
operating adiabatically (Fig. 6).

The Haldane phase is protected by the following symme-
tries: a bond centered spatial inversion ~S j → ~S− j+1, a time
reversal symmetry ~S j → −~S j and the dihedral D2 symme-
try, which is a π rotation around the x, y and z axes. In or-

Figure 6. (Color online) Adiabatic path using the symmetry
breaking perturbation. When crossing a second order phase tran-
sition the energy gap is closed, and the adiabatic approximation is
invalid. We break the symmetries of the Hamiltonian (eq. 1) and
thus, go around the phase transition, keeping a finite energy gap dur-
ing the whole path.

der to break all these symmetries we add a perturbation term
Hpert = −h∑i (−1)i Si

z. Since we know how to engineer the
Sz term, which is Fz in our derivation, the symmetry break-
ing term can be produced by individual addressing, which is
achieved by focusing the laser beams.

Note that since the quantum simulation experiment is adia-
batic, its duration has a lower bound determined by the energy
gap. However, like any other quantum experiment, it also has
an upper bound that is determined by the coherence time. If
the experiment lasts longer than the coherence time, decoher-
ence processes might destroy the quantum information carried
by the system, and the results cannot be trusted. Hence, im-
munity to the main noise sources is crucial.

V. ROBUSTNESS OF THE GROUND STATES TO NOISE

To benefit from a long coherence time we need to be de-
coupled from the main noise sources. The most fidelity dam-
aging noise source is the ambient magnetic field. Usually, to
simulate spin-1/2 systems, the 171Yb+clock states are used.
However, when simulating spin-1, the use of the Zeeman lev-
els leaves the system vulnerable to magnetic field fluctuations.
The second most important noise source is the fluctuations of
the Rabi frequencies of the non-copropagating Raman beams
that generate the spin-spin interaction Ω, the carrier transition
Ωcar, and the driving fields that generate Ω′ sinθFα . In or-
der to counter these noise sources, we combine the continuous
version of the dynamical decoupling technique and the unique
quality of this model that makes it possible to conduct the ex-
periment in a decoherence-free subspace. In our scheme, we
use driving fields that refocus the noise in directions perpen-
dicular to the final basis we operate with (Fz). Specifically,
these driving fields operate as dressing fields performing dy-
namical decoupling, thus, we are left with noise sources in
the z direction. However, since the relevant ground states of
the large D and the Haldane phases belong to the decoherence
free subspace, we are protected against these noise terms.

The ground state of the large D phase is the topologically
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trivial state of a tensor product of
∣∣0〉, and the ground state of

the Haldane phase [37, 38] has the same number of sites occu-
pied by

∣∣1〉 and
∣∣−1

〉
, where

∣∣1〉 ∣∣0〉 and
∣∣−1

〉
are the eigen-

states of Fz with eigenvalues 1,0,−1 respectively. Therefore,
these ground states are eigenstates of ∑ j F j

z , with a zero eigen-
value, such that our model is decoupled from this operation
and thus from these noise sources. Thus, the quantum simula-
tion operates in the decoherence free subspace. For the same
reason, all the neglected A.C. Stark shifts resulting in ∑ j F j

z
could have been dropped in the derivation.

VI. VERIFICATION OF THE HALDANE PHASE’S
GROUND STATE

The ground states of the Haldane phase are characterized
by: (1) an excitation gap and exponentially decaying correla-
tions of the local order Cα

f (i− j) =
〈

Si
α S j

α

〉
, where 〈〉 denotes

the expectation value in the ground state, (2) a nonvanishing
nonlocal string order Oα

string (H)= lim|i− j|→∞ Cα
st (i− j), where

Cα
st (i− j) =

〈
−Si

α exp
[
iπ ∑

j−1
l=i+1 Sl

α

]
S j

α

〉
is the string corre-

lation function, (3) a symmetry-protected double degenerate
entanglement spectrum, obtained by dividing the systems into
two parts, tracing out one of them and diagonalizing the re-
duced density matrix [59].

