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We study a recently demonstrated design for a high-performance tunable coupler suitable for
superconducting Xmon and planar transmon qubits [Y. Chen et al., Phys. Rev. Lett. 113, 220502
(2014)]. The coupler circuit uses a single flux-biased Josephson junction and acts as a tunable current
divider. We calculate the effective qubit-qubit interaction Hamiltonian by treating the nonlinearity
of the qubit and coupler junctions perturbatively. We find that the qubit nonlinearity has two
principal effects: The first is to suppress the magnitude of the transverse σx

⊗ σx coupling from
that obtained in the harmonic approximation by about 15%, assuming typical qubit parameters.
The second is to induce a small diagonal σz

⊗ σz coupling. The effects of the coupler junction
nonlinearity are negligible in the parameter regime considered. The approach used here can be
applied to other complex nonlinear circuits arising in the design of superconducting hardware for
quantum information processing.

PACS numbers: 03.67.Lx, 85.25.Cp

I. INTRODUCTION

The development of a fully planar transmon-type [1]
superconducting qubit, which combines high coherence
with several other features desirable for logic gate imple-
mentation and scalability, could make a quantum com-
puter based on quantum integrated circuits possible in
the near future [2]. These Xmon qubits can be directly
wired together (or to a resonator bus) with fixed capac-
itors [3], but the resulting couplings are always present
and degrade gate performance. A simple tunable coupler
option is therefore desirable. Tunable coupling is also of-
ten desirable for quantum simulation applications [4–6]
as well.
A wide variety of tunable coupler designs for supercon-

ducting circuits have been considered previously [4, 7–
25]. However, most of these designs are intended for flux
qubits, and high performance applications have yet to
be realized due to the challenges of implementing tun-
able coupling while maintaining qubit coherence. Fur-
thermore, large cross talk errors arise when there is a dc
path connecting the qubit and coupler junctions.
The coupler we discuss in this work is suitable for

Xmon [2] and planar transmon [1] qubits, which have
no trapped flux, and the design is experimentally practi-
cal. In contrast to previous couplers, the design discussed
here inductively couples transmon qubits at their low
voltage nodes. This is desirable because it reduces the en-
ergy stored in the coupler junction, diminishing its non-
linear behavior. In fact, we find that the effects of coupler
junction nonlinearity are negligible in this design. Fur-
thermore, cross talk errors are minimized by using elimi-
nating the dc coupling between the qubits. Most impor-
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FIG. 1. Coupler circuit schematic. The ϕi and ξi are node
flux variables, and Φext is an external magnetic flux bias.
There are four active nodes (black dots) in this circuit. The
Josephson junctions labelled Lj are each double junctions
threaded by additional fluxes (not shown) that tune the qubit
frequencies.

tantly, the design introduces tunability without compro-
mising high coherence. Tunably coupled Xmon’s based
on this design, which are called gmon qubits, have been
demonstrated recently [26]. The analysis of Ref. [26] is
based on a harmonic circuit model, and the important
effects of nonlinearity have yet to be considered. In this
work we study this coupler design theoretically, focusing
on the effects of the circuit nonlinearity.

Nonlinearity can in principal affect both the form and
strength of the qubit-qubit interaction. Because the cou-
pling here is purely inductive, the interaction Hamilto-
nian is proportional to σx ⊗ σx and σz ⊗ σz . In this
work we show that the qubit anharmonicity suppresses
the magnitude of the transverse σx⊗ σx coupling from
that obtained in the harmonic approximation, as well as
induces a small diagonal σz⊗ σz coupling.

The organization of this paper is as follows: In Sec. II
we introduce the coupler circuit and derive a simple for-
mula for the tunable coupling in the weak coupling and
harmonic limit. In Sec. III we construct the Hamilto-
nian for the nonlinear circuit and in Sec. IV calculate
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the transverse coupling numerically by exact diagonal-
ization. In Sec. V we calculate the σx ⊗ σx coupling for
the linearized model beyond weak coupling and study the
nonlinearity perturbatively. In Sec. VI we calculate the
diagonal σz ⊗ σz coupling, both analytically and numer-
ically. In Sec. VII we give our conclusions and also com-
ment on the choice of possible circuit parameter values
and the behavior of the coupler as these values are var-
ied. Two appendices contain details of the calculations
that are not essential for the general reader.

