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The proton radius puzzle questions the self-consistency of theory and experiment in light muonic
and electronic bound systems. Here, we summarize the current status of “new virtual particle”
models as well as Lorentz-violating models which have been proposed in order to explain the dis-
crepancy. Highly charged one-electron ions and muonic bound systems have been used as probes
of the strongest electromagnetic fields achievable in the laboratory. The average electric field seen
by a muon orbiting a proton is comparable to hydrogenlike Uranium and, notably, larger than the
electric field in the most advanced strong-laser facilities. Effective interactions due to virtual anni-
hilation inside the proton (“lepton pairs”) and process-dependent corrections (nonresonant effects)
are discussed as possible explanations of the proton size puzzle. The need for more experimental
data on related transitions is emphasized.

PACS numbers: 12.20.Ds, 11.25.Tq, 11.15.Bt

I. INTRODUCTION

Recent muonic hydrogen experiments [1, 2] have re-
sulted in the most severe discrepancy of the predictions of
quantum electrodynamics with experiment recorded over
the last few decades. In short, both (electronic, atomic)
hydrogen experiments (for an overview see Ref. [3]) as
well as recent scattering experiments lead to a proton
charge radius of about 〈rp〉 ≈ 0.88 fm, while the muonic
hydrogen experiments [1, 2] favor a proton charge radius
of about 〈rp〉 ≈ 0.84 fm.
Few-body bound electronic and muonic systems belong

to the most intensely studied fundamental physical enti-
ties; a combination of atomic physics and field-theoretical
techniques is canonically employed [4–14]. Here, we aim
to discuss conceivable explanations for the discrepancy
and highlight a few aspects which set the muonic sys-
tems apart from any other bound states which have been
studied spectroscopically so far. To this end, in Sec. II, we
briefly summarize the status of “virtual particle” mod-
els discussed in the literature and supplement previous
approaches with a discussion of the role of axion terms
which might be significant in the strong magnetic fields
used in the muonic hydrogen experiments. In Sec. III, we
show that muonic hydrogen (as well as muonic hydrogen-
like ions with low nuclear charge number Z) constitute
some of the most sensitive probes of high-field physics to
date; concomitant speculations about novel phenomena
in the strong fields inside the proton are discussed. Fi-
nally, a possible role of process-dependent corrections in
experiments is mentioned in Sec. IV. Conclusions are re-
served for Sec. V. We use SI mksA units unless indicated
otherwise.

II. VIRTUAL PARTICLES AND MUONIC

HYDROGEN

From the point of view of quantum field theory, the
most straightforward explanation for the proton radius
puzzle in muonic hydrogen would involve a “subversive”

virtual particle that modifies the muon-proton interac-
tion at distances commensurate with the Bohr radius of
muonic hydrogen,

aµ =
~

αQEDmr c
= 2.84708× 10−13m , (1)

where αQED is the fine-structure constant. and mr =
mµmp/(mµ + mp) is the reduced mass. The distance
regime of aµ ≈ 300 fm is intermediate between the Bohr
radius of (ordinary) hydrogen and the proton radius.
In consequence, the possible role of millicharged parti-

cles, which modify the Coulomb force law in this distance
regime, has been analyzed in Ref. [13]. These particles
could conceivably modify the photon propagator at en-
ergy scales ~c/aµ via vacuum-polarization insertions into
the photon line. Supplementing this analysis, in Ref. [12],
conceivable hidden (massive) photons have been ana-
lyzed. Particles with scalar and pseudo-scalar couplings
have been the subject of Ref. [15]. A model which ex-
plicitly breaks electron-muon universality, introducing a
coupling of the right-handed muonic fermion sector to a
U(1) gauge boson, has been investigated in Ref. [16]. One
should notice, though, that the explicit breaking of the
universality according to Eq. (7) of Ref. [16] appears as
somewhat artificial. The reduction in the muonic helium
nuclear radius by ∆r2He = −0.06 fm2 as predicted by the
model proposed in Ref. [16] has the opposite sign as com-
pared to the results of the experiments [17, 18], that were
carried out about four decades ago and roughly observe
a 4% lower cross section for muons scattering off of pro-
tons as opposed to electrons being scattered off the same
target.
Likewise, in a recent paper on Lorentz-violating terms

in effective Dirac equations [19], the authors assume
an explicit breaking of electron-muon universality (see
Sec. IIC3 of Ref. [19], remark in the lower right-hand
column), where the authors explicitly state that they as-
sume only muon-sector Lorentz violation, so that effects
arise in Hµ spectroscopy but are absent in H spectroscopy
and electron elastic scattering. Cum grano salis, this as-
sumption appears to be a little artificial because it would
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modify the effective Dirac equation for muons as com-
pared to that of electrons. In general, Lorentz-violating
parameters may break rotational invariance, and thus
have an effect on the S–P transitions measured in [1, 2]
[see the derivation in Eqs. (21)–(25) of Ref. [19]].
In the virtual particle models from Refs. [13, 15, 16], it

has been found necessary to fine-tune the coupling con-
stants in order to avoid conflicts with muon and electron
g− 2 measurements, which otherwise provide constraints
on the size of the “new physics terms” due to their rela-
tively good agreement with experiment (for a discussion,
see Ref. [13]). Furthermore, attempts to reconcile the dif-
ference based on higher moments of the proton charge
distribution (its “higher-order shape”, see Ref. [20]) face
difficulty when confronted with scattering experiments
which set relatively tight constraints on the higher-order
corrections to the proton’s shape.
One class of models which have not been explored

hitherto concern electrodynamics with axion-like parti-
cles (ALPs, see Refs. [21–24]). In the experiments [1, 2],
strong magnetic fields on the order of about 5T are
used to collimate the muon beam. Axion terms could po-
tentially influence the results of the spectroscopic mea-
surements. We start from the Lagrangian [25–29] for a
pseudoscalar (0−) axion-like particle (temporarily setting
~ = c = ǫ0 = 1)