Experimentally verifying the ground states of the Haldane
phase can be accomplished by directly measuring the correla-
tion functions of the local orders and the string order (signa-
tures (1) and (2)). For simplicity, suppose we want to mea-
sure Cz

f (i− j) or equivalently Cz
st(i− j). Experimentally we

can only measure the dark singlet state |0〉 without the ability
to distinguish between the bright triplet states | ± 1〉, yet by
single addressing we can rotate a chosen spin and measure the
other states as well. Since

〈
Si

zS
j
z

〉
= Pi, j

1,1 +Pi, j
−1,−1−Pi, j

1,−1−

Pi, j
−1,1,where Pi, j

a,b is the probability to measure
〈
|a〉i〈a||b〉 j〈b|

〉
,

four measurements would suffice [60]. The same holds for the
string correlations, except here we have to count the bright
triplet states of the intermediate spins, exp

[
iπ ∑

j−1
l=i+1 Sl

z

]
. To

measure the correlations in other basis, we first globally rotate
the system to the desired basis, and then implement the same
procedure.

Full tomography is simply infeasible experimentally for in-
creasingly long chains. However, in order to measure the en-
tanglement spectrum (signature (3)), we can make tomogra-
phy of a part of the system only. Namely, we can measure the
reduced density matrix of this part containing a few spins, and
diagonalizing it numerically.

VII. A NEW APPROACH FOR COVERING THE WHOLE
POSITIVE λ > 0 PLANE

In the above scheme, the Ising-like λ parameter is limited
0 ≤ λ ≤ 2, and we can not cover the whole phase diagram,

just like in the derivation of the previous paper [41]. This has
to do with the F i

β
F j

β
term, where α ⊥ β , in the XX Hamil-

tonian (eq.3). In order to solve it, we have to suppress this
limiting term; namely, we have to perform a MS like gate of
spin-one, rather than the red side-band transition which results
in the limiting XX Hamiltonian. Once we generate the F i

x F j
x

interaction term instead of the XX Hamiltonian, we can span
the whole positive λ plane of the phase diagram by using the
same λ−generating trick as above.

As was suggested by Senko et al [40], the straight-forward
way to generate the MS transitions is by applying additional
beat frequencies to drive the blue sideband transitions in addi-
tion to the red sideband ones, based on Ref. [44]. Yet, in this
section, we would like to show another way to realize the MS
Hamiltonian, based on the Bermudez et al. gate proposal [45].
Here, we use the carrier transitions that were used to generate
Ω′ sinθFα in the above derivation, in order to suppress the
limiting term, and generate the F i

x F j
x interaction (Ising Hamil-

tonian). Thus, in the rotating frame of the bare state energy
levels, the carrier transitions yield

Hcar =
Ωcar√

2 ∑
j

F j
α , (22)

where α is in the XY plane, and is determined by the rela-
tive phase of the two carrier transitions (fig. 5 b). For sim-
plicity, we assume that α = x corresponding to a vanishing
initial phase between the carrier transitions. These transitions
dress our qutrits, and have significant implications in terms of
suppressing the magnetic field noise. Moving to the dressed
state basis can be thought of as a −π/2 rotation about the y
axis; thus, Fx,Fy,Fz in the bare state basis are transformed to
Sz,Sy,−Sx in the dressed state basis, respectively. In the ro-
tating frame of the dressed state energy structure (eq. 22), the
red sideband transition (eq. 2) becomes:

Hred = ∑
n, j

iΩη j,n

2
√

2

([
S j

z +
S j
+

2
ei Ωcar√

2
t −

S j
−
2

ei Ωcar√
2

t

]
eiδ t −h.c

)
(
b†

neiνnt +h.c
)
.

(23)

If δ − νn � Ωcar/
√

2 we can neglect the fast rotating terms;
thus we are left with the MS Hamiltonian for qutrits:

Hred = ∑
n, j

iΩη j,n

2
√

2

(
S j

zeiδ t −h.c
)(

b†
neiνnt +h.c

)
, (24)

resulting in the Ising Hamiltonian for spin-one systems, in the
second order perturbation theory, if Ωη j,n/2

√
2� δ −νn:

HIsing = ∑
i≤ j

Je f f
i j

Si
zS

j
z (1−δi, j)+

(
S j

z

)2

2
δi, j

 , (25)

This looks like we are not proceeding with the derivation of
eq. 1, but rather are going backwards. We have already had
the XX Hamiltonian (eq. 3), and with additional effort (eq.
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22), we only obtain the Ising Hamiltonian. However, using
the trick for generating the λ−like term, we also generate the
XXZ Hamiltonian, this time covering the whole positive λ

phase diagram, unlike the previous derivation. In the follow-
ing, we pursue a tunable D term, and a tunable λ term.

