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Suppressing technical noises in weak measurement by entanglement

Shengshi Pang∗ and Todd A. Brun†
Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA

Postselected weak measurement has aroused broad interest for its distinctive ability to amplify
small physical quantities. However, the low postselection efficiency to obtain a large weak value
has been a big obstacle to its application in practice, since it may waste resources, and reduce the
measurement precision. An improved protocol was proposed in [Phys. Rev. Lett. 113, 030401
(2014)] to make the postselected weak measurement dramatically more efficient by using entangle-
ment. Such a protocol can increase the Fisher information of the measurement to approximately
saturate the well-known Heisenberg limit. In this paper, we review the entanglement-assisted pro-
tocol of postselected weak measurement in detail, and study its robustness against technical noises.
We focus on readout errors. Readout errors can greatly degrade the performance of postselected
weak measurement, especially when the readout error probability is comparable to the postselection
probability. We show that entanglement can significantly reduce the two main detrimental effects
of readout errors: inaccuracy in the measurement result, and the loss of Fisher information. We
extend the protocol by introducing a majority vote scheme to postselection to further compensate
for readout errors. With a proper threshold, almost no Fisher information will be lost. These results
demonstrate the effectiveness of entanglement in protecting postselected weak measurement against
readout errors.

PACS numbers: 03.65.Ta, 03.65.Ud, 03.65.Ca, 03.67.Ac

I. INTRODUCTION

A quantum measurement is associated with an observ-
able of the system in the standard von Neumann model.
The effect of a quantum measurement is to stochasti-
cally project the system onto an eigenstate of the observ-
able, and the reading from the measurement is the cor-
responding eigenvalue. Such a projective measurement
usually requires the interaction between the system and
the pointer to be strong, or the spread of the pointer
wavefunction to be narrow, so that the final wavefunc-
tions, translated by different eigenvalues of the observ-
able, can be distinguished accurately.

In 1988, Aharonov, Albert, and Vaidman (AAV) [1]
coined a quantum measurement protocol that violated
the above conditions for projective measurements. In
this protocol, the width of the pointer wave function is
larger than the eigenvalue separation, or equivalently the
interaction between the system and the pointer is weak,
so that the final states of the pointer, kicked by differ-
ent eigenvalues, have very large overlap with each other.
AAV also introduced postselection of the system by mea-
suring the system as well as the pointer, and retaining
only those events where the system measurement pro-
duced a particular value. Such postselection destroys the
correlation between the system and the pointer, and col-
lapses the pointer to interfere the overlapping transla-
tions.

The AAV protocol of weak measurement with postse-
lection seems trivial, but it can have a surprising physical
effect: with a proper postselection of the system, the av-
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erage translation of the pointer can be much larger than
any eigenvalue of the observable, in sharp contrast to the
standard projective quantum measurement. The mech-
anism behind this effect is that with the postselection
of the system, the interference between the component
wavefunctions, translated by different eigenvalues in the
pointer state, may dramatically cancel the major part
of the original wavefunction, resulting in a shift of the
pointer that goes far beyond the eigenvalue spectrum of
the observable.

The large shift of the pointer can be approximated as
a linear amplification of the otherwise weak interaction
strength. Such a linear amplification can be character-
ized by a quantity called the weak value [1] (which will
be introduced in detail in Sec. II). This value can have
formally divergent behavior when the postselected state
of the system asymptotically becomes orthogonal to the
initial state of the system. (Of course, in practice, the
amplification effect cannot be infinitely large. This has
been extensively investigated in recent years [2–5].)

There was some controversy over the condition for the
validity of the weak value after the birth of AAV weak
measurement, but it was soon clarified [6]. In addition,
unlike the eigenvalues of an observable, the weak value
is generally a complex value, with its real and imaginary
parts playing different roles in the amplification effect [7].

The measurement of weak values has been realized ex-
perimentally [8], and the amplification effect has been
found useful in observing weak physical effects in many
real experiments, including the spin Hall effect of light
[9–11], optical beam deflection [12–18], optical frequency
shift [19], optical phase shift [20, 21], temperature shift
[22], temporal shift [23–25], etc. More experimental pro-
tocols have also been proposed [23, 26–36]. Moreover,
weak measurements have been realized on systems other
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than optical systems, including superconducting circuits
[37–39], NMR [40], among others. For a comprehensive
review of postselected weak measurement and weak value
amplification, we refer the readers to [41–44].

When postselected weak measurement is used to am-
plify small physical quantities, a large weak value is usu-
ally desired. However, this will lead to a low postselection
efficiency, since the weak value is approximately recipro-
cal to the square root of the postselection probability.
Low postselection efficiency may result in a waste of re-
sources and reduce the Fisher information of the mea-
surement if the failed postselections are discarded, and
consequently cancel the advantage of weak value ampli-
fication. In fact, this has led to a recent hot debate:
whether postselecting the system and discarding the un-
selected events can ever increase the precision of the mea-
surement.

Some studies have suggested that the weak value am-
plification can produce higher precision in weak measure-
ments [14, 27, 31, 34], while others found the opposite
results [45–47]. More extensive work on this issue has
made clear that the Fisher information of weak measure-
ments cannot be increased by postselection if the unse-
lected events are discarded [46, 48, 49], because the dis-
carded events take away some Fisher information [50],
and the distribution of postselection probabilities can
also carry information [48, 49, 51]. Interestingly, how-
ever, if all these sources of Fisher information are taken
into account, the total Fisher information can saturate
the Heisenberg limit in some cases, even with seemingly
classical resources [51, 52]. Moreover, weak value ampli-
fication can give an advantage in suppressing technical
noise [53] (although not all types of noises can be sup-
pressed [54]), or even use technical noises to enhance the
sensitivity [55]. A brief review of the recent controversy
over weak value amplification can be found in [56].

Because of the above problems of low postselection ef-
ficiency, an important goal in the practice of weak value
amplification is to raise the postselection probability.
Some efforts have been made on this. For example, it
was proposed that by recycling unpostselected photons,
almost every photon can eventually be successfully post-
selected [33].

In a recent study [57], it was noticed that for a given
weak value, the choice of pre- and postselection of the sys-
tem to realize it is usually not unique, so there is some
freedom to maximize the postselection probability. Al-
ternatively, if the postselection probability is fixed, there
is some freedom to maximize the magnitude of the weak
value. Maximizing the postselection probability or weak
value can dramatically improve the resource usage or per-
formance of the weak value amplification. And the result
of either optimization shows that the loss of Fisher in-
formation in the discarded events can be made as small
as the order of the interaction strength, which is usually
negligible in the weak value approximation. This implies
that postselected weak measurement can offer technical
advantages [53] at almost no cost in Fisher information.

Based on these optimization results for the postselec-
tion efficiency and weak value, an improved protocol of
postselected weak measurement assisted by entanglement
was proposed in [57]. The protocol uses entangled sys-
tems rather than uncorrelated systems. If there are n
systems entangled initially, the postselection probabil-
ity scales as n2, while if the n systems are uncorrelated,
the postselection probability can only scale linearly in
n. Thus, entanglement between the systems can bring a
marked increase (of order n) in the postselection proba-
bility. An important consequence of this increase in post-
selection probability is that the Fisher information can
also be correspondingly raised by the order of n (because
the Fisher information is proportional to the size of the
data sample), and approach the Heisenberg limit, which
is the upper bound on estimation precision achievable in
quantum metrology [58].

This paper builds on [57] to detail the entanglement-
assisted protocol of weak measurement, and its advan-
tages in improving the metrological performance of weak
measurement. Furthermore, since technical noise is in-
evitable in real experimental devices, we will study the
influence of technical noise on this protocol, and show
the robustness of this protocol against the noise. The
main technical noise we will consider is readout error in
postselecting the system.

Readout errors mix successful postselection events
with unsuccessful ones. Since the shift of the pointer re-
sulting from unsuccessful postselections is much smaller
than from successful postselections, and the sensitivity of
the pointer states in the former case is also much lower,
mixing them will bring errors to the measurement result
and reduce the precision of the measurement. Moreover,
as will be shown, readout errors may be more detrimental
in postselected weak measurements than in other quan-
tum measurements. When the postselection probability
is very small, even a low rate of readout errors may cause
severe problems. So it is necessary to suppress the influ-
ence of readout errors to make postselected weak mea-
surements more reliable in practice.