L = −
1

4
Fµν Fµν −

g

4
φ F̃µν Fµν

+
1

2
∂µφ∂

µφ−
1

2
m2

φ φ

=
1

2
( ~E2 − ~B2) + g φ ~E · ~B

+
1

2
∂µφ∂

µφ−
1

2
m2

φ φ . (2)

Here, according to Ref. [29], the axion’s two-photon cou-
pling constant reads as

g ≡ GAγγ =
αQED

2πfA

(
E

N
−

2

3

4 + z

1 + z

)
(3)

(φ is the axion field,mφ is the axion mass,mφ fA ≈ mπfπ
where fπ is the pion decay constant and mπ the pion
mass, while z = mu/md is the quark mass ratio). Grand
unified models [30–34] assign rational fractions to the ra-
tio E/N of the electromagnetic to the color anomaly of
the axial current associated with the axion. Possible val-
ues are E/N = 8/3 (see Refs. [30, 31]) or zero [32, 33].
In Eq. (2), the electromagnetic field strength tensor Fαβ

and its dual F̃αβ have their usual meaning.
It is interesting to consider the leading correction to

the Coulomb potential in strong magnetic fields, on the
order of 5T, due to the axion-photon conversion ampli-
tude inherent to the Lagrangian (2) (see Figs. 1 and 2).
We shall first assume that the vacuum expectation value
of the axion field vanishes [35, 36] and consider the tree-
level correction to the Coulomb potential given in Fig. 2.

We match the scattering amplitude according to
Chap. 83 of Ref. [37] (see also [38]) and calculate the po-
tential, generated by the axion-like particle, due to the
diagram in Fig. 2. The pseudoscalar axion-like particle
(ALP) potential is given as

VALP 0−(~k) = (~k · ~B)2
4πZα g2

~k 4 (~k2 +m2
φ)

= (~k · ~B)2 f(~k) ,

f(~k) =
4πZαg2

~k 4 (~k2 +m2
φ)
. (4)

In coordinate space, we therefore have

VALP 0−(~r) = −
(
~B · ~∇

)2
f(~r) ,

f(~r) = 4πZαg2

(
e−mφ r − 1

4πm4
φ r

−
r

8 πm2
φ

)
. (5)

With f(~r) = f(r), we have the second derivative as

(
~B · ~∇

)2
f(r) =

(
~B 2

r
−

( ~B · ~r)2

r3

)
f ′(r)+

( ~B · ~r)2

r2
f ′′(r).

(6)
Differentiating and expanding for small mφ, one obtains

VALP 0−(~r) = Zαg2

(
~B 2

3mφ
−
~B2 ~r 2 + ( ~B · ~r)2

8 r

)

∼ −
Zαg2

8 r

(
~B 2 ~r 2 + ( ~B · ~r)2

)
(7)

where we subtract the constant shift. This effective po-
tential is independent of the ALP mass mφ provided mφ

is much smaller than other mass scales in the problems,
such as me and mµ (see also Fig. 3). The 1S expectation
value is

δE =

〈
1S

∣∣∣∣−
Zαg2

8 r

(
~B 2 ~r 2 + ( ~B · ~r)2

)∣∣∣∣ 1S
〉

= −
g2 ~B 2

4mr
= −ǫ0 (~ c)

3 g
2 ~B 2

4mr
, (8)

where mr is the reduced mass of the bound system, and
SI mksA units are restored in the last step. Otherwise,
according to Table 5 of Ref. [27], we have

g < 4.9× 10−7GeV , mφ . 0.5meV . (9)

For the parameters | ~B| = 5T and g = 5 × 10−7GeV−1,
we obtain

δEH = −1.67×10−31 eV , δEµH = −6.28×10−34 eV .
(10)

The smallness of these results excludes ALPs as possi-
ble explanations for the proton radius puzzle. A possible
scenario with a nonvanishing vacuum expectation value
of the axion field (see also Ref. [39, 40]) is studied in
Appendix A.
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ALP (0−)

FIG. 1: ALP-photon conversion in a strong magnetic
field according to the interaction term in the Lagrangian
given in Eq. (2). The large encircled cross denotes the
interaction with an external magnetic field.

e, µ e, µ

ALP (0−)

p p

FIG. 2: The leading (tree-level) correction to the
Coulomb potential due to the ALP-photon interaction
is given by the tree-level diagram shown. The upper
fermion line corresponds to an electron (e, ordinary hy-
drogen) or a muon (µ, muonic hydrogen).

III. STRONG–FIELD ELECTRODYNAMICS

Muonic bound systems have been used as probes of
the strongest electromagnetic fields since the 1970s (see
Ref. [5]), but progress has eventually been hindered due
to electron screening [41]. Typically, transitions in high-Z
muonic ions involve highly excited, non-S states [42–44],
where the average field seen by the orbiting electron is
reduced due to the higher principle quantum number.
In view of the current muonic hydrogen discrepancy, it
is useful to recall just how strong these fields are, es-
pecially in very simple bound systems, where shielding
electrons are absent [45, 46]. The conceivable presence of
“novel phenomena” in the very strong electromagnetic
fields within highly charged ions has been mentioned
as a significant motivation for the study of these sys-
tems [7, 8, 47, 48]. According to Eq. (2) of Ref. [7] and
the more comprehensive discussion of Ref. [47], a conceiv-
able nonlinear correction term (contact interaction) has
been mentioned for high-field quantum electrodynamics.
In view of this situation, it is indicated to compare the
field strengths in highly charged (electronic) ions to those
reached for low excited states in muonic hydrogen and