II. HARMONIC LIMIT

The coupler circuit is shown in Fig. 1. We begin by
briefly discussing the circuit in the harmonic approxima-
tion. Josephson junctions (crosses) are characterized by
their zero-bias linear inductances Lj and LT. In par-
ticular, LT = Φ0/2πIc, where Φ0 ≡ h/2e and Ic is the
critical current of the coupler junction. A magnetic flux
bias Φext is used to tune the coupler junction’s effec-
tive linear inductance to Leff = LT/ cos δ, where δ is the
dc phase difference across the coupler. The relation be-
tween δ and Φext follows from writing the total magnetic
flux Φ ≡

∮

Γ
A · dl = (δ/2π)Φ0 in the coupler loop Γ as

Φ = Φext − LloopIc sin δ, where Lloop = L01 + L02. Here
Ic sin δ is the induced supercurrent. This leads to

δ +

(

L01 + L02

LT

)

sin δ = φext, (1)

where φext≡2πΦext/Φ0.
When Leff →∞, no ac current flows through the cou-

pler and the circuit describes two uncoupled qubits. This
occurs when

δ mod 2π =

(

π

2
,
3π

2

)

. (2)

Then (1) shows that the coupling vanishes when

φext mod 2π =

(

π

2
+

L01 + L02

LT
,
3π

2
− L01 + L02

LT

)

. (3)

In the weakly coupled limit the effective coupling
strength—half the splitting between the symmetric and
antisymmetric eigenstates—is approximately [26]

g = − L2
0 cos δ

2(Lj + L0)(LT + 2L0 cos δ)
ωq, (4)

where ωq is the qubit frequency. This is derived in Ap-
pendix A. In (4) we have assumed identical qubits in
resonance. The expression (4) is valid in the weak cou-
pling limit and, in addition, does not account for qubit
and coupler anharmonicity (beyond the flux-dependence
of the linear inductance Leff).
In Table I we provide an example of possible system

parameter values. The approximate coupling function
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FIG. 2. (Color online) Coupling strength in the weak coupling
limit (4), for system parameters given in Table I.

TABLE I. Example values of circuit parameters.

quantity value
C1, C2 91 fF
Lj1, Lj2 8.6 nH
L01, L02 200 pH

LT 1.3 nH

(4) for these parameters is shown in Fig. 2. Here δ(φext)
is obtained from (1). With these parameter values the
coupling vanishes at φext mod 2π =

(

0.598π, 1.402π
)

.

In the remainder of this paper we calculate the trans-
verse σx ⊗ σx coupling g, going beyond the approxima-
tions leading to (4), and we also compute the diagonal
σz ⊗ σz coupling.

III. NONLINEAR CIRCUIT MODEL

The state of the circuit in Fig. 1 is described by four
coordinates. However the ξ1 and ξ2 nodes have negligi-
ble capacitance to ground, and therefore are “massless”
degrees of freedom that remain in their instantaneous
ground states. They will be eliminated from the problem
in the analysis below. The complete Lagrangian for the
circuit of Fig. 1 is

L =
∑

i=1,2

(

Φ0

2π

)2
Ci

2
ϕ̇2
i − U, (5)
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where

U =
∑

i=1,2

{(

Φ0

2π

)2[
ξ2i
2L0i

− cos(ϕi − ξi)

Lji

]}

−
(

Φ0

2π

)2
cos(ξ1 − ξ2 − φext)

LT
. (6)

We begin our analysis by writing the four coordinates
as classical equilibrium or dc values that minimize the
potential energy (6), plus deviations. Two of the four
equilibrium conditions lead to

ϕ̄i = ξ̄i, (7)

where the bar denotes equilibrium values. The remaining
two conditions can be written as

ξ̄1
L01

= −x and
ξ̄2
L02

= x, (8)

where x ≡ sin(ξ̄1 − ξ̄2 − φext)/LT. This leads to

x = − sin[(L01 + L02)x+ φext]

LT
. (9)

We solve (9) approximately, in the weak coupling limit.
To do this we define y ≡ (L01 + L02)x, which leads to

y = −L01 + L02

LT
sin(y + φext). (10)

Solving (10) iteratively leads to a solution expressed as a
power series in (L01 + L02)/LT. The solution to second
order is

y = −L01 + L02

LT
sin(φext) +

1

2

(

L01 + L02

LT

)2

sin(2φext).