In this paper, we will analyze the robustness of post-
selected weak measurement against readout errors, and
show that the use of entanglement can correct the de-
viation of measurement result caused by readout errors
with an extremely high success rate. Furthermore, it
will be shown that entanglement can recover part of the
Fisher information reduced by readout errors. Introduc-
ing an appropriate measurement threshold strategy can
decrease the Fisher information loss to nearly zero. These
results suggest that entanglement, combined with a mea-
surement threshold strategy, can effectively suppress the
effect of readout errors on postselected weak measure-
ments.

This paper is organized as follows. First, in Sec. II, we
briefly introduce the weak value theory of postselected
weak measurement and how it leads to the amplification
effect. Then, in Sec. III, we study the optimization of
postselection to maximize the postselection probability
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given the weak value, or to maximize the weak value
given the postselection probability. Sec. IV is devoted
to introducing entanglement-assisted weak measurement
based on the optimization result. Sec. V gives a detailed
study of the Fisher information of postselected weak mea-
surement, and shows that the Fisher information can sat-
urate the Heisenberg limit with the assistance of entan-
glement. A qubit example is given in Sec. VI to illus-
trate the entanglement-assisted protocol, and verify the
saturation of Heisenberg limit. Finally, in Sec. VII, we
investigate the influence of readout errors in detail, and
introduce a measurement threshold scheme to protect the
Fisher information against readout errors.

II. REVIEW OF WEAK VALUE FORMALISM

In a standard quantum measurement, the measure-
ment results are eigenvalues of a system observable, and
the system collapses to the eigenstate of the observ-
able corresponding to the measurement result. A typical
model to realize this standard quantum measurement is

Hint = gÂ⊗ F̂ δ(t− t0), (1)

where Â and F̂ are observables of the system and the
pointer respectively, and g characterizes the strength of
the interaction. Suppose the initial state of the system is
|Ψi〉, and and initial state of the pointer is |D〉, then the
system and the pointer are coupled by the interaction,
and evolve to an entangled state

|Φ〉 = exp(−igÂ⊗ F̂ )|Ψi〉|D〉. (2)

If we expand |Ψi〉 along the eigenstates of Â, |Φ〉 can be
written as

|Φ〉 =
∑
k

ck|ak〉 exp(−igakF̂ )|D〉, (3)

where ak, |ak〉 are eigenvalues and eigenstates of Â, and
ck are the expansion coefficients of |Ψi〉 in the basis of
{|ak〉}.

Different exp(−igakF̂ ) in (3) transform |D〉 into dif-
ferent states. If |D〉 is properly chosen so that the over-
laps between exp(−igakF̂ )|D〉 are sufficiently small, the
exp(−igakF̂ )|D〉 can be distinguished with a low error
probability then, and the measurement on the pointer
will make the system collapse to a state that is close to
an eigenstate of Â. For example, suppose F̂ is the mo-
mentum operator p̂, then (−igakp̂) is a translation oper-
ator in the position space of the pointer, and if one can
measure the position of the pointer, the measurement re-
sults will be gak, and the system will collapse to |ak〉.
If g is set to 1, it will lead to the formalism of standard
projective quantum measurement.

A major innovation by AAV in weak measurements was
introducing postselection of the system. This seemingly
minor change turns out to give some surprising results

that are dramatically different from ordinary quantum
measurements.

In detail: if the system is postselected to the state
|Ψf 〉 after the interaction, the pointer then collapses to
the (unnormalized) state

|Df 〉 = 〈Ψf | exp(−igÂ⊗ F̂ )|Ψi〉|D〉. (4)

When g is sufficiently small, the |Df 〉 is approximately

|Df 〉 ≈ 〈Ψf |(1− igÂ⊗ F̂ )|Ψi〉|D〉

= 〈Ψf |Ψi〉(1− igAwF̂ )|D〉,
(5)

where Aw is the weak value,

Aw =
〈Ψf |Â|Ψi〉
〈Ψf |Ψi〉

. (6)

If g is so small that gAw � 1, |Df 〉 can be rewritten as

|Df 〉 ≈ exp(−igAwF̂ )|D〉. (7)

So one can see that in the presence of postselection of
the system, the pointer is shifted by roughly gAw (in
the representation of a complementary observable of F̂ ).
In sharp contrast to ordinary measurement, the shift of
the pointer in this case can be much larger than any gak,
because Aw can be much larger than 1 when |〈Ψf |Ψi〉| �
1.

Note that Aw can be complex, and in this case
exp(−igAwF̂ ) is not just a simple translation operator.
In fact, it can be decomposed to the product of a transla-
tion operator (corresponding to the real part of Aw) and
a state reduction operator (corresponding to the imag-
inary part of Aw). Jozsa gave a very detailed study of
complex weak value in [7], and analyzed the role of the
real and imaginary parts of the weak value. He showed
that if the pointer observable F̂ is the momentum p̂, then
the shifts in the average position and momentum of the
pointer are, respectively,

〈∆q̂〉 =gReAw + gImAw(m
d

dt
Varq̂),

〈∆p̂〉 =2gImAwVarp̂,
(8)

where q̂ and p̂ are the position and momentum operators
of the pointer.

That result can be generalized to a more general form.
Suppose one measures an observable M̂ on the pointer
after postselecting the system. The average shift of the
pointer is

〈∆M̂〉f =
〈Df |M̂ |Df 〉
〈Df |Df 〉

− 〈M̂〉|D〉. (9)

From Eq. (5), one can get

〈Df |M̂ |Df 〉 ≈ |〈Ψf |Ψi〉|2(〈M̂〉|D〉 + igReAw〈[F̂ , M̂ ]〉|D〉
+ gImAw〈{F̂ , M̂}〉|D〉),

〈Df |Df 〉 ≈ |〈Ψf |Ψi〉|2(1 + 2gImAw〈F̂ 〉|D〉),
(10)



4

so plugging (10) into (9) produces

〈∆M̂〉f ≈ gImAw(〈{F̂ , M̂}〉|D〉 − 2〈F̂ 〉|D〉〈M̂〉|D〉)
+ igReAw〈[F̂ , M̂ ]〉|D〉.

(11)

Note that if one plugs F̂ = p̂ and M̂ = q̂, p̂ into (11), the
result (8) can be immediately recovered.

Eqs. (8) and (11) imply that the shift of the pointer is
roughly proportional to the weak value Aw when g � 1.
Since Aw can be much larger than 1 when 〈Ψf |Ψi〉 � 1,
the shift of the pointer can be treated as an amplifica-
tion of g by the weak value Aw. This is the origin of the
amplification effect in postselected weak measurements.
This amplification effect has been widely used in exper-
iments to measure small parameters, as reviewed in the
introduction.

III. OPTIMIZATION OF WEAK
MEASUREMENTS

A shortcoming of postselected weak measurements
that can be seen immediately from (6) is that a large weak
value Aw requires a very small overlap between the ini-
tial state and the postselected state of the system. This
implies that the postselection probability must be very
low, because when g � 1, the success probability of a
postselection is approximately

Ps ≈ |〈Ψf |Ψi〉|2. (12)

Therefore, an important problem in a practical applica-
tion of weak measurement amplification is to improve
the postselection probability as much as possible while
the weak value is still kept large.

From the definition of the weak value (6), when a weak
value Aw is fixed, the possible choices of the system ini-
tial state |Ψi〉 and postselected state |Ψf 〉 to realize this
weak value is not unique, and different |Ψi〉 and |Ψf 〉
may give different postselection probabilities. This pro-
vides the possibility to optimize the choice of pre- and
postselections of the system to maximize the the postse-
lection efficiency for a given weak value.

Alternatively, if the postselection probability (12) is
given, different pre- and postselections of the system can
also produce different weak values, which will lead to
different amplification abilities for the parameter g. So
there exist optimal pre- and postselections of the system
to produce the maximum weak value for a given postse-
lection probability.

The significance of optimizing weak measurements to
maximize either the postselection probability or the weak
value is obvious: one can reduce the resources needed
to give a desired amplification effect, or one can make
the best use of the given resources to produce the max-
imum amplification effect. So it is useful for practical
applications of weak value amplification to optimize the
performance.

In this section, we study these two ways of optimiz-
ing weak measurements in detail. Besides the signifi-
cance mentioned above, the optimizations derived in this
section will also be the foundation of the entanglement-
assisted weak measurements that we will introduce in the
next section.