FIG. 3: (Color.) Plot of the average field strength (13a) ex-
perienced by a bound electron or muon in a one-muon ion
(red line, 1 ≤ Z ≤ 5), and for hydrogenlike (electronic) ions
in the range 1 ≤ Z ≤ 92. For comparison, the average field
strength in a laser field of intensity 1024 Wcm−2 is given [49].
The Schwinger critical field strength is denoted as Ecr.

low-Z muonic ions.
A measure for the strongest electromagnetic fields

which can be described by perturbative electrodynamics
is the Schwinger critical field strength [50–53]

Ecr = 1.32× 1018
V

m
. (11)

The electric field around the proton reaches the
Schwinger critical field already at a distance 0.116 aµ
Bohr radii of the muonic hydrogen system, where aµ is
given in Eq. (1). Let us consider bound one-muon ions
in the region of low nuclear charge numbers 1 ≤ Z ≤ 5.
The probability of finding a 1S muon inside the region of
super-critical field strength, in one-muon ions of nuclear
charge number 1 ≤ Z ≤ 5, evaluates as follows,

pcr(Z = 1) = 0.17% , (12a)

pcr(Z = 2) = 1.18% , (12b)

pcr(Z = 3) = 3.36% , (12c)

pcr(Z = 4) = 6.73% , (12d)

pcr(Z = 5) = 11.2% . (12e)

The field scales as 1/r2 for small distances. In Fig. 3,
to supplement a corresponding investigation in Fig. 2
of Ref. [7], we investigate the electric field strength felt
by a bound muon in a “muonic hydrogenlike” system
(only one orbiting particle) in the region of low nuclear
charge number. We start from the ground-state expecta-
tion value of the electric-field operator, which is obtained
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as the gradient of the Coulomb potential. Within the non-
relativistic approximation (we SI mksA units), the result
reads as

〈E〉 =

〈
1S

∣∣∣∣
(
−
∂

∂r

Z|e|

4πǫ0 r

)∣∣∣∣ 1S
〉

= 2Z3 m
2
r

m2
e

E0 , (13a)

E0 =
e α2

QEDm
2
e c

2

4π ǫ0 ~2
= 5.14× 1011

V

m
. (13b)

Here, mr is the reduced mass of the atomic system, me is
the electron mass, and E0 denotes the “standard” atomic
field strength observed at one Bohr radius in the “stan-
dard” hydrogen atom (it is equal to the atomic unit of
the electric field strength). The prefactor 2 in Eq. (13a)
is a consequence of our taking the quantum mechanical
expectation value as opposed to evaluating the classi-
cal expression at the (shifted) Bohr radius. For ultra-
relativistic systems, Eq. (13a) is replaced by the expec-
tation value of the fully relativistic Dirac–Coulomb wave
function [54]; the relativistic correction factor amounts
to the replacement

〈E〉 7→
〈E〉

2−
√
1− (ZαQED)2 − 2 (ZαQED)2

, (14)

which does not change the order-of-magnitude of the re-
sult. The decisive factor in Eq. (13a) is the prefactor
Z3 (mr/me)

2, which is responsible for an enhancement
of the field strength by six orders of magnitude in the
range 1 ≤ Z ≤ 92 for electronic system, but also for a
considerable enhancement in muonic systems, where

(
mr

me

)2

→

(
mµmp

(mµ +mp)me

)2

≈ 3.45× 104 . (15)

For a one-muon ion, the average electric field strengths
at Z = 4 and Z = 5 surpass the average electric field
strength in hydrogenlike Uranium (see Fig. 3).
Furthermore, the average field strength felt by a bound

1S electron in one-muon ions with Z = 4 and Z = 5 is
given as

〈E〉µ,Z=4 = 1.72Ecr , (16a)

〈E〉µ,Z=5 = 3.36Ecr , (16b)

thus surpassing (in terms of quantum mechanical aver-
age) the Schwinger critical field strength.
The HERCULES laser [49] (still) sets the standard for

the highest achievable laser intensities to date, with a
peak intensity of about 2 × 1022Wcm−2. In the future,
such facilities are supposed to reach intensities in the
range 1023 . . . 1024Wcm−2. An intensity of 1024Wcm−2

corresponds to an electric field strength of

EL = 2.74× 1015
V

m
, (17)

which is surpassed in the muonic (1 ≤ Z ≤ 5) as well as
medium-Z and high-Z bound quantum electrodynamic

(QED) systems (with Z ≥ 14, see Fig. 3). It is thus evi-
dent that bound muonic system offer a competing alter-
native to the exploration of the strong-field QED regime,
complementary to strong laser systems [55].
One might argue that the time average of the oscil-

lating laser fields is zero, as much as the spatial (vec-
tor) average of the electric field (vector), taken over the
spherically symmetric S wave function, vanishes. How-
ever, the exploration of the strong-field domain of elec-
trodynamics is not precluded by the oscillating or spheri-
cally symmetric nature of the fields. One easily estimates
that the (fluctuating) electric fields “inside” the proton,
given the fact that the three valence quarks cannot be
further apart than 0.8 fm, are of order Ep ∼ 1021 V

m and
thus exceed the Schwinger critical field strength Ecr of
about Ecr = 1.32 × 1018 V

m by three orders of magni-
tude. Conceivable corrections to the muonic hydrogen
spectrum due to the high field strengths have been dis-
cussed in Refs. [56–58]. Just to avoid a misunderstanding,
we should clarify that the recently discussed hypothesis
of nonperturbative lepton pairs inside the proton [56–
58] certainly does not imply the production of such pairs
from the vacuum inside the nucleus; the vacuum is known
to “spark” only if the critical field strength is maintained
over a sufficiently large space-time interval which is ab-
sent in muonic hydrogen. The hypothesis discussed in
Refs. [56–58] merely implies that the highly nonpertur-
bative nature of strong interactions (quantum chromo-
dynamics) inside the proton, which involves electrically
charged constituent as well as sea quarks, might lead
to effective lepton-proton interactions which have so far
been overlooked in theoretical treatments (see Refs. [56–
58] and Appendix B).
Finally, a remark on the relationship of the light