Generation of the control anisotropy D-term — As before,
generating the tunable D-term can be done in two ways: gen-
erating an A.C. Stark shift, or imposing detunings. To gener-
ate the detuned transitions to implement the first method we
can apply an additional ∆D detuned microwave driving field,
corresponding to the transition between the two zero states of
the triplet and the singlet, |0′〉 ←→ |0〉. In a similar way, we
can obtain the same result by applying co-propagating Raman
beams corresponding to the same transition (fig.3 a). We then
follow the previous steps of derivation: by first transforming
to the dressed state basis, where |0〉 → (|u〉− |d〉)/

√
2, and

then moving to the rotating frame of Ωcar√
2

Sz, we obtain

ΩD

2
√

2

(
|u〉
〈
0′
∣∣ei(∆D+

Ωcar√
2
)t −|d〉

〈
0′
∣∣ei(∆D−Ωcar√

2
)t
)
+h.c.

(26)
In the second perturbation theory, assuming ΩD

2
√

2
, Ωcar√

2
�

∆D, and Ω2
D

8∆D
�
√

2Ωcar, only the A.C. Stark shifts survive,
whereas the other off-diagonal terms coming from the Ra-
man transitions between |u〉 ←→ |d〉 are suppressed in the
RWA. Thus, we are left with the desired D′(Sz)

2 term, setting

D′ = Ω2
D

8∆D
.

Generating a tunable D-term can alternatively be achieved
by regarding the |0〉 bare state energy level as 2D′-shifted cor-
responding to its real value in the hyperfine structure (fig.3
b). That is to say, we impose 2D′-detuning on all the driv-
ing fields generating the Ising Hamiltonian (eq. 25). There-
fore, we are left with the term 2D′ |0〉〈0|. Transforming to
the dressed-state basis and moving to the interaction picture
with respect to Ωcar√

2
Sz as was mentioned above, all the off-

diagonal terms are suppressed using the RWA, if we assume
that D′�

√
2Ωcar. Once again, we are left with D′(Sz)

2.
Generation of the Ising-like λ -term — To implement

the λ -generating trick; i.e., adding a spin operator term
θ -rotated from the dressed z axis, which is Ω′Sz,θ =
Ω′ (Sz cosθ +Sα sinθ), we generate each component sepa-
rately. The first Ω′Sz cosθ term is easily produced since it
can be set aside from the carrier transition (eq. 22), such
that instead of eq. 22,

(
Ωcar√

2
−Ω′ cosθ

)
Sz is used as the

dressing term. Regarding the second term Ω′Sα sinθ there
are two alternatives. Choosing α = y, the term Ω′Sy sinθ

is produced by using additional microwave driving fields,
corresponding to the two transitions between |∓1〉 ↔ |0〉
with±

(
Ωcar√

2
−Ω′ cosθ

)
detunings,±π

2 initial phases and the

same Rabi frequency Ωy =
√

2Ω′ sinθ respectively (fig.7 a).
Similarly, we can obtain the same result with co-propagating
laser Raman beams corresponding to these transitions.

Choosing α = x, the −Sx sinθ term, is simply obtained by
applying an additional z-polarized radio-frequency (RF) driv-
ing field, ΩzFz cos

((
Ωcar√

2
−Ω′ cosθ

)
t
)

, with Ωz = 2Ω′ sinθ

Figure 7. (Color online) Generating Ω′Sα sinθ for the λ -
generating trick. There are two ways to realize this term of the λ -
generating trick: (1) (a.) to engineer Ω′Sy sinθ , we apply additional
co-propagating laser Raman beams, which perform the two Raman
transitions between |∓1〉↔ |0〉 with ±δλ =±

(
Ωcar√

2
−Ω′ cosθ

)
de-

tunings, ± π

2 initial phases and the same effective Rabi frequency
Ωy =

√
2Ω′ sinθ respectively. (2) (b.) to engineer −Ω′ sinθSx we

apply a z-polarized radio-wave driving field, on resonance with the
dressed-state energy structure (fig.5 b), and with a Rabi frequency of
Ωz = 2Ω′ sinθ . Regardless of method, we obtain the desired term
by moving to the rotating frame of the dressed energy structure, and
using RWA while assuming Ω′�

√
2Ω.