A. Maximum postselection probability given the
weak value

In this subsection, we study the first optimization
problem introduced above: that is, to maximize the
postselection probability over all possible pre- and post-
selections of the system for a given weak value.

To solve this problem directly using the constraint on
the fixed weak value Aw in maximizing the postselection
probability is rather difficult; so in order to utilize this
condition, we first convert it to another more accessible
form. Note that Eq. (6) can be rewritten as

〈Ψf |(Â−Aw)|Ψi〉 = 0, (13)

so the constraint of fixed Aw can be reinterpreted as |Ψf 〉
being orthogonal to (Â − Aw)|Ψi〉. With this new form
of the condition, the optimization of |〈Ψf |Ψi〉|2 can be
much simplified.

From a geometrical point of view, it is not difficult to
verify that |Ψf 〉 should be parallel to the component of
|Ψi〉 in the subspace orthogonal to (Â−Aw)|Ψi〉 (which
we denote as V⊥ below) when |〈Ψf |Ψi〉|2 is maximized.
Therefore, we can first decompose the initial state of the
system along (Â − Aw)|Ψi〉 and its orthogonal subspace
V⊥,

|Ψi〉 =
(Â−Aw)|Ψi〉〈Ψi|(Â−A∗w)|Ψi〉
〈Ψi|(Â−A∗w)(Â−Aw)|Ψi〉

+

(
|Ψi〉 −

(Â−Aw)|Ψi〉〈Ψi|(Â−A∗w)|Ψi〉
〈Ψi|(Â−A∗w)(Â−Aw)|Ψi〉

)
,

(14)

and then the optimal |Ψf 〉 can be obtained:

|Ψf 〉 ∝ |Ψi〉 −
(Â−Aw)|Ψi〉〈Ψi|(Â−A∗w)|Ψi〉
〈Ψi|(Â−A∗w)(Â−Aw)|Ψi〉

. (15)

Hence, the maximum postselection probability for the
given weak value Aw is

maxPs =

∥∥∥∥|Ψi〉 −
(Â−Aw)|Ψi〉〈Ψi|(Â−A∗w)|Ψi〉
〈Ψi|(Â−A∗w)(Â−Aw)|Ψi〉

∥∥∥∥2

=
Var(Â)|Ψi〉

〈Ψi|Â2|Ψi〉 − 2〈Ψi|Â|Ψi〉ReAw + |Aw|2
,

(16)
where Var(Â)|Ψi〉 = 〈Ψi|Â2|Ψi〉 − 〈Ψi|Â|Ψi〉2 is the vari-
ance of Â in the state |Ψi〉.



5

For the purposes of weak value amplification, we usu-
ally desire |Aw| to be larger than any eigenvalue of Â,
|Aw| � max |λ(Â)|, which implies that

|Aw| � 〈Ψi|Â|Ψi〉,

|Aw| �
√
〈Ψi|Â2|Ψi〉.

(17)

Therefore, the maximum Ps can be approximated as

maxPs ≈
Var(Â)|Ψi〉

|Aw|2
, (18)

for a large Aw.

B. Maximum weak value given the postselection
probability

In this subsection, we solve the second optimization
problem that was introduced at the beginning of this sec-
tion: that is, to maximize the weak value over all possible
pre- and postselections of the system for a given postse-
lection probability. Of course, the weak value is generally
complex, so we will focus on maximizing the amplitude
of the weak value.

Suppose the postselection probability is Ps. Since the
phase of the post-selected state |Ψf 〉 does not affect the
weak value Aw, |Ψf 〉 can be written as

|Ψf 〉 =
√
Ps|Ψi〉+

√
1− Ps|Ψ⊥i 〉, (19)

where |Ψ⊥i 〉 is a state orthogonal to |Ψi〉. This implies
that we can write the weak value in Eq. (6) as

Aw = 〈Ψi|Â|Ψi〉+

√
1− Ps
Ps

〈Ψ⊥i |Â|Ψi〉. (20)

Now to maximize Aw is just to maximize 〈Ψ⊥i |Â|Ψi〉 over
|Ψ⊥i 〉.

Similar to the maximization procedure in the last sub-
section, the maximum 〈Ψ⊥i |Â|Ψi〉 can be achieved when
|Ψ⊥i 〉 is parallel to the component of Â|Ψi〉 in the com-
plementary subspace orthogonal to |Ψi〉, so

|〈Ψ⊥i |Â|Ψi〉|max =
∥∥Â|Ψi〉 − |Ψi〉〈Ψi|Â|Ψi〉

∥∥
=
√

Var(Â)|Ψi〉.
(21)

Therefore, the largest weak value that can be obtained
from the initial state |Ψi〉 with a given post-selection
probability Ps is

max |Aw| = 〈Ψi|Â|Ψi〉+

√
1− Ps
Ps

Var(Â)|Ψi〉. (22)

For a large |Aw|, Ps � 1, so the first term in (22) can be
neglected, thus,

max |Aw| ≈

√
Var(Â)|Ψi〉

Ps
. (23)

The results of both optimization problems, Eqs. (18)
and (23), indicate that the maximum postselection prob-
ability or the maximum weak value are proportional to
the variance (or the square root of the variance) of the ob-
servable Â in the initial state of the system. This obser-
vation leads directly to the entanglement-assisted weak
measurement protocol that we introduce in the next sec-
tion.

IV. ENTANGLEMENT-ASSISTED WEAK
MEASUREMENT

As mentioned at the end of the last section, both the
maximum postselection probability (18) and the maxi-
mum weak value (23) are proportional to the variance of
Â (or its square root) in the initial state of the system.
Since the variance of an observable scales differently with
the number of the systems in an entangled state than
in an uncorrelated state, this observation leads to a new
weak measurement protocol that we introduce in this sec-
tion. We shall see how entanglement can assist the weak
measurement either to save resources or to improve the
amplification.

A. Uncorrelated systems

As a reference example, we first consider the case where
the systems have no correlation between each other ini-
tially. Suppose we have n systems. If these n systems
are initially in a product state |Ψ1

i 〉⊗ · · · ⊗ |Ψn
i 〉, and the

postselections are |Ψ1
f 〉, · · · , |Ψn

f 〉, which give the same
weak value to each individual system, i.e.,

〈Ψk
f |Â|Ψk

i 〉
〈Ψk

f |Ψk
i 〉

= Aw, k = 1, · · · , n, (24)

then, when |〈Ψk
f |Ψk

i 〉| � 1, the probability to have at
least one successful event in postselecting these n systems
is

P (n)
s = 1−

n∏
k=1

(
1− |〈Ψk

f |Ψk
i 〉|2

)
≈

n∑
k=1

|〈Ψk
f |Ψk

i 〉|2.
(25)

Now, if the choice of pre- and postselections for each
system maximizes |〈Ψk

f |Ψk
i 〉|2, i.e., |〈Ψk

f |Ψk
i 〉|2 = P

(1)
s ,

where P (1)
s is the maximal postselection probability for a

single system, then

P (n)
s ≈ nP (1)

s . (26)

This implies that the postselection efficiency increases
linearly with n when the systems are initially uncorre-
lated.
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In fact, the linear scaling of P (n)
s with n in (26) is the

best scaling that can be obtained with initially uncorre-
lated systems. When |Ψi〉 is a product state of n systems,
say |Ψ(n)

i 〉 = |Ψ1
i 〉 ⊗ · · · ⊗ |Ψn

i 〉, it can be verified that

Var(Â(n))|Ψ(n)
i 〉

= Var(Â1)|Ψ1
i 〉+ · · ·+Var(Ân)|Ψn

i 〉. (27)

When each |Ψk
i 〉 maximizes Var(Âk), then

Var(Â(n))|Ψ(n)
i 〉

= nVar(Â)|Ψi〉, (28)

where we omitted the subscript in Â and the superscript
in |ψ〉 on the right side of (28) since each individual sys-
tem has the same Â and |ψ〉. According to Eq. (18), the
maximum postselection probability is proportional to the
variance of Â in the initial state of the system, so (28)
implies that if the initial state of the n systems is a prod-
uct state, the postselection probability P (n)

s at most can
scale linearly with n.

B. Entangled systems

Now let us remove the constraint that the systems are
uncorrelated, and see whether the postselection proba-
bility can be improved. For n systems, we first need to
generalize the observable Â. The observable Â becomes
the sum of n single-system observables in this case,

Â(n) = Â1 + · · · Ân, (29)

where we use the superscript (n) to denote the n-system
observable explicitly.