muonic systems and the strong electric fields to the “clas-
sical” strong-field systems (highly charged ions) is in or-
der. In these latter systems, the (initially positive-energy)
1S level can be shown to approach the negative contin-
uum, effectively “sparking” the vacuum [59, 60]. A single
proton of course is unable to create such an effect, but
the proximity of the bound muon to the proton (nucleus)
generates the extreme fields and the corresponding quan-
tum mechanical expectation values which contribute to
the interest in muonic bound systems.

IV. NON–RESONANT EFFECTS AND

TRANSITION FREQUENCIES

Discrepancies of Lamb shift experiments and theory
have been explored for a long time. For example, a
rather well-known accurate Lamb shift experiment in he-
lium [61] has long been in disagreement with theory (the
discrepancy has been resolved in Refs. [62, 63]). A mea-
surement of the 4He nuclear radius using muonic helium
ions is currently in progress [64]. In many cases, nuclear
radius determinations using electronic and muonic bound
systems complement each other [13]. One may add that
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additional experiments on electronic helium ions (as op-
posed to muonic helium ions) would be able to shed addi-
tional light on the “generalized” proton radius puzzle, or
“nuclear size effect puzzle”, because they would enable us
to compare the “electronically measured” radius of 4He
with the “muonically measured” radius; a corresponding
experimental setup has recently been proposed [65]. In
particular, it would be rather interesting to compare the
“anisotropy method” used in Refs. [61, 62] with other
spectroscopic techniques.
Historical developments encourage us to search for ad-

ditional conceivable explanations of the proton radius
puzzle in systematic effects which may not have been
fully appreciated in even the most carefully planned
experiments. One such set of corrections is given by
so-called off-resonant corrections to frequency measure-
ments. In Ref. [66], it has been stressed that an accurate
understanding of the line shape of quantum transitions to
neighboring levels can lead to surprising phenomena such
as prevention of fluorescence; for precision experiments,
this finding highlights the necessity of including a good
line-shape model. Because the non-resonant corrections
to the line shape involve mixed products of dipole opera-
tors connecting the resonant and off-resonant levels, these
effects are also referred to as “cross-damping” terms in
quantum optics [67, 68] [see also Eq. (9) of Ref. [69]]. In
Sec. III of Ref. [69] [see the text after Eq. (15) ibid.], the
authors investigate off-resonant effects in differential as
opposed to angular-averaged cross sections. Quantum in-
terference effects can be excluded as an explanation of the
proton radius discrepancy in muonic systems [70], mainly
because the proton radius discrepancy, converted to fre-
quency units, is much larger than the natural linewidth
of the transitions in the muonic systems. However, the
situation is different for atomic hydrogen, where spectral
lines have to be split to much higher relative accuracy.
In order to gauge possible concomitant systematic shifts
of the accurately measured frequencies, especially those
involving highly excited states of (atomic) hydrogen and
deuterium, improved measurements of hydrogen 2S–nP
lines are currently being pursued [71], while an improved
measurement of the “classic” 2S–2P1/2 Lamb shift is also
planned [72]. Both of these experiments have the poten-
tial of clarifying the “electronic hydrogen” side of the
proton radius puzzle.
In order to understand the importance of the nonreso-

nant terms, and see if they can potentially contribute to
the explanation of the proton radius puzzle, let us recall
that a typical nonresonant energy shift due to neighbor-
ing levels, still displaced by an energy shift ∆En commen-
surate with a change in the principal quantum number,
is [69, 73]

δE =
(~Γ)2

∆En
∼ α8

QEDme c
2 , (18)

where Γ is the decay width of the reference state and the
term after the “∼” sign is a parametric estimate accord-
ing to the ZαQED-expansion [4]. The shift (18), which ac-

cording to Low [73] defines the ultimate limit to which en-
ergy levels can be resolved in spectroscopic experiments,
is too small to explain the proton radius puzzle (we have
~Γ ∼ α5

QEDme c
2, while ∆En ∼ α2

QEDme c
2 for a tran-

sition with a change in the principal quantum number).
By contrast, in differential cross sections, the shift due to
neighboring levels removed only by the fine-structure is
proportional to [69]

δE =
(~Γ)2

∆Efs
∼ α6

QEDme c
2 , (19)

where ∆Efs ∼ α4
QEDme c

2 is of the order of a typical

fine-structure interval. According to Eqs. (9) and (12) of
Ref. [69], there is an additional prefactor 1/2 to consider
for the shift of the center of the half-maximum values
of the resonance curve, while this prefactor is 1/4 for
the Lorentzian maximum itself. The presence of this ad-
ditional prefactor has no effect on the phenomenological
significance of the estimates to be discussed in the follow-
ing. The shift given in Eq. (19) is of sufficient magnitude
to explain the muonic hydrogen discrepancy.
Let us perform some order-of-magnitude estimate to

explore the possibility of explaining the proton radius
puzzle on the basis of non-resonant corrections. The
electron Compton wavelength is λ̄C = ~/(me c) =
386.159 fm. The ratio of λ̄C to the proton radius, which
we assume to be given by rp ≈ 0.88 fm, is given as

ξ =
rp
λ̄C

= 2.27× 10−3 . (20)

According to Eq. (51) of Ref. [74] (see also Table 10 of
Ref. [10]), the leading-order finite-size effect for the 2S
state is as follows (non-recoil limit),