(11)
Putting everything together we obtain

ϕ̄1 = ξ̄1 =
L01

LT

(

sinφext −
L01 + L02

2LT
sin 2φext

)

(12)

and

ϕ̄2 = ξ̄2 = −L02

LT

(

sinφext −
L01 + L02

2LT
sin 2φext

)

. (13)

Finally, we rewrite the circuit Lagrangian (5) and (6)
in terms of the equilibrium coordinates. After a change
of variables

ϕi → ϕ̄i + ϕi,

ξi → ξ̄i + ξi, (14)

the potential (6) becomes

U =
∑

i=1,2

{(

Φ0

2π

)2[
(ξ̄i + ξi)

2

2L0i
− cos(ϕi − ξi)

Lji

]}

−
(

Φ0

2π

)2
cos(ξ1 − ξ2 − δ)

LT
, (15)

where the ϕi and ξi variables now denote deviations from
equilibrium, and

δ ≡ φext + ξ̄2 − ξ̄1. (16)

The function (16) relates the dc phase difference δ across
the coupler junction to the external flux.

Now we are ready to construct the Hamiltonian: The
momentum conjugate to ϕi is

pi =

(

Φ0

2π

)2

Ci ϕ̇i. (17)

The momenta conjugate to the ξi vanish. The complete
Hamiltonian for the circuit of Fig. 1 is therefore

H =

(

2π

Φ0

)2
∑

i

p2i
2Ci

+ U, (18)

where U is given in (15).

IV. EXACT DIAGONALIZATION

CALCULATION OF THE COUPLING

To validate our perturbative nonlinear analysis it is
useful to study the nonlinear model numerically. In Fig. 3
we plot the splitting between the symmetric and antisym-
metric eigenstates—equal to twice the magnitude of the
transverse component of the effective coupling strength—
for the full nonlinear model (15), assuming the circuit
parameters given in Table I. To obtain these results we
use a two-dimensional grid in the coordinates ϕ1 and ϕ2,
and the basis

∣

∣ϕ1, ϕ2

〉

with ϕi ∈ {−π,−π + dϕ, . . . , 0, . . . , π}, (19)

where dϕ is the mesh spacing. The kinetic energy oper-
ator for coordinate ϕ1 is approximated as

KE1

∣

∣ϕ1, ϕ2

〉

= − ~
2

2C1(Φ0/2π)2 dφ2

×
(

∣

∣ϕ1 + dφ, ϕ2

〉

+
∣

∣ϕ1 − dφ, ϕ2

〉

)

, (20)

and similarly for that of ϕ2. This “tight-binding” approx-
imation replaces the quadratic kinetic energy in (18) by a
cosine with the same curvature. We note that the factor
of ~2 in the numerator of (20) is required because the pi
in (18) are dimensionless. The potential energy is diag-
onal in the basis (19), and for each |ϕ1, ϕ2〉 is found by
numerically minimizing the potential (15) with respect
to the two massless variables ξ1 and ξ2. The exact di-
agonalization result is shown in the solid curve in Fig. 3
along with that of the harmonic approximation 2|g| and
the perturbative result of Sec. V.
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FIG. 3. (Color online) Splitting (equal to twice the magnitude
of the coupling) in the fully nonlinear model (18) calculated by
exact diagonalization (solid curve). Also shown are the corre-
sponding harmonic approximation (dashed-dotted curve) and
perturbative nonlinear (dashed) results.