Now suppose we have n systems, and they are initially
prepared in the following entangled state:

|Ψ(n)
i 〉 = α|amax〉⊗n + β|amin〉⊗n. (30)

Then it can be obtained directly that

Var(Â(n))|Ψ(n)
i 〉

= n2[|α|2a2
max + |β|2a2

min

− (|α|2amax + |β|2amin)2].
(31)

One can immediately see that with the entangled state
(30) (and α 6= 0, β 6= 0), the scaling of Var(Â)|Ψi〉 be-
comes quadratic with n, which is higher than with a
product |Ψi〉 by order n. So the maximum postselection
probability can be increased by order n in this case.

Is quadratic scaling with n optimal when entanglement
is used? And what entangled state of the system max-
imizes the factor before n2 in the variance Var(Â)|Ψi〉?
To answer these two questions, let us recall that for an
arbitrary Hermitian operator Ξ̂, its maximum variance
over all possible states |ψ〉 is

max
|ψ〉

Var(Ξ̂)|ψ〉 =
1

4
(ξmax − ξmin)2, (32)

where ξmax and ξmin are the maximum and minimum
eigenvalues of Ξ̂ respectively, and the maximum variance
is attained when

|ψ〉 =
1√
2

(|ξmax〉+ eiθ|ξmin〉), (33)

where |ξmax〉 and |ξmin〉 are the corresponding eigenstates
of Ξ̂, and eiθ is an arbitrary phase.

Applying this fact to the observable Â(n) in (29), we
obtain

max Var(Â(n))|Ψi〉 = n2 max Var(Â), (34)

and

max Var(Â) =
1

4
(amax − amin)2. (35)

This follows because

λmax(Â(n)) = namax, λmin(Â(n)) = namin, (36)

where

λmax(Â) = amax, λmin(Â) = amin. (37)

From Eq. (18), one sees that the maximum postselec-
tion probability over all pre- and postselections of the n
systems is

P (n)
s ≈ n2P (1)

s , (38)

which is increased by order n compared to the uncorre-
lated state (26).

What price do we pay for such an improvement of post-
selection probability? Note that the eigenstates of Â(n)

with eigenvalues (36) are

|λmax〉 = |amax〉⊗n, |λmin〉 = |amin〉⊗n. (39)

So according to (33), the initial state of the n systems
should be

|Ψ(n)
i 〉 =

1√
2

(|amax〉⊗n + eiθ|amin〉⊗n), (40)

which is an entangled state. Therefore, to improve the
postselection efficiency we need entanglement in the ini-
tial state of the n systems.

To obtain the maximum postselection probability, the
postselected state of the n systems should also be care-
fully chosen. According to (15) and (40), in order to max-
imize the postselection probability, the system should be
postselected to the following state after the weak inter-
action:

|Ψ(n)
f 〉 ∝ −(namin −A∗w)|amax〉⊗n

+ eiθ(namax −A∗w)|amin〉⊗n.
(41)

When |Aw| � max{n|amax|, n|amin|}, |Ψ(n)
f 〉 can be sim-

plified to

|Ψ(n)
f 〉 ∝ e

n∆
A∗w |amax〉⊗n − eiθ|amin〉⊗n, (42)
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where ∆ = amax − amin.
Similarly, we can also use the maximally entangled

state (40) as the initial state of the n systems to in-
crease the weak value with the postselection probability
fixed. The only difference from the previous protocol is
the choice of the postselected state of the systems. When
the postselection probability is fixed to Ps, the postse-
lected state contains two components: one is

√
Ps|Ψ(n)

i 〉,
and the other is

√
1− Ps|Ψ(n)⊥

i 〉. According to Sec. III B,
for the optimal postselection, |Ψ(n)⊥

i 〉 should be propor-
tional to the component of Â(n)|Ψ(n)

i 〉 in the subspace
orthogonal to the state |Ψ(n)

i 〉, i.e.,

|Ψ(n)⊥
i 〉 ∝ Â(n)|Ψ(n)

i 〉 − |Ψ
(n)
i 〉〈Ψ

(n)
i |Â

(n)|Ψ(n)
i 〉, (43)

which turns out to be

|Ψ(n)⊥
i 〉 =

1√
2

(|amax〉⊗n − eiθ|amin〉⊗n). (44)

Therefore, the optimal postselected state is

|Ψ(n)
f 〉 =

(√
Ps
2

+

√
1− Ps

2

)
|amax〉⊗n

+ eiθ

(√
Ps
2
−
√

1− Ps
2

)
|amin〉⊗n.

(45)

The postselected state |Ψ(n)
f 〉 (either (41) or (45)) is

also an entangled state. Generally speaking, postselect-
ing n systems in an entangled state is very nontrivial. In
Sec. VI, we show how to achieve this kind of postselec-
tion by simple quantum circuits for qubits. That method
can be generalized to higher dimensional systems.

V. FISHER INFORMATION OF WEAK
MEASUREMENT

Precision is one of the most important benchmarks for
the performance of a measurement. Since weak mea-
surement can amplify small parameters by postselecting
the system in addition to measuring the pointer, it has
long been speculated that the postselected weak mea-
surements can increase the precision of measuring small
parameters. However, since failed postselection events
comprise a large fraction of total events, the precision
can also be significantly reduced by low postselection ef-
ficiency. It is possible that the increase of the precision
by weak value amplification may be canceled by low ef-
ficiency. Therefore, whether postselection can really in-
crease the precision of weak measurement is controversial,
and it is important to make clear how well weak measure-
ment with postselection can do in the metrology of small
parameter estimation. This has become a hot topic of
recent research.

In this section, we study this problem in detail. We
compute the Fisher information, a widely used metric for

the precision of parameter estimation, for general weak
measurements with postselection of the system, and use
the results from the last section to obtain the maximum
Fisher information for a given weak value or a fixed posts-
election probability. With the assistance of entanglement
among the systems, the Fisher information may be in-
creased approximately to the Heisenberg limit, which is
the upper bound for quantum Fisher information, and
the loss of Fisher information in the failed postselection
events can be reduced to the order of the small param-
eter, which is negligible in the regime of the weak value
approximation. So the performance of entanglement-
assisted weak value amplification essentially achieves the
optimum for quantum metrology.

A. Background of Fisher information

We first introduce the Fisher information. The preci-
sion of estimating a parameter is usually quantified by
the variance of the estimate. But it is often not easy
to compute the exact variance of an estimate, since the
estimate itself often does not have an analytical solution
for many estimation strategies. Fortunately, the Cramér-
Rao relation [59] gives a lower bound for the variance of
an unbiased estimate, quantified by the Fisher informa-
tion.

For a probability distribution pg(x) dependent on a
parameter g, the minimum statistical error of estimating
g from pg(x) satisfies

〈δg2〉 ≥ 1

nIg
+ 〈δg〉2, (46)

where n is the number of sample data, and Ig is the Fisher
information defined as

Ig =

ˆ
X

(∂gpg(x))2

pg(x)
dx, (47)

where X is the region that x belongs to. If the estimation
strategy is unbiased, the estimate bias 〈δg〉 will vanish,
and the statistical error of the estimate is lower bounded
by the reciprocal of the Fisher information. It can be
proved that the lower bound (46) can be saturated in the
limit n → ∞ when the estimation uses the maximum
likelihood strategy.

For a quantum state |Φg〉 dependent on a parameter
g, the method to estimate g is to measure many copies
of |Φg〉, and estimate g from the distribution of measure-
ment results. Suppose the measurement is described by
a POVM {Ê1, · · · , Êr}, where

Êi ≥ 0, and
∑
i

Êi = I. (48)

Then the probability of obtaining the i-th result is

p(i) = 〈Φg|Êi|Φg〉. (49)
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Obviously, the probability of measurement results p(i) is
dependent on g, so from the distribution p(i) one can
estimate the parameter g. And the Fisher information of
estimation can be obtained by plugging (49) into (47).