EFS =
1

12
(Zα)4mec

2 ξ2 ≈ 150 kHz. (21)

We defined the “proton puzzle prefactor” χPP as

χPP =
0.882 − 0.842

0.882
= 0.089 , (22)

leading to a “proton puzzle energy shift” EPP for the 2S
state of

EPP = χP EFS ≈ 13 kHz. (23)

We aim to investigate the possible presence of significant
off-resonant corrections to the 2S–4P1/2 and 2S–4P3/2

frequencies [75], as well as 2S–8D3/2 and 2S–8D5/2 fre-
quencies [76], and 2S–12D transitions [77]. To this end,
we first recall that the fine-structure energy difference,
for P and D states in hydrogen, is

FnP = EnP3/2
− EnP1/2

= χFP
(Zα)4me c

2

n3
, (24a)

FnD = EnD5/2
− EnD3/2

= χFD
(Zα)4me c

2

n3
, (24b)

χFP =
1

4
, χFD =

1

12
. (24c)
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According to p. 266 of Ref. [4], the one-photon decay
width of nP and nD states can be estimated as (inde-
pendent of the total angular momentum)

ΓnP ≈ χΓP
α (Zα)4mec

2

~n3
, χΓP = 0.311 , (25a)

ΓnD ≈ χΓD
α (Zα)4mec

2

~n3
, χΓD = 0.107 . (25b)

We now focus on a potential nonresonant correction
to the transition frequencies, due to neighboring fine-
structure levels. This choice is motivated in part by a
remark in the text in the right-hand column of the sec-
ond page of Ref. [76], where it is confirmed that neigh-
boring hyperfine structure levels are taken into account
in the line-shape model used in Ref. [76] (but those levels
displaced by the fine structure apparently are not taken
into account).
According to Ref. [69], in an angle-differential cross

section, the off-resonant shift due to neighboring fine-
structure levels can be estimated as follows. For a 2S–nP
transition,

EOR =
(~Γ)2n
Fn

=
χ2
Γ

χF

α2 (Zα)4mec
2

n3
, (26)

where one has to replace the prefactors as χΓ → χΓP,D

and χF → χFP,D, respectively, according to the esti-
mates given in Eqs. (24) and (25).
It is interesting to investigate the ratio of the proton

size puzzle energy shift to the natural linewidth as a mea-
sure of how precisely the line has to be split in order to
resolve the proton size puzzle. It is given as follows (2S-
nP transitions),

RP =
EPP

~ΓnP
=
n3 χPP ξ

2

12αχΓP
= 1.68× 10−5 n3 . (27)

Example values For 2S-nP are RP (n = 4) = 0.0011,
RP (n = 8) = 0.008, and RP (n = 12) = 0.029. So, in
order to resolve the proton size puzzle based on the 2S-
4P transition, one has to understand the line width to
better than 1 part in 1000. The work [75] reaches an
accuracy close to this limit: The experimental accuracy
for the 2S-4P transitions is on the order of ∼ 12 kHz,
to be compared to a natural line width of ∼ 13MHz.
The ratio RP becomes significantly more favorable for
transitions to higher excited P states.
The corresponding estimate for 2S-nD transitions is

RD =
EPP

~ΓnD
=
n3 χPP ξ

2

12αχΓD
= 4.86× 10−5 n3 . (28)

For 2S–nD transitions with n = 4, 8, 12, we have RD(n =
4) = 0.0031, RD(n = 8) = 0.025, and RD(n = 12) =
0.084. It means that in order to resolve the proton size
puzzle based on the 2S-12D transition [77], one has to
understand the line width only to (roughly) 1 part in 12.
Another interesting quantity is the ratio of the off-

resonant terms to the natural linewidth. It measures how

accurately the natural line width has to be split in order
to see the off-resonant effects. For 2S–nP transitions and
2S–nD transitions, it is given by

SP =
EOR

~ΓnP
=
αχΓP

χFD
≈

1

110
, (29a)

SD =
EOR

~ΓnD
=
αχΓD

χFD
≈

1

106
, (29b)

independent of n. It is also very important to compare
the “proton size puzzle energy shift” to the off-resonant
shift. It is given by (2S–nP transitions)

TP =
EPP

EOR
=
RP

SP
=
n3 χPP χFP ξ

2

12α2 χΓP
= 1.85× 10−3 n3 .

(30)
For the 2S–4P transition, one has TP (n = 4) = 0.118,
implying that the off-resonant, cross-damping shift due
to neighboring fine-structure levels is roughly ten times
larger than the “proton size puzzle energy shift” of the
2S level. We conclude that, unless one uses an appropri-
ate 4π detector to eliminate the nonresonant terms, one
has to understand the line shape of the 2S–4P transition
extremely well in order to resolve proton radius puzzle
based on this transition. From a complementary view-
point, the line shape of the 2S–4P transition could be
an an excellent tool for studying the nonresonant cross-
damping terms.
For 2S-nD transitions, we have

TD =
EPP

EOR
=
RD

SD
=
n3 χPP χFD ξ

2

12α2 χΓD
= 5.16× 10−3 n3 .