V. PERTURBATIVE TREATMENT OF

NONLINEARITY

In this section we show that the form and strength of
the qubit-qubit coupling can be derived analytically by
treating the nonlinearity in (15) perturbatively. First we
expand (15) in powers of the deviations ϕi and ξi, keeping
all terms to quartic order. This leads to

U =
∑

i=1,2

{(

Φ0

2π

)2[
ξ2i
2L0i

+
(ϕi − ξi)

2

2Lji
− λ

(ϕi − ξi)
4

24Lji

]}

+

(

Φ0

2π

)2[

cos(δ)
(ξ1 − ξ2)

2

2LT
+ λ′ sin(δ)

(ξ1 − ξ2)
3

6LT

− λ′ cos(δ)
(ξ1 − ξ2)

4

24LT

]

+ const., (21)

where parameters λ = 1 and λ′ = 1 have been introduced
to track powers of the qubit and coupler junction non-
linearities, respectively. Note that the first order terms
vanish on account of conditions (7) and (8), and that the
coupler junction induces both cubic and quartic nonlin-
earity. In this section we develop a theory of the coupling
to first order in λ and λ′, neglecting all second order cor-
rections, including those of order λλ′.
Because there is no kinetic energy associated with

the massless ξi coordinates, we can eliminate them
from the Hamiltonian by replacing U(ϕ1, ϕ2, ξ1, ξ2) with
U(ϕ1, ϕ2, ξ

∗
1 , ξ

∗
2), where the ξ

∗
i minimize (21) for fixed ϕi.

This procedure is different that what we did above in (7)
and (8), because there we minimized U with respect to

all four coordinates. Differentiation of (21) with respect
to the ξi leads to a pair of equations that can be written
as

ξ∗1
LΣ1

− cos(δ)
ξ∗2
LT

=
ϕ1

Lj1
− λ

(ϕ1 − ξ∗1)
3

6Lj1

−λ′ sin(δ)
(ξ∗1 − ξ∗2)

2

2LT
+ λ′ cos(δ)

(ξ∗1 − ξ∗2)
3

6LT
(22)

and

ξ∗2
LΣ2

− cos(δ)
ξ∗1
LT

=
ϕ2

Lj2
− λ

(ϕ2 − ξ∗2)
3

6Lj2

+λ′ sin(δ)
(ξ∗1 − ξ∗2)

2

2LT
− λ′ cos(δ)

(ξ∗1 − ξ∗2)
3

6LT
, (23)

where

1

LΣi

≡ 1

Lji
+

1

L0i
+

cos(δ)

LT
. (24)

We solve the coupled nonlinear equations (22) and (23)
perturbatively, to first order in λ and λ′, by expanding

ξ∗i = ξ
(0)
i + ξ

(1)
i , (i = 1, 2) (25)

where the ξ
(0)
i are zeroth order in the nonlinearity and

the ξ
(1)
i are first order. The zeroth order solutions are

ξ
(0)
i = αiϕi + βīϕī, (26)

where

αi ≡
1

LjiLΣīD
, βi ≡

cos(δ)

LjiLTD
, (27)

and where ī is the index complement to i:

1̄ = 2 and 2̄ = 1. (28)

Here

D ≡ 1

LΣ1LΣ2
− cos2(δ)

L2
T

. (29)

The first order corrections are

ξ
(1)
1 = −λ

6

(

α1

[

ϕ1 − ξ
(0)
1

]3
+ β2

[

ϕ2 − ξ
(0)
2

]3
)

+ λ′
A

D

(

1

LΣ2
− cos(δ)

LT

)

,

ξ
(1)
2 = −λ

6

(

α2

[

ϕ2 − ξ
(0)
2

]3
+ β1

[

ϕ1 − ξ
(0)
1

]3
)

− λ′ A

D

(

1

LΣ1
− cos(δ)

LT

)

, (30)

where

A ≡ − sin(δ)

2LT

[

(α1 − β1)ϕ1 − (α2 − β2)ϕ2

]2

+
cos(δ)

6LT

[

(α1 − β1)ϕ1 − (α2 − β2)ϕ2

]3

. (31)
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FIG. 4. (Color online) Qubit frequency (40) as a function of
external flux, assuming circuit parameters of Table I. We see
that ωq/2π varies by about 22MHz in this example.