Since there are many different choices of measurement
on |Φg〉, which lead to different Fisher informations of
estimating g, there exists a maximum of the Fisher in-
formation over all choices of measurement. This max-
imum Fisher information is called the quantum Fisher
information [60, 61], and is found to be

I(Q)
g = 4

(
〈∂gΦg|∂gΦg〉 − |〈Φg|∂gΦg〉|2

)
. (50)

In (50), the dependence on the choice of measurement
has vanished, and the quantum Fisher information I(Q)

g

is determined solely by the state |Φg〉.
A common task in quantum metrology is to estimate

some multiplicative parameter g of a Hamiltonian in the
form gH. In this case, one usually prepares a quantum
system in some initial state |Φ〉 and let it evolve under
the Hamiltonian gH for some time t. The final state of
the system is exp(−itgĤ)|Φ〉. Then one can do a mea-
surement on the system, and when the measurement is
optimized, the quantum Fisher information is [58]

I(Q)
g = 4Var(Ĥ)|Φ〉, (51)

which is entirely determined by the variance of the Hamil-
tonian Ĥ in the initial state |Φ〉.

B. General result for the Fisher information of
weak measurements

With the above background knowledge of quantum
Fisher information, we go on to study the precision of
postselected weak measurements in this subsection. Our
central focus is to investigate whether the competition
between the amplification by the weak value and the re-
duction by the low postselection probability leads to a
gain or a loss of the Fisher information, and how much
the gain or the loss is. To achieve this aim, we compare
the quantum Fisher information of estimating g with and
without postselection of the system.

In a weak measurement with (1) as the interaction
Hamiltonian and |Ψi〉, |D〉 as the respective initial states
of the system and pointer, the whole system evolves to
the joint state exp(−igÂ⊗F̂ )|Ψi〉⊗|D〉 after the weak in-
teraction. If there is no postselection of the system after
the interaction, then according to Eq. (51), the quantum
Fisher information is

I(Q)
g = 4

[
〈Â2〉|Ψi〉〈F̂

2〉|D〉 −
(
〈Â〉|Ψi〉〈F̂ 〉|D〉

)
2
]
. (52)

Now suppose we perform a projective measurement
on the system in order to make a postselection. This
measurement will produce d independent outcomes cor-
responding to some orthonormal basis {|Ψk

f 〉}dk=1, where
d is the dimension of the system. In the linear response

regime with g � 1, each of these outcomes corresponds
to a postselection of the system, and collapses the pointer
to the state

|Dfk〉 ≈
(
Î − igA(k)

w F̂
)
|D〉, (53)

with success probability P (k)
s ≈ |〈Ψ(k)

f |Ψi〉|2, and

A(k)
w =

〈Ψk
f |Â|Ψi〉
〈Ψk

f |Ψi〉
. (54)

Then according to (50), the Fisher information in each of
the collapsed states |Dfk〉 after postselecting the system
to |Ψk

f 〉 is

I(k)
g ≈ 4P (k)

s |A(k)
w |2

[
Var(F̂ )|D〉

− 〈F̂ 2〉|D〉
(
2gImA(k)

w 〈F̂ 〉|D〉 + g2|A(k)
w |2〈F̂ 2〉|D〉

)]
.

(55)

It is important to observe that if we add the informa-
tion from all d postselections, we obtain

d∑
k=1

I(k)
g ≈ 4〈Â2〉|Ψi〉Var(F̂ )|D〉 −O(g), (56)

where we have used∑
k

P (k)
s |A(k)

w |2 = 〈Â2〉|Ψi〉. (57)

With the condition 〈F̂ 〉|D〉 = 0, Var(F̂ )|D〉 = 〈F̂ 2〉|D〉,
then (56) saturates the maximum in (52) up to a small
corrections of order g, which indicates that the measure-
ment on the system does not lose information by itself,
but rather redistributes and concentrates the information
about g in the final pointer states {|Dfk〉}dk=1.

In a postselected weak measurement, if we postselect
the system in the state |Ψk

f 〉, we discard all events in
which the system does not collapse to |Ψk

f 〉. So for such
a postselected weak measurement, the Fisher information
where the pointer is initially in an unbiased state (i.e.,
〈F̂ 〉|D〉 = 0) is

I(k)
g ≈ 4P (k)

s |A(k)
w |2〈F̂ 2〉|D〉

(
1− g2|A(k)

w |2〈F̂ 2〉|D〉
)
. (58)

It is worth mentioning that Ref. [50] derived results
about the total Fisher information of postselected weak
measurement similar to Eqs. (55) and (58), though in a
slightly different notation, and Ref. [48] obtained a result
similar to (56), including the classical Fisher information
of the postselected result distribution.

C. Maximum Fisher information of postselected
weak measurements

Having obtained the general result for quantum Fisher
information of a postselected weak measurement in Eq.
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(58), we now go on to consider maximizing the quantum
Fisher information from a postselected weak measure-
ment, and investigate whether, and how much, Fisher
information is lost by discarding the failed postselection
events. This is currently the subject of hot debate.

From Eq. (58) we see that the dependence of the Fisher
information I(k)

g on the initial and postselected states of
the system is determined by the postselection probability
P

(k)
s and the weak value A(k)

w . To maximize the Fisher in-
formation I(k)

g , we use the results on the maximum post-
selection probability given the weak value, or maximum
weak value given the postselection probability, that were
obtained in Sec. III.

From Sec. III, we know that when the weak value is
sufficiently large, i.e., |Aw| � maxλ(Â), then the max-
imum Ps and the maximum |Aw| can be approximated
as

maxPs ≈
Var(Â)|Ψi〉

|Aw|2
, withAw fixed,

max |Aw| ≈

√
Var(Â)|Ψi〉

Ps
, withPs fixed.

(59)

Now, we can plug either equation of (59) into (58), and
obtain

max I(k)
g ≈ 4Var(Â)|Ψi〉〈F̂

2〉|D〉
(
1− g2|A(k)

w |2〈F̂ 2〉|D〉
)
.

(60)
Comparing this maximum Fisher information for weak
measurement with postselection to that without postse-
lection in (52), it follows that

max I(k)
g ≈ I(Q)

g

Var(Â)|Ψi〉

〈Â2〉|Ψi〉

(
1− |gA(k)

w |2〈F̂ 2〉|D〉
)
, (61)

where I(Q)
g is the global quantum Fisher information with

an unbiased pointer (〈F̂ 〉|D〉 = 0). And it is almost equal
to I(Q)

g (52) if the system is initially unbiased (〈Â〉|Ψi〉 =

0).
This implies that postselection redistributes the quan-

tum Fisher information between the system and the
pointer, and with the optimal choice of pre- and post-
selection of the system, it can concentrate nearly all the
Fisher information into a single (but very improbable)
pointer state. The remaining very small amount of in-
formation is distributed among the failed postselection
events, and could be retrieved in principle by measuring
the respective collapsed pointer states. The pointer state
corresponding to successful postselection of the system
suffers an overall reduction factor of Var(Â)/〈Â2〉 which
is 1 for unbiased system states, as well as a tiny loss
|gA(1)

w |2〈F̂ 2〉|D〉. However, most weak value amplifica-
tion experiments operate in the linear response regime
g|A(1)

w |〈F̂ 2〉
1
2

|D〉 � 1, so this remaining loss is negligible.
Moreover, the overall reduction can be further compen-
sated by extracting information from the postselection
probability distribution [51].

This is quite a surprising result because it implies that
one can approximately saturate the global optimal bound
of Fisher information (52) by measuring only the very
rare postselected pointer state while the remaining much
more probable outcomes are discarded, although the op-
timal bound (52) cannot be exactly reached [48, 50, 51].
The unlikely postselections can also offer an advantage in
practice: in measuring small signals in the face of exper-
imental imperfections, it can be easier to see rare large
events than frequent small ones. This property of postse-
lected weak measurement makes it a broadly useful tech-
nique for estimating small parameters within the linear
response regime [53].

D. Saturation of Heisenberg limit

A well-known upper bound on the quantum Fisher in-
formation is the Heisenberg limit, which sets the ultimate
upper bound for the sensitivity of quantum parameter es-
timation, and demonstrates that the parameter estima-
tion precision by quantum measurements can scale as n−1

(or equivalently, quantum Fisher information can scale
quadratically with n), if n quantum systems are coupled.
This is higher than the standard quantum limit (SQL)
(or the classical limit) n−

1
2 , by order

√
n.