(31)
Examples are TD(n = 8) = 2.64, and TD(n = 12) =
8.92. For the 2S–8D transitions and 2S–12D transitions
studied in Refs. [76] and [77], respectively, this means
that the estimated ratio of the proton size puzzle energy
shift to the off-resonant contribution is larger than unity.
One could thus tentatively conclude that the inclusion
of any conceivable nonresonant corrections is not likely
to shift the experimental results reported in Refs. [76]
and [77] on a level commensurate with the proton radius
puzzle energy shift.
In summary, our estimates would suggest that 2S–nD

transitions to highly excitedD states provide for the most
favorable “signal-to-noise” ratio EPP /EOR [ratio of pro-
ton size puzzle energy shift to the off-resonant energy
shift, with TD(n = 12) = 8.92]. In view of RD(n =
12) = 0.084, the proton puzzle energy shift enters at
about 1/12 of the natural line width [77] for n = 12. Be-
cause SD ≈ 1/106, the off-resonant terms are suppressed
by about two orders of magnitude in relation to the nat-
ural linewidth, which is smaller than the proton radius
puzzle energy shift by roughly another order of magni-
tude. An inspection of Fig. 1 of Ref. [78] (see also Fig. 1
of Ref. [79]) would indicate that the 2S–8D and 2S–12D
transitions are consistent with a a proton radius, derived
from hydrogen experiments, which is significantly larger
than the muonic hydrogen result. A least-squares analy-
sis of all accurately measured hydrogen transitions yields
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the proton radius rp = 0.8802(80) fm (see Table XLV of
Ref. [80]). For comparison, we have exclusively taken the
data from the 2S–8D and 2S–12D transitions reported in
Refs. [76, 77], together with the latest 1S–2S result [81],
and current theory as summarized in Refs. [74, 80], and
calculated a naive statistical average of the proton “radii”
derived from 2S–8D and 2S–12D transitions (disregard-
ing the covariances among the data which otherwise leads
to a much more accurate value for the proton radius [3]).
With this approach, the result from 2S–8D and 2S–12D
transitions alone is rp = 0.873(17) fm, still larger than the
muonic hydrogen value by 2σ. While the reconsideration
of cross-damping terms for hydrogen transitions would
be very helpful in clarifying a conceivable contribution
to the solution of the proton size puzzle, our estimates
suggest that it would be very surprising if the proton
size puzzle were to find a full explanation based on the
cross-damping terms alone. The off-resonant terms seem
to be most effectively suppressed in transitions to highly
excited D states.

V. CONCLUSIONS

In this paper, we explore the remaining options for
the explanation of the persistent proton radius discrep-
ancy [1, 2]. Specifically, in Sec. II, we supplement previ-
ous attempts to find an explanation for the proton ra-
dius puzzle based on “subversive” virtual particles; all of
these appear to require fine-tuning of the coupling con-
stants and no compelling set of quantum numbers has
as yet been found for the virtual particle which could
potentially explain the discrepancy of theory and experi-
ment in (muonic) hydrogen within the limits set by other
precision experiments such as the electron and muon g
factors. Virtual particle explanations appear to be dis-
favored at the current stage, and other models depend
on rather drastic hypotheses such as symmetry breaking
terms which affect only the muon sector of the Standard
Model (but not electrons or positrons). Here, we supple-
ment the discussions on virtual particles by a calculation
of the effective potential describing the leading correction
to the Coulomb interaction due to axion–photon conver-
sion in the (strong) magnetic fields used in the muonic
hydrogen experiments [1, 2].
In Sec. III, we continue to explore the typical elec-

tric fields in a low-Z bound muonic system. These fields
are seen to be commensurate with, or even exceed the
Schwinger critical field strength. Because of the lack of
electron screening, the one-muon ions can be interpreted
as the most sensitive probes of high-field physics to date.
The hypothesis of nonperturbative lepton pairs inside the
proton and their conceivable influence on electron-proton
and muon-proton interactions (see Refs. [56–58]) is based
on the interplay of nonperturbative quantum chromody-
namics with quantum electrodynamics (see Appendix B).
A breakdown of perturbative quantum electrodynamics
is not necessary for the existence of the conjectured ef-

fect [58]. Muon-proton scattering experiments will be an
important cornerstone in the further clarification of the
electron-muon universality in lepton-proton interaction
(MUSE collaboration, see Ref. [82]).

Finally, in Sec. IV, the role of nonresonant line shifts
in differential as opposed to total cross sections is men-
tioned. Two ongoing experimental efforts [71, 72] share
the aim of analyzing the process-dependent line shifts [73]
further. Transitions to highly excited D states (2S–nD
transitions) in hydrogen are identified in terms of fa-
vorable parameters for the suppression of nonresonant
correction terms (cross-damping terms), which otherwise
could account for hitherto unexplored systematic effects
in atomic hydrogen experiments. For the muonic hydro-
gen experiments, in contrast to the experiments on ordi-
nary hydrogen, it is not necessary to “split” the resonance
line in order to make the proton radius puzzle manifest;
the discrepancy is much larger than the width of the res-
onance line itself (see Fig. 5 of Ref. [1]).

The binding field strengths in muonic ions exceed those
achievable in current and projected high-power laser sys-
tems. The benefit of the low-Z muonic ions produced
in the high-intensity muon beams at the Paul–Scherrer–
Institute (PSI) lies in the “clean” environment provided
by the one-muon ions, where all other bound electrons
have been stripped and the interaction of the muon and
the nucleus can be investigated spectroscopically to high
accuracy. From a theoretical point of view, it appears to
be hard to shed any further light on the proton radius
puzzle without significant further stimulation from addi-
tional experimental spectroscopic or scattering data.
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Appendix A: Heisenberg–Euler Lagrangian and

Variational Calculus

In many cases, the leading perturbation to the
Coulomb potential due to a “new” interaction can be
obtained by variational calculus, and we shall illustrate
the procedure here, on the basis of the Wichmann–Kroll
correction to the Coulomb potential. The Maxwell La-
grangian with the Heisenberg–Euler Lagrangian reads as
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(we switch to natural units with ~ = c = ǫ0 = 1)

L = 1
2

(
~E2 − ~B2

)

+
2α2

QED

45m4

(
~E2 − ~B2

)2
+

14α2
QED

45m4

(
~E · ~B

)2
.