Using (26) and (30) we obtain

H =
∑

i=1,2

(

2π

Φ0

)2
p2i
2Ci

+ U (0) + U (1), (32)

where

U (0) =
∑

i=1,2

(

Φ0

2π

)2
ϕ2
i

2Lqi
+

(

Φ0

2π

)2

Γ11 ϕ1ϕ2, (33)

1

Lqi
≡ (1− αi)

2

Lji
+

α2
i

L0i
+

β2
i

Lj̄i

+
β2
i

L0̄i

+ cos(δ)
(αi − βi)

2

LT
,

(34)

Γ11 ≡ (α1 − 1)β2

Lj1
+

(α2 − 1)β1

Lj2
+

α1β2

L01
+

α2β1

L02

− cos(δ)
(α1 − β1)(α2 − β2)

LT
, (35)

and where

U (1) =

(

Φ0

2π

)2{
∑

i=1,2

[

ξ
(0)
i ξ

(1)
i

L0i
+

(ξ
(0)
i − ϕi)ξ

(1)
i

Lji

− λ
(ξ

(0)
i − ϕi)

4

24Lji

]

+ cos(δ)
(ξ

(0)
1 − ξ

(0)
2 )(ξ

(1)
1 − ξ

(1)
2 )

LT

+ λ′ sin(δ)
(ξ

(0)
1 − ξ

(0)
2 )3

6LT
− λ′ cos(δ)

(ξ
(0)
1 − ξ

(0)
2 )4

24LT

}

(36)

is the anharmonic correction.

A. Coupling in the linearized model

The Hamiltonian in the harmonic approximation is

H =
∑

i

Hi + δH, (37)

where [see (32)]

Hi ≡
(

2π

Φ0

)2
p2i
2Ci

+

(

Φ0

2π

)2
ϕ2
i

2Lqi
, (i = 1, 2) (38)

and

δH ≡
(

Φ0

2π

)2

Γ11 ϕ1ϕ2. (39)

The Hamiltonian (38) describes a harmonic oscillator
with flux-dependent frequency

ωqi ≡
√

1

LqiCi

, (40)

which is plotted in Fig. 4 for the parameters of Table I.
In Appendix A we calculate the transverse coupling g

resulting from a ϕ1ϕ2 interaction between a pair of iden-
tical classical harmonic oscillators. Here we derive the
same result quantum mechanically (and for non-identical
qubits). Let |0〉i and |1〉i be the ground and first excited
state of Hi (these are different than the eigenstates of
the uncoupled qubits and they depend on φext). Now we
project the interaction term (39) into this basis. Each
Josephson phase operator projects according to

ϕ →
(

ϕ00 ϕ01

ϕ10 ϕ11

)

= ϕ01 σ
x −

(ϕ11 − ϕ00

2

)

σz +
(ϕ00 + ϕ11

2

)

I, (41)

where ϕmm′ ≡ 〈m|ϕ|m′〉. By symmetry ϕ00 = ϕ11 = 0,
and because the potential in (38) is parabolic,

ϕ01 =

(

2π

Φ0

)

√

~Lq ωq

2
. (42)

Then we obtain, from (39),

δH = g σx
1σ

x
2 , (43)

where

g =
~Γ11

√

Lq1Lq2

2

√
ωq1ωq2. (44)

The coupling strength (44) is generally different than the
simpler weak-coupling expression (4). However for the
system parameters of Table I they differ by no more than
about 0.1MHz.
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B. Nonlinear correction to transverse coupling

To evaluate (36) we will express (30) in terms of the
coordinates ϕ1 and ϕ2. We note from (30) and (36) that
qubit nonlinearity λ generates quartic terms in the cor-
rections to the potential energy, whereas the coupler non-
linearity λ′ generates both cubic and quartic terms. Al-

though the complete expressions for ξ
(1)
1 and ξ

(1)
2 in terms

of the ϕi are quite complicated, they simplify when the
circuit elements have identical parameters that satisfy

L0 ≪ Lj ≪ LT. (45)

The nonlinear correction to the transverse coupling in
the limit (45) is calculated in Appendix B.
The total transverse coupling

gtot ≡ g + δg (46)

obtained from (44) and (B19) is plotted in Fig. 7. Note
that nonlinear contribution zeros precisely where the lin-
ear coupling does, and that the correction always sup-
presses the magnitude of the coupling. The amount of
coupling suppression can be simply quantified by writing
(46) as

gtot = ζ g, where ζ ≡ 1 +
δg

g
. (47)

We emphasize that g in (47) refers to the coupling (4)
or (44) for the linearized circuit. To estimate ζ we again
assume (45), which leads to

ζ ≈ 1− π2

(

~ωq

Φ2
0/2Lj

)