An interesting question in weak value amplification
is whether weak measurement with postselection can
achieve Heisenberg-limited scaling in precision. As we
showed in the last subsection, the quantum Fisher in-
formation of postselected weak measurement can be ap-
proximately promoted to the global maximum quantum
Fisher information I(Q)

g by optimized pre- and postselec-
tions of the system. The global quantum Fisher infor-
mation can generally achieve the Heisenberg limit using
entangled systems (and pointers), so we would expect
that the Fisher information of postselected weak mea-
surement can also reach the Heisenberg limit.

We can straightforwardly verify this idea by exploit-
ing the results that were obtained in the previous sec-
tions. Similar to standard quantum metrology, when the
n systems are uncorrelated the Fisher information of a
postselected weak measurement scales like the standard
quantum limit, i.e., n, while with entanglement among
the systems, the Fisher information can be boosted to
scale like the Heisenberg limit n2.

In Eq. (60), it was shown that the maximum Fisher
information of a postselected weak measurement is pro-
portional to the variance of the system observable Â in
the initial state of the system. Therefore, the scaling of
the variance determines the scaling of the Fisher infor-
mation.

Suppose we have n systems. From Sec. IVA and IVB,
we know that the variance of the total observable Â(n)

scales linearly with n when the n systems are initially
uncorrelated, and scales quadratically with n when the n
systems are initially entangled. Therefore, we can imme-
diately conclude that the maximum Fisher information of
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a postselected weak measurement with n systems can in-
deed scale like the Heisenberg limit n2, and the necessary
ingredient to reach this limit is entanglement between the
systems initially.

The achievability of the Heisenberg limit by using en-
tanglement can also be understood in another way. It is
known that the total Fisher information of estimating a
parameter from a sample of data is proportional to the
size of the sample. Since failed postselection events are
discarded in postselected weak measurements, the total
Fisher information is proportional to the postselection
probability. We know from Sec. III that the postselec-
tion probability scales linearly with n when the n systems
are initially uncorrelated, and scales quadratically with
n when the n systems are initially entangled. Therefore,
the total Fisher information can scale as n2 if the initial
state of the n systems is entangled.

The above simple result again verifies the previous con-
clusion that with optimized pre- and postselections of the
system, the Fisher information of a postselected weak
measurement can approximately reach the global optimal
bound, and the loss of Fisher information by discarding
the failed postselection events can be negligible.

VI. QUBIT EXAMPLE

To illustrate the new protocol of entanglement-assisted
weak measurement, we give an example with qubits in
this section. For clarity, we will focus on the protocol
for increasing the postselection probability with a fixed
weak value from now on. The case of increasing the weak
value with a fixed postselection probability can be de-
rived straightforwardly.

A. Protocol

Suppose we use n qubits as systems and let them cou-
ple to a common pointer qubit. The interaction Hamil-
tonian between each system qubit and the pointer qubit
is

Hint = ϕσ̂z ⊗ σ̂x, ϕ� 1. (62)

In the entanglement-assisted weak measurement
scheme, the initialization step prepares the n qubits in
a maximally entangled state:

|Ψ(n)
i 〉 =

1√
2

(|0〉⊗n + |1〉⊗n). (63)

This can be achieved by inputting n − 1 qubits in the
state |0〉 and one qubit in the state |1〉 into the circuit in
Fig. VIA. A sequence of n−1 CNOT gates entangles the
n qubits, and produces the desired maximally entangled
state (63).

Next, the n qubits are subject to the weak interaction
with the common pointer qubit (62). To simulate this

|0〉

. .
.

|Ψ(n)
i 〉

|0〉

|0〉

|+〉 • • •


Figure 1. Quantum circuit to initialize the n system qubits.
The qubits are prepared in the maximally entangled state
|Ψi〉 = (|0〉⊗n + |1〉⊗n)/

√
2 by a sequence of CNOT gates.

|Ψ(n)
i 〉

•

. .
.

〈Ψ(n)
f |


•

•

|0〉 R̂x(−4ϕ) R̂x(−4ϕ) R̂x(−4ϕ) R̂x(2nϕ)

Figure 2. Quantum circuit equivalent to the weak interaction
Hint = ϕσ̂z ⊗ σ̂x, ϕ � 1, between n system qubits and one
common pointer qubit.

interaction, note that the unitary interaction under Hint

can be written as

Û = exp(−iϕσ̂z ⊗ σ̂x)

= |0〉〈0| ⊗ exp(−iϕσ̂x) + |1〉〈1| ⊗ exp(iϕσ̂x)

= (|0〉〈0| ⊗ I + |1〉〈1| ⊗ exp(2iϕσ̂x))(I ⊗ exp(−iϕσ̂x)),
(64)

so Û can be realized with a control-R̂x(−4ϕ) rotation
followed by a R̂x(2ϕ) gate on the pointer qubit, where
R̂x(θ) [62] is defined as

R̂x(θ) = exp
(
− i

θ

2
σ̂x

)
. (65)

Since the control-R̂x(−4ϕ) rotation and the R̂x(2ϕ) rota-
tion commute, all the R̂x(2ϕ) gates can be delayed until
after the last control-R̂x(−4ϕ) rotation. So the total in-
teraction U⊗n is equivalent to by n control-R̂x(−4ϕ) ro-
tations between the system qubits and the pointer qubit
followed by an R̂x(2nϕ) gate on the pointer.

Therefore, the weak interaction in the weak measure-
ment using n system qubits and one common pointer
qubit can be implemented by the circuit in Fig. VIA.

After the weak interactions, the n system qubits are
postselected to the state |Ψ(n)

f 〉 (41), which in this case
turns out to be

|Ψ(n)
f 〉 ∝ (n+A∗w)|0〉⊗n + (n−A∗w)|1〉⊗n. (66)
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〈Ψ(n)
f |

. . .
. . .

〈0|


〈0|

〈0|

• • • R̂z(β) R̂x(α) • • • 〈0|

Figure 3. Quantum circuit to postselect the n system qubits
in the entangled state |Ψf 〉 (66), which is in essence the reverse
process of preparing |Ψf 〉 from |0〉⊗n.

Such a postselection realizes a given weak value Aw.
Postselection of n system qubits in an entangled state

|Ψ(n)
f 〉 (66) is usually not easy, but it can be realized as

the inverse procedure for a preparation. Note that |Ψ(n)
f 〉

can be written as

|Ψ(n)
f 〉 = V̂ |0〉⊗n, (67)

where V̂ is a unitary transformation that turns |0〉⊗n to
|Ψ(n)
f 〉. V̂ can be realized by CNOT gates and single

qubit gates that are similar to the preparation of |Ψ(n)
i 〉.

There are many different choices of V̂ to realize (67).
One convenient choice among them is to transform the
subspace spanned by {|0〉⊗n, |1〉⊗n} to itself, i.e., the sub-
space spanned by {|0〉⊗n, |1〉⊗n} is invariant under V̂ .
The advantage of such a choice is that there are only two
possible postselected states of the n system qubits, |0〉⊗n
and |1〉⊗n, and these two states have the largest Ham-
ming distance, which will be helpful to fighting against
readout errors that will be discussed in Sec. VII.

Such a V̂ can be written as

V̂ :

{
|0〉⊗n −→ |Ψ(n)

f 〉,
|1〉⊗n −→ |Ψ(n)⊥

f 〉,
(68)

where

|Ψ(n)⊥
f 〉 ∝ (n+Aw)|1〉⊗n − (n−Aw)|0〉⊗n. (69)

Then, the postselection of the n system qubits to |Ψ(n)
f 〉

can be decomposed into the reverse unitary transforma-
tion V̂ † followed by a postselection in the state |0〉⊗n. It
can be implemented by the circuit in Fig. VIA, where

α = −2 arctan

√
n2 + |Aw|2 − 2nReAw
n2 + |Aw|2 + 2nReAw

,

β = −π
2
− arg

n−A∗w
n+A∗w

.

(70)

In the following, we compute the composite state of the
n system qubits and the pointer qubit before the posts-
election, and the probability of successful postselection.
These results will be useful in the remainder of the paper.

Suppose the initial state of the n system qubits is
|Ψi〉 = (|0〉⊗n + |1〉⊗n)/

√
2. Then after the weak interac-

tion, the joint state of the system qubits and the pointer
qubit is

|Φ〉 = V̂ † exp(−iϕ(σ̂1z + · · ·+ σ̂nz)⊗ σ̂x)|Ψi〉|D〉

∝ (|0〉⊗n〈Ψ(n)
f |+ |1〉

⊗n〈Ψ(n)⊥
f |)

(|0〉⊗ne−inϕσ̂x + |1〉⊗neinϕσ̂x)|D〉.