(A1)

If ~E is given by the gradient of a Coulomb field and the

magnetic field vanishes ( ~B = ~0), then L is redefined to
the expression

L =
1

2

(
~∇Φ
)2

+
2α2

QED

45m4

(
~∇Φ
)4

− ρΦ , (A2)

where we add the source term. In view of the relations

∂L

∂~∇Φ
= ~∇Φ+

8α2
QED

45m4
~∇Φ

(
~∇Φ
)2

,
∂L

∂Φ
= −ρ ,

(A3)

the variational equation ~∇ · ∂L

∂~∇Φ
= ∂L

∂Φ becomes

~∇2Φ+
8α2

QED

45m4

(
~∇2Φ

(
~∇Φ
)2

+ ~∇Φ · ~∇
(
~∇Φ
)2)

= −ρ ,

(A4)
which can be reformulated as

~∇2Φ+
8α2

QED

45m4

(
∂r +

2

r

)
(∂rΦ)

3
= −ρ . (A5)

where we assume that Φ is radially symmetric. We set
Φ = ΦC +Ξ where ΦC is the Coulomb potential and Ξ is
a quantum correction. The charge density of the nucleus
and the Coulomb potential are given by

ρ(~r) = Z |e| δ(3)(~r) , ΦC(~r) =
Z |e|

4π r
, (A6)

where ~∇2 ΦC(~r) = −ρ(~r), so that, to first order in Ξ,

(
∂2r +

2

r
∂r

)
Ξ+

8α2
QED

45m4

(
∂r +

2

r

)
(∂rΦC)

3
= 0 . (A7)

It is straightforward to observe that Eq. (A7) is solved
by a potential proportional to r−5,

Φ = ΦC + Ξ =
Z |e|

4π r

(
1−

2

225

αQED

π

(ZαQED)
2

(mr)4

)
,

(A8)
This is equal to the “long-distance” tail of the
Wichmann-Kroll potential [83, 84], which is relevant to
a distance range r ∼ a0, where a0 is the Bohr radius; we
here confirm the result given in Appendix III of Ref. [84].
A few remarks are in order. Matrix elements of a term

of order (αQED/π) (ZαQED)
3/(m4 r5) [see Eq. (A8)] gen-

erate an energy shift proportional to αQED (ZαQED)
8m

in hydrogenlike systems. By contrast, the “leading term”
in the Wichmann–Kroll potential is otherwise propor-
tional to a Dirac-δ function and generates an energy

shift of the order of αQED (ZαQED)
6m. The latter term

is given by the high-energy (short-distance) regime not
covered by our variational ansatz. Namely, the atomic
nucleus, the Coulomb potential and its derivative, the
Coulomb field, vary considerably on the length scale of an
electron Compton wavelength, which exceeds the “opera-
tional parameters” of the Heisenberg–Euler Lagrangian,
so the result (A8) cannot be used for distances closer
than an electron Compton wavelength, i.e., it fails in the
immediate vicinity of the nucleus.
One might wonder why the functional form of the long-

distance tail (1/r5 for the Wichmann–Kroll potential) is
different from the corresponding term for the Uehling
potential, which decays exponentially at large distances
(see [12] and references therein). The answer to this ques-
tion is that the Wichmann–Kroll potential, which is gen-
erated by Feynman diagrams with at least four electro-
magnetic interaction terms inside the loop, can be related
to the Heisenberg–Euler effective Lagrangian, which is
valid for the long-distance tail of the potential, while
the corresponding term, for the Uehling potential (with
only two electromagnetic interaction terms inside the

loop) would otherwise generate a term proportional to ~E2

which is absorbed in the Z3 renormalization of the elec-
tromagnetic charge [85]. Hence, the tail of the Uehling
potential decays exponentially, akin to a Yukawa poten-
tial, with a range of the potential being proportional to
the electron Compton wavelength (Sec. 2.4 of Ref. [12]).
After these intermediate considerations, we may pro-

ceed to apply our variational ansatz to a calculation of
interest in the context of the subject matter of the cur-
rent investigation. Namely, for a nonvanishing vacuum
expectation value 〈φ〉 6= 0 of the axion-like particle as a
dark matter candidate, the Lagrangian [39, 40]

LA =
1

2
( ~E2 − ~B2) + g 〈φ〉 ~E · ~B (A9)

is exact up to possible QED or axion loop corrections; in
contrast to the Heisenberg-Euler Lagrangian, it is not the
result of “integrating out” the fermionic degrees of free-
dom which limits the “operational parameters” of the
Lagrangian (A1). Hence, we are not at risk of exceeding
the “operational parameters of the variational ansatz”
when we use the axion background Lagrangian (A9) to
calculate a possible correction to the Coulomb potential

due to dark matter physics. If ~E = −~∇Φ is generated by

a (possibly distorted) Coulomb field and ~B is the (possi-
bly inhomogeneous) external magnetic field, then the La-
grange density LA is redefined to read (adding the source
term ρΦ)

LA =
1

2

(
~∇Φ
)2

− g 〈φ〉 ~B · ~∇Φ− ρΦ . (A10)

The variational equation

~∇ ·
∂LA

∂~∇Φ
=
∂LA

∂Φ
(A11)
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becomes

~∇2Φ− g 〈φ〉 ~∇ · ~B = −ρ . (A12)

In the absence of magnetic monopoles, the leading cor-
rection to the Coulomb potential mediated by the axion
vacuum expectation value thus vanishes, even for very

strong and inhomogeneous external magnetic fields ~B.
One more remark is in order. The direct coupling

of the fermion to the axion [29] is of the derivative
form LAff = (Cf/(2fA))ψf γ

µ γ5 ψf ∂µφ, where Cf is
a model-dependent constant. The Yukawa coupling is
gAff = Cfmf/fA and the “fine-structure constant” is
g2Aff/(4π); energy loss arguments from the SN1987A su-

pernova typically give bounds in the range g2Aff/(4π) ∼

10−21 (see Refs. [86, 87]). This implies that a single axion
exchange, or an axion interaction insertion (e.g., into the
fermion line of a vacuum polarization diagram) suffers
from a suppression factor on the order of g2Aff/(4π) ∼

10−21 and is thus suppressed with respect to the corre-
sponding photon exchange diagram (coupling parameter
αQED) by roughly 18 orders of magnitude. The fermion-
axion coupling thus is too small to explain the proton
radius puzzle. Axion-mediated effects as well as weak in-
teractions [88] can thus also be excluded as possible ex-
planations for the proton radius puzzle.