= 0.852, (48)

using a qubit frequency of 5.62GHz and the value of Lj

from Table I. Therefore we find that qubit nonlinearity
suppresses the transverse coupling by about 15%, and
that the effects of coupler nonlinearity (corrections pro-
portional to λ′) are negligible in the parameter regime
considered.
To validate the perturbative corrections we compare,

in Fig. 3, the splitting 2|gtot| between the symmetric and
antisymmetric eigenstates to the fully nonlinear result
obtained by exact diagonalization. We find that the ana-
lytic approximation developed here is in very good agree-
ment with the numerical results. It can be shown that
the small differences arise not from the replacement of
the cosine potentials by their quadratic plus quartic ex-
pansions, but from (i) keeping only the terms first order
in λ and λ′ in the subsequent analysis, and (ii) assuming
the limit (45).

VI. DIAGONAL COUPLING

The coupler circuit of Fig. 1 also produces a small di-
agonal qubit-qubit interaction of the form

δH = Jσz
1σ

z
2 . (49)
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FIG. 5. Diagonal coupling strength (50) computed by exact
diagonalization, and the approximation (55).

In this section we calculate J , analytically and numeri-
cally, by relating it to the exact eigenstates of the coupled
qubit system [20],

J =
E11 − (E+ + E−) + E00

4
, (50)

and throughout this section we assume resonantly tuned
qubits. Here E11 is the energy of the |11〉 state,

E± = ωq ± |g|+ E00 (51)

are the energies of the single-excitation eigenstates, with
ωq the frequency of the uncoupled qubits, and E00 is the
ground state energy. Note that J is to be computed in
the presence of the total transverse interaction

δH = g σx
1σ

x
2 , (52)

where in this section we write gtot [defined in (46)] simply
as g.
Two types of effects contribute to the total diagonal

coupling J . The dominant mechanism comes from states
outside of the qubit subspace and is caused by the repul-
sion of |11〉 by the |02〉 and |20〉 eigenstates. These states
differ in energy by the qubit anharmonicity

η ≡ (E1 − E0)− (E2 − E1). (53)

Referring to the nonlinear Hamiltonian (B10), this con-
tribution to J results from the terms proportional to Γ04

and Γ03, which generate qubit anharmonicity, in the pres-
ence of a transverse interaction.
We can estimate this effect by considering the second-

order correction to the energy of the |11〉 state resulting
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the diagonal coupling J , versus flux. This contribution ze-
ros when g does.

from the transverse interaction, which is

δE11 ≈ 2× (
√
2g)2

η
, (54)

assuming harmonic oscillator eigenfunctions. The factor
of 2 in (54) comes from the contributions by both |02〉
and |20〉. Then the σz ⊗ σz coupling strength is simply

J ≈ g2

η
. (55)

A few remarks about (55) are in order: The diagonal
coupling resulting from the |2〉 state repulsion effect is
always positive, and it zeros when the transverse cou-
pling does. However other contributions to J (see below)
can have either sign. Also, the use of harmonic oscillator
eigenfunctions will slightly overestimate the E11 repul-
sion and hence J . Finally, the anharmonicity and size of
η generated by the terms proportional to Γ04 (which are
dominant and flux independent) and Γ03 (which depends
on Φext) is an approximation, so in (55) we instead prefer
to use an exactly calculated (or measured) value, which
is approximately 213MHz for uncoupled qubits with pa-
rameters of Table I.
The σz ⊗ σz coupling strength (50) for a system with

parameters of Table I is shown in Fig. 5, along with the
approximation (55). Here (50) is computed by exact di-
agonalization and is shown in the solid curve. The ap-
proximation (55) is evaluated by using the exact diago-
nalization result for the total transverse coupling g, with
η/2π=213MHz, and is shown in the dashed curve. Al-
though the approximation (55) necessarily zeros when g

φ
ext

/π
0 0.5 1.0 1.5 2.0

tr
an

sv
er

se
 c

ou
pl

in
g 

 (
M

H
z)

-10

-5

0

5

10

15

g
tot

/2π

g/2π

FIG. 7. (Color online) Coupling strength in the perturbative
nonlinear approximation for system parameters given in Ta-
ble I. The dashed line is coupling (44) in the linearized model.