(71)

According to (66) and (69), |Φ〉 can be simplified to

|Φ〉 ∝ |0〉⊗n((n+Aw)e−inϕσ̂x + (n−Aw)einϕσ̂x)|D〉
+ |1〉⊗n((−n+A∗w)e−inϕσ̂x + (n+A∗w)einϕσ̂x)|D〉.

(72)
So, when the n system qubits are postselected in |0〉⊗n,
the pointer state collapses to

|Df,0〉 = (n cosnϕ− iAw sinnϕσ̂x)|D〉, (73)

and when the n system qubits are postselected in |1〉⊗n,
the pointer qubit collapses to

|Df,1〉 = (A∗w cosnϕ+ in sinnϕσ̂x)|D〉. (74)

The postselection probabilities for |0〉⊗n and |1〉⊗n can
be worked out from (72) respectively:

p
(n)
0 =

η0

η0 + η1
,

p
(n)
1 =

η1

η0 + η1
,

(75)

where the superscripts (n) denote there are n entangled
qubits, and

η
(n)
0 = n2 cos2 nϕ+ |Aw|2 sin2 nϕ+ nImAw sin 2nϕ〈σ̂x〉D,

η
(n)
1 = |Aw|2 cos2 nϕ+ n2 sin2 nϕ− nImAw sin 2nϕ〈σ̂x〉D.

(76)

B. Fisher information and Heisenberg limit

In this subsection, we calculate the Fisher information
for the qubit example. We will see that with entangle-
ment between the system qubits, the Fisher information
of the pointer qubit can indeed reach the Heisenberg limit
and saturate the Cramér-Rao bound.

Based on the the final pointer state and the post-
selection probability obtained in the last subsection,
we can compute the quantum Fisher information of an
entanglement-assisted postselected weak measurement.
To simplify the computation, we assume that n|ϕ| �
1, |Awϕ| � 1, and n2|ϕ| � |Aw| which usually hold in
the weak value approximation. Then |Df0〉 and |Df1〉
can be simplified to

|Df0〉 ≈ (I − iAwϕσ̂x)|D〉,

|Df1〉 ≈
(
I + in2 ϕ

A∗w
σ̂x

)
|D〉, (77)
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and

p
(n)
0 ≈ n2

|Aw|2 + n2
, p

(n)
1 ≈ |Aw|2

|Aw|2 + n2
. (78)

According to (77), |∂ϕDf0〉 ≈ −iAwσ̂x|D〉, so from
the definition of quantum Fisher information (50), and
taking the postselection probability into consideration,
the quantum Fisher information of the final pointer state
when the n qubits are all postselected to |0〉 becomes

I(|0〉⊗n)
g =

4n2|Aw|2(1− |Aw|2ϕ2)

n2 + |Aw|2
. (79)

When |Aw|ϕ� 1 and |Aw| � n,

I(|0〉⊗n)
g ≈ 4n2. (80)

This shows that the Heisenberg limit is approximately
attained in this case, and Fisher information is only lost
to order ϕ2. Since ϕ � 1 in the weak coupling regime,
the loss of Fisher information is negligible. Therefore, the
Fisher information of a postselected weak measurement
can indeed approach the Heisenberg limit with optimal
pre- and postselections of the systems, and the final state
of the pointer qubit possesses almost all the Fisher infor-
mation of the phase ϕ. This verifies the result in Sec.
VD.

VII. READOUT ERRORS

In the previous sections, we introduced entanglement-
assisted weak measurement and studied its performance
in metrology. We now turn to issues that will arise in
practical implementations.

Errors are inevitable in any practical application of a
quantum protocol. They can be caused by noise in the
environment, or by technical imperfections. Numerous
ways have been invented to fight against errors, and sys-
tematic theories, such as quantum error correction code
and dynamical decoupling [63], have been developed to
utilize them.

In this section, we study a typical kind of error in posts-
elected weak measurements: readout errors. Readout er-
ror can result from noise in the environment and technical
imperfections in the experimental devices. We focus on
the readout errors that occur in the postselection stage.
This kind of error can significantly influence the weak
measurement protocol, by distorting the postselected re-
sults. As we shall see later, even when the probability
of a readout error is very low, the disturbance to the
postselection measurement can be dramatic. So correct-
ing this type of error is necessary in postselected weak
measurements.

Readout errors influence postselection results in two
main ways. First, they may read some failed postselec-
tions as successful ones, which can bring errors to the
statistics of the postselection results. Second, they may

read some successful postselections as failed ones, which
will reduce the postselection efficiency.

Below, we start from the qubit example in Sec. VI and
analyze the effects of readout errors in postselection. We
will show that an initially entangled state of the n system
qubits can dramatically increase the robustness of weak
measurement, which demonstrates another advantage of
entanglement. We will also study the loss rate of success-
ful postselections, and its complementarity relation with
the error rate. In addition, the effect of readout errors
on the Fisher information will be considered. To fight
against this type of error, we introduce a majority vote
scheme to reduce both the error rate and the loss rate in
the postselection results. This simple trick can eliminate
almost all loss of Fisher information caused by readout
errors.

A. Error in postselection results

In this subsection, we analyze the first effect of readout
errors on a postselected weak measurement: that is, the
relative error rate of the successful postselection results.
(We will omit the adjective “relative” when there is no
ambiguity in the context.) The second effect of readout
errors, i.e., the loss of correct postselection results, will
be discussed in the next subsection.

Suppose the probability of mistaking |0〉 for |1〉 is q0→1

and the probability of mistaking |1〉 for |0〉 is q1→0. Then
in an ordinary weak measurement, the probability of ob-
taining a |0〉 from reading a system qubit is

p(|0〉) = p
(1)
0 (1− q0→1) + p

(1)
1 q1→0. (81)

The component p(1)
1 q1→0 is the readout error which iden-

tifies |1〉 as |0〉, so the relative error rate in the postselec-
tion results is

p(error||0〉) =
p

(1)
1 q1→0

p
(1)
0 (1− q0→1) + p

(1)
1 q1→0

. (82)

Both q1→0 and q0→1 are usually small. However, when
Aw � 1, p(error||0〉) can become very large in some cases.
To see this, use p(1)

1 = 1−p(1)
0 in (82), then (82) becomes

p(error||0〉) =
(1− p(1)

0 )q1→0

p
(1)
0 (1− q0→1) + (1− p(1)

0 )q1→0

. (83)

The error rate p(error||0〉) can range from 0 to 1 when p0

goes from 1 to 0.
In particular, if p(1)

0 = q0→1 = q1→0, then

p(error||0〉) =
1

2
; (84)

and if p(1)
0 � q1→0, then

p(error||0〉)→ 1. (85)
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These imply that the postselected weak measurement is
very sensitive to readout errors, especially when the read-
out error probability is comparable to the postselection
probability.

In a postselected weak measurement, the postselection
probability is usually very small, so even a low proba-
bility of readout errors may lead to a significant error in
the postselection results. Therefore, correcting readout
errors or suppressing their influence is crucial to practical
applications of postselected weak measurement.

Now let’s consider the entanglement-assisted protocol
of weak measurement, and see whether the relative error
rate in the postselection results can be improved.

In this protocol, the probability of correctly identify-
ing a |0〉⊗n in the postselection is (1 − q0→1)n, and the
probability of mistaking a |1〉⊗n for |0〉⊗n is qn1→0, so the
total probability of reading out |0〉⊗n from the n system
qubits after the weak coupling is

p(|0〉⊗n) = p
(n)
0 (1− q0→1)n + p

(n)
1 qn1→0. (86)

Similar to the above, the erroneous proportion of the
postselection results is p1q

n
1→0, so the relative error prob-

ability in the postselection results |0〉⊗n is

p(error||0〉⊗n) =
p

(n)
1 qn1→0

p
(n)
0 (1− q0→1)n + p

(n)
1 qn1→0

. (87)

In Fig. 4, we plot the relative error probability
p(error||0〉⊗n) versus the weak value Aw for different
numbers n of entangled systems. We assume q1→0 and
q0→1 to be the same for simplicity. As n increases, the
relative error p(error||0〉⊗n) dramatically decreases.