Appendix B: Strong Fields in the Proton,

Interplay of QED and QCD

The presence of a very small fraction of “light sea
fermions”, conceivably due to a nonperturbative mech-
anism, inside the proton, has recently been mentioned in
Refs. [56, 57]. One might counter-argue that the QED
running coupling constant, at distances commensurate
with the proton radius, still is small against unity, and
that this precludes a nonperturbative mechanism leading
to sea fermions inside the proton. In Sec. III of Ref. [56],
it is argued that the highly nonperturbative quantum
chromodynamic (QCD) nature of a hypothetical “elec-
trically neutral” proton receives a “correction” due to
the electroweak interactions, as they are “switched back
on”, and that, due to the highly nonlinear nonperturba-
tive nature of QCD, this reshaping can be much larger
than the electromagnetic perturbation itself.
Alternatively, one might argue that the fundamentally

nonperturbative nature of the QCD interaction inside
the proton might leave room for effects that cannot be
described by dispersion relations and perturbation the-
ory alone. Namely, due to the nonperturbative nature of
QCD, the three valence quarks of the proton are supple-
mented, at any given time, by a large number of “vir-
tual” sea quarks which emerge from the vacuum due to
quantum corrections to the gluon exchange [89]. The sea
quarks, as much as the valence quarks, are electrically
charged, off of their mass shell, and may exchange pho-
tons. The propagator of these photons, in turn, receives

a correction due to vacuum polarization; hence, at any
given time, the proton wave function has a nonvanishing
electron-positron content due to the light fermionic vac-
uum bubbles. This is a persistent phenomenon because
the quarks inside the proton are always highly “virtual”
(off mass shell) in view of their strong (mutual) interac-
tions [58].
In Ref. [58], the lepton pair content has recently

been estimated based on a (perturbative) calculation of
the electron-positron vacuum polarization insertion into
the radiative correction to a constituent quark’s vector
and axial vector current matrix elements. According to
Ref. [56], the virtual annihilation channel in positronium,

δH =
παQED

2m2
e

(3 + ~σ+ · ~σ−) δ
3(r) , (B1)

corresponds to an effective Hamiltonian for electron-
proton interactions of the form

Hann = ǫp
3παQED

2m2
e

δ3(r) , (B2)

where ǫp measures the electron-positron pair content in-
side the proton and a value of ǫp = 2.1 × 10−7 is found
to be sufficient to explain the proton radius puzzle. Near
Eq. (22) of Ref. [58], it is argued that instead of Eq. (B1),
one should rather consider the Hamiltonian

δH =
παQED

2m2
q

(3 + ~σ+ · ~σ−) δ
3(r) , (B3)

where mq is a quark mass. According to Ref. [58], an ap-
propriate choice is mq ≈ 600me (constituent value of one
third of the mass of a proton). Comparing Eqs. (B1), (B2)
and (B3), one is led to the identification ǫp ∼ m2

e/m
2
q ≈

2.8× 10−6 which is “too large” to explain the proton ra-
dius puzzle. An estimate of the lepton pair content of the
proton, based on electron-positron vacuum polarization
insertions into the radiative correction to a constituent
quark’s vector and axial vector current, likewise leads to
estimates for ǫp which are “too large” to explain the dis-
crepancy. According to Eqs. (13) and (21) of Ref. [58],
and estimate based on matrix elements of the current
leads to values in the range

ǫp ∼ 10
(αQED

π

)2
∼ 10−5 ≫ 10−7 . (B4)

Conversely, if one starts from Eq. (B3) instead of (B1),
arguing that the effective mass in the virtual annihila-
tion diagram should be the quark mass, and additionally

invokes the suppression factor ǫp [see the text following
Eq. (22) of Ref. [58]], then the resulting effect in muonic
hydrogen becomes negligible on the level of the proton ra-
dius discrepancy. Guidance for the exploration of the con-
jectured sea lepton effect in future experiments is given
by the discussion surrounding Eq. (23) of Ref. [58], where
the functional dependence on the charge and mass num-
bers of the nucleus is discussed.
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Nuclear structure corrections (nuclear polarizability
corrections) are usually taken into account with the use
of dispersion relations [90]. This is certainly a valid ap-
proach for genuine excitations of the valence quarks into
excited states. However, the light sea fermions are gener-
ated by a QED correction to a nonperturbative process,
namely, a correction to the nonperturbative QCD inter-
action inside the proton; the latter gives rise to the ubiq-
uitous sea quarks. Dispersion relations (Cutkosky rules)
are available for the treatment of the genuine excitations

of the proton into its own excited states, but it is un-
clear if the use of dispersion relations could capture the
effect of the sea fermions. Because the sea quark inter-
action is nonperturbative and the light fermion vacuum
bubbles are inserted into the photon exchange among the
(nonperturbative) sea quarks, one does not know where
to cut the nonperturbative diagram, and the dispersion
relation is not available. For further details, we refer to
Refs. [56–58].
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