does, the exact value calculated from (50) does not have
to. We find that the σz ⊗ σz coupling strength (50) cal-
culated by exact diagonalization does reach a negative
value of −110Hz, but this tiny value may not be reliable
given our numerical accuracy.
The second type of effects contributing to J result from

the interaction terms proportional to Γ13, Γ12, and Γ22

in (B10). The Γ22 terms make the largest contribution
to J , because they are the only ones that survive when
the small anharmonic corrections to the qubit eigenfunc-
tions are neglected. To estimate the Γ22 contributions
we project the ϕ2

i operators as

ϕ2 →
(

〈0|ϕ2|0〉 〈0|ϕ2|1〉
〈1|ϕ2|0〉 〈1|ϕ2|1〉

)

≈
(

2π

Φ0

)

~ωqLq ×
(

I − 1
2σ

z
)

,

(56)
where I is the identity matrix and in the second step we
have assumed harmonic eigenfunctions. This leads to an
additional contribution

J = Γ22

(

2π

Φ0

)2(
~ωqLq

2

)2

, (57)

which is always much smaller than (55) and also zeros
when g does. The subdominant contribution (57) is plot-
ted in Fig. 6 using the parameters of Table I.

VII. CONCLUSIONS

In this paper we have provided a detailed theoreti-
cal analysis of a tunable coupler design recently demon-
strated for superconducting Xmon qubits [26]. Treat-
ing the leading order nonlinear effects perturbatively, we
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find that the qubit nonlinearity signicantly suppresses the
magnitude of the transverse σx ⊗ σx coupling. Although
an accurate evaluation of the size of this suppression re-
quires the analysis provided in Secs. III and VI, a simple
estimate follows if we assume the circuit parameters to
satisfy the conditions (45). In this case, the suppression
fraction is simply given by 2π2

~ωqLj/Φ
2
0.

In contrast to the qubit nonlinearity, the effects of cou-
pler junction nonlinearity are found to be entirely negli-
gible. This is because the coupler wires are connected to
the qubits at low voltage nodes and the energy stored in
the coupler junction is always small.
Finally, we comment on our choice of parameters given

in Table I, and the behavior of the coupler as these values
are varied. First, the qubit capacitances and inductances,
Ci and Lji; are largely determined by the target qubit fre-
quency and the transmon condition that the charge noise
be suppressed, so these parameters cannot be strongly
varied in practice. However the L0i and LT parameters
can be varied considerably. Although the results in this
paper will apply in thoses cases as well, the coupler func-
tion g(φext) changes signicantly. For example, suppose
we wish to maximize the magnitude of the “on” coupling
strength, which occurs when φext = π. In the harmonic
approximation,

max g =
L2
0

2(Lj + L0)(LT − 2L0)
ωq. (58)

We can increase (58) by increasing L0 and/or decreasing
LT, but only to a point, because of the pole atLT =
2L0. This pole results from the approximations used to
obtain (4) and is of course unphysical: As LT → 2L0, the
nonlinear corrections to (4) become stronger, resulting in
a finite maximum coupling of about 700MHz, assuming
LT = 2L0 and the other qubit parameters as in Table
Table I.
However, in the present design, varying either L0 or

LT increases the maximum coupling at the expense of
shifting the entire coupling curve upward, thereby elimi-
nating the regions of negative g. (For applications where
negative values of coupling are not required, this is not
an important restriction.) In addition, the coupling curve
somewhat sharpens upon increasing L0 and/or decreas-
ing LT, making experimental control more challenging.
The values given in Table I are chosen to provide a rea-
sonable maximum coupling strength combined with large
negative coupling values and an experimentally conve-
nient g(φext) profile.
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Appendix A: Coupling in the harmonic limit

The expression (4) can be derived, essentially classi-
cally, from the input impedances to the network of Fig. 8,
defined through the relation

(

V1

V2

)

=

(

Lq M
M Lq

)(

İ1
İ2

)

. (A1)

We find

M =
L2
0

Leff + 2L0
and Lq = Lj + L0 −M. (A2)

The potential energy of the circuit in Fig. 1 in the har-
monic approximation is therefore

U =

(

Φ0

2π

)2[
ϕ2
1

2KLq
+

ϕ2
2

2KLq
+ Γ11ϕ1ϕ2

]