(fig.7 b). Thus, by moving to the rotating frame of the bare-
state energy structure, the RF driving field is not affected.
Finally, for both α = x,y, the desired terms are obtained in
the rotating frame corresponding to

(
Ωcar√

2
−Ω′ cosθ

)
Sz, us-

ing the RWA where we assume that Ω′�
√

2Ωcar.

By applying a θ rotation around the perpendicular axis,
such that Sz,θ is transformed into Sz, the new spin operators
and the double dressed state basis are θ rotated as well. If
we move to the interaction picture with respect to the new
term we have built Ω′Sz and use the RWA where we require
(Ωη j,n)

2

8(δ−νn)
� Ω′� δ −νn, we end up with the following effec-

tive Hamiltonian:

He f f = ∑
i< j

Je f f
i j

{(
Si

xS j
x +Si

yS j
y

) cos2 θ

2
+Si

zS
j
z sin2

θ

}

+∑
i

(
D′−

Je f f
ii
2

)(
cos2 θ

2
− sin2

θ

)
(Si

z)
2.

(27)

Therefore, we have obtained the required spin-one XXZ AFM
Hamiltonian, while covering the whole positive λ ≥ 0 plane in
the phase diagram. Experimentally, the following parameters
are realistic: νn = 2π · 5MHz, δ = 2π · 5.1MHz, Ωcar = 2π ·
1MHz, Ω′ = 2π ·10kHz, Ω = 2π ·500kHz ,ηn, j ≈ 0.14, which
give Je f f

ii = 2π ·1kHz, such that 0 < D < 2π10kHz.
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VIII. EXPERIMENTAL REALIZATION OF MOVING TO
THE INTERACTION PICTURE

In this scheme of generating the XXZ-D Hamiltonian, we
move to three interaction pictures: the first one is with respect
to the bare energy gap of the qutrit, which yields the same first
interaction unitary U0(τ) (eq. 20) of the first approach. The
second interaction picture is with respect to the microwave
dressed state energy gap, giving rise to the following interac-
tion unitary:

U1(τ) = exp
(
−i
[

Ωcar√
2
−Ω

′ cosθ

]
F j

x τ

)
(28)

and the last interaction picture is with respect to a superposi-
tion of the θ−rotated term used for generating the λ− gener-
ating trick. It results in the following interaction unitary:

U2(τ) = exp
(
−iΩ′ [cosθFx + sinθFα ]τ

)
, (29)

with α = z,y. Moving to these interaction pictures results in
the effective Hamiltonian (eq. 27), which yields the simulated
evolution UI2(τ).

As was discussed above, in order to move to the interaction
frame, we first have to shut down the effective Hamiltonian.
This is done by blocking the two non-copropagating Raman
beams (setting Ω = 0), and eliminating the D′ term for t2 time
duration, such that U2(τ + t2) = I.

The next stage is countering U1. For that purpose, we have
to shut down the driving fields responsible for U2. Specifically
we have to block the driving fields that generate Ω′ sinθFα ,
and to change the Rabi frequency of the carrier transitions
to Ωcar/

√
2−Ω′ cosθ . This stage should take t1, such that

U1(τ + t2 + t1) = I. As before, there is no need to counter U0,
and we can measure in any basis we desire.

Similarly to the above scheme, during the adiabatic quan-
tum simulation experiment, we counter the main noise sources
- the ambient magnetic field fluctuations, and the Rabi fre-
quency fluctuations - using a combination of the continuous
dynamical decoupling technique with decoherence-free sub-
space.

IX. SUMMARY

We have discussed how to quantum engineer the spin-one
XXZ-D AFM Hamiltonian with two schemes. The first cov-
ers 0 ≤ λ ≤ 2, whereas the second covers the whole positive
λ ≥ 0 plane in the phase diagram. It enables us to explore the
regime of the Heisenberg Hamiltonian of integer spin systems
where the Haldane phase resides. We have explained how to
adiabatically generate this non-trivial topological phase, start-
ing from the large D phase with its trivial ground state. During
the adiabatic path, the ground states are robust to the fluctua-
tions in the magnetic field and Rabi frequencies, and belong
to a decoherence free subspace. This permits a longer adia-
batic path with higher fidelities. We have also shown how the
Haldane phase can be verified with simple experimental mea-
surements. This proposal may thus constitute an important
step towards exploring topological phases with trapped ions.
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