, (A3)

where

K = 1−
(

M

Lq

)2

and Γ11 = − M

KL2
q

. (A4)

In the weakly coupled limit, M ≪ Lq. To obtain (4) we
assume

K ≈ 1, (A5)

Lq ≈ Lj + L0, (A6)

and

Γ11 ≈ − L2
0

(Lj + L0)2(Leff + 2L0)
. (A7)

These approximations are removed in Sec. V.
Next we calculate the splitting induced by (A7). We

can again compute this classically by treating the qubits
as LC oscillators with frequency ωq = (LqC)−

1

2 , where
Lq is given by (A6). The potential energy of the cou-
pled oscillators is given in (A3) with K = 1. Diagonal-
izing the quadratic form (A3) leads to eigenmodes with
shifted inductances 1/(L−1

q ±Γ11) and hence frequencies
√

1± LqΓ11 ωq. Therefore in the weakly coupled limit
we obtain

g =
Γ11Lq

2
ωq, (A8)

a result that also applies to coupled qubits and leads to
the expression (4).
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Appendix B: Nonlinear corrections

In limit (45) we have

Lq → Lj, (B1)

LΣ → L0, (B2)

D → 1

L2
0

, (B3)

α → L0

Lj
, (B4)

β → cos(δ)L2
0

LjLT
, (B5)

(B6)

and therefore

β ≪ α ≪ 1. (B7)

In this section we derive analytic expressions for the non-
linear corrections assuming (45), which is a special case
of the weak coupling assumption of Sec. I. Using (B7) we
find that

ξ
(1)
1 ≈ λ

(

− α

6
ϕ3
1 +

αβ

2
ϕ2
1ϕ2 +

β2

2
ϕ1ϕ

2
2 −

β

6
ϕ3
2

)

− λ′
α2L0 sin δ

2LT

(

ϕ2
1 − ϕ1ϕ2 + ϕ2

2

)

(B8)

and

ξ
(1)
2 ≈ λ

(

− α

6
ϕ3
2 +

αβ

2
ϕ1ϕ

2
2 +

β2

2
ϕ2
1ϕ2 −

β

6
ϕ3
1

)

+ λ′
α2L0 sin δ

2LT

(

ϕ2
1 − ϕ1ϕ2 + ϕ2

2

)

. (B9)

These expressions are obtained by considering every term
allowed by symmetry and approximating its coefficient
by that of the dominant contribution (using λ = λ′ = 1).
The correction (36) is similarly obtained by assuming
identical qubits and finding the largest contribution to
every posssible term in the energy. The result is

U (1) =

(

Φ0

2π

)2[

λΓ04

(

ϕ4
1 + ϕ4

2

)

+ λ′ Γ03

(

ϕ3
1 − ϕ3

2

)

+ λΓ13

(

ϕ1ϕ
3
2 + ϕ3

1ϕ2

)

+ λ′ Γ12

(

ϕ1ϕ
2
2 − ϕ2

1ϕ2

)

+ λΓ22 ϕ
2
1ϕ

2
2

]

, (B10)

where

Γ04 = − 1

24Lj
, (B11)

Γ03 =
α3 sin δ

6LT
, (B12)

Γ13 =
α2 cos δ

6LT
, (B13)

Γ12 =
α3 sin δ

2LT
, (B14)

Γ22 = αβ

(

β

L0
− α cos δ

LT

)

. (B15)

The dominant nonlinear correction to the transverse
coupling is

δg =

(

Φ0

2π

)2

Γ13 〈01|ϕ1ϕ
3
2 + ϕ3

1ϕ2|10〉. (B16)

To evaluate (B16) note that 〈01|ϕ1ϕ
3
2 + ϕ3

1ϕ2|10〉 =
2ϕ01 〈0|ϕ3|1〉, where ϕ01 is defined in (42) and

〈0|ϕ3|1〉 = 3

(

2π

Φ0

)3(
~Lq ωq

2

)
3

2

. (B17)

Then (B16) can be written as

δg =
3

2
Γ13

(

~ωqLq

Φ0/2π

)2

(B18)

= cos(δ)
π2α2Lj

2LT

(

~ωq

Φ2
0/2Lj

)

~ωq. (B19)
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