Note that p(error||0〉⊗n) can be rewritten as

p(error||0〉⊗n) =

(
1 +

p
(n)
0

p
(n)
1

(1− q0→1

q1→0

)n)−1

. (88)

From (75), (76), when nϕAw � 1, we have

p
(n)
0

p
(n)
1

≈ n2

|Aw|2
. (89)

Since q0→1, q1→0 are usually very small, if n further sat-

isfies that 1−q0→1

q1→0
� n

√
|Aw|2
n2 , then Eq. (88) can be ap-

proximately simplified to

p(error||0〉⊗n) ≈ |Aw|2n−2
(1− q0→1

q1→0

)−n
. (90)

This means that entanglement between the initial sys-
tem qubits can reduce the relative error rate caused by
readout errors super-exponentially with the number of
entangled qubits! It implies how efficiently entanglement
can improve the robustness of postselected weak mea-
surement against the readout errors.

To see this super-exponential decay of the relative er-
ror rate more clearly, the relative error rate p(error||0〉⊗n)

Aw
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Figure 4. (Color online) Plot of the relative error prob-
ability p(error||0〉⊗n) versus the weak value Aw for differ-
ent n. The lines from left to right in each figure are for
n = 2, 3, 4, 5, 6, respectively. (4a) When q1→0 = q0→1 =
0.05, the p(error||0〉⊗n) for n = 4, 5, 6 are much lower than
n = 2, 3, and they almost overlap since they are very close
to each other. (4b) Similarly, when q1→0 = q0→1 = 0.01, the
p(error||0〉⊗n) for n = 3, 4, 5, 6 are much lower than n = 2,
and they almost overlap with each other.

against n is plotted in Fig. 5 for different weak values.
In the figure, when n is small, p(error||0〉⊗n) does not
drop rapidly. This is because

(
1−q0→1

q1→0

)n
is not large

enough and the constant term 1 in (88) cannot be ne-
glected. Nevertheless, when n grows large, p(error||0〉⊗n)
decreases much faster in the plot, which is what (90) pre-
dicted.

An interesting phenomenon can be observed in Fig.
4: when Aw grows large, the relative error rate
p(error||0〉⊗n) does not approach 1, and the line of
p(error||0〉⊗n) approaches a plateau as Aw → ∞. This
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Figure 5. (Color online) This figure plots the relative er-
ror probability p(error||0〉⊗n) versus the number of entangled
qubits n for different weak values Aw. It shows that the rel-
ative error rate p(error||0〉⊗n) can decrease very fast with n,
which implies the advantage of entanglement in suppressing
the relative error rate.

can be explained from the above results. When Aw →
∞, the leading terms of η0 and η1 in Eq. (76) are
|Aw|2 sin2 nϕ and |Aw|2 cos2 nϕ respectively, so

lim
Aw→∞

p(error||0〉⊗n) =
qn1→0 cos2 nϕ

(1− q0→1)n sin2 nϕ+ qn1→0 cos2 nϕ

=
(

1 +
(1− q0→1

q1→0

)n
tan2 nϕ

)−1

.

(91)
This is an upper bound on the relative error rate over all
possible weak values. It can be used to find a suitable
n for a given error rate in the postselection, regardless
of the magnitude of Aw. Moreover, when n is large (but

nϕ� 1), Eq. (91) can be simplified to

lim
Aw→∞

p(error||0〉⊗n) ≈ ϕ−2n−2
(1− q0→1

q1→0

)−n
. (92)

This implies that the upper bound of the relative er-
ror rate p(error||0〉⊗n) can also decay super-exponentially
with n, which verifies the advantage of entanglement in
suppressing the effect of readout errors.

Note that Eq. (92) does not contradict with (90). In
(90), it is assumed that nϕAw � 1, which requires Aw
not to be too large, while in (92), we take the limit Aw →
∞. Since the weak value amplification is a linear approxi-
mation theory which works in the regime nϕAw � 1, Eq.
(90) can be used in practice. And Eq. (92) is mainly to
provide an upper bound for p(error||0〉⊗n).

B. Loss of correct postselection results

In this subsection, we turn to another important effect
of readout errors: the loss of correct postselection results
when |0〉 is misread as |1〉. Since the probability of posts-
electing the n entangled qubits in the state |0〉⊗n is p(n)

0 ,
and among all postselection results |0〉⊗n the proportion
of correct states is (1− q0→1)n, the probability of correct
postselection results is

p(correct) = p
(n)
0 (1− q0→1)n. (93)

The reduction factor (1 − q0→1)n quantifies the loss of
correct postselection results caused by readout errors in
the postselection measurements. The loss rate for correct
postselection is therefore

rloss = 1− (1− q0→1)n. (94)

If the readout error probability q0→1 is small, so that
nq0→1 � 1, then

rloss ≈ nq0→1. (95)

Comparing (90) and (95), one finds that when n in-
creases, the error rate falls but the loss rate grows, and
vice versa. It implies a complementary relation between
the error rate and the loss rate.

This relation for the limiting case Aw → ∞ (which
maximizes the relative error rate p(error||0〉⊗n)) can be
obtained in the following way. Suppose 〈D|σ̂x|D〉 = 0
and Aw →∞, then by solving for n from (94) and plug-
ging it into (91), we find that

lim
Aw→∞

p(error||0〉⊗n)

=

(
1 + (1− rloss)q

− log(1−rloss)

log(1−q0→1)

1→0 tan2 ϕ log(1− rloss)

log(1− q0→1)

)−1

.

(96)
It shows the complementary relation between the relative
error rate and the loss rate due to readout errors when
Aw →∞.
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Figure 6. (Color online) Plot of the complementarity
relation between the maximum relative error probability
p(error||0〉⊗n) and the loss rate rloss for different weak val-
ues Aw. The lines from left to right in each figure are for
Aw = 20, 50, 100, 150, ∞, respectively. The rloss axis in (6b)
is rescaled.

In Fig. 6, the relative error rate p(error||0〉⊗n) is plot-
ted versus the loss rate rloss for different weak values.
As before, q0→1 and q1→0 are assumed to be equal. The
complementary relation between p(error||0〉⊗n) and rloss

can be explicitly observed there.

C. Influence on the measurement result

In the previous two subsections, we studied the two
main effects of the readout errors: the relative error rate
in total postselection results and the loss rate of correct
postselection results. But in practical applications, what
people care about is the final result of the measurement.
So, how significantly do the readout errors affect the mea-

surement result? And does the entanglement help to
suppress their influence? It is important to make this
question clear.

In this subsection, we investigate the modification of
the average measurement result from the pointer qubit
when readout errors exist in the postselection. We will
obtain the modified average measurement result in the
presence of readout errors, and show how entanglement
can suppress the influence of readout errors on the mea-
surement result.

Suppose we measure σ̂x on the pointer qubit after post-
selecting the n system qubits, for example. According to
|Df,0〉 and |Df,1〉 in (73) and (74), the average shift of
the pointer is

δ〈σ̂x〉0 = −n sin 2nϕImAw(1− 〈σ̂x〉2D)

η
(n)
0

,

δ〈σ̂x〉1 =
n sin 2nϕImAw(1− 〈σ̂x〉2D)

η
(n)
1

,

(97)

for postselection states |0〉⊗n and |1〉⊗n respectively,
where η(n)

0 and η(n)
1 are defined in Eq. (76). So, taking

readout error into account, the real average result from
the pointer qubit when each system qubit is postselected
to |0〉 is

δ〈σ̂x〉 =
p

(n)
0 (1− q0→1)nδ〈σ̂x〉0 + p

(n)
1 qn1→0δ〈σ̂x〉1

p
(n)
0 (1− q0→1)n + p

(n)
1 qn1→0

= −γ(n)
n sin 2nϕImAw(1− 〈σ̂x〉2D)

η
(n)
0

,

(98)

where

γ(n) =
p

(n)
0 ((1− q0→1)n − qn1→0)

p
(n)
0 (1− q0→1)n + p

(n)
1 qn1→0

. (99)

Note that 〈σ̂2
x〉D = 1. Therefore, 1− 〈σ̂x〉2D = Var(σ̂x)D,

and thus,

δ〈σ̂x〉 = −γ(n)
n sin 2nϕImAwVar(σ̂x)D

η
(n)
0

. (100)

When there is no readout error, the average result
from the pointer qubit is −n sin 2nϕImAwVar(σ̂x)D/η

(n)
0 ,

which is approximately −2ϕImAwVar(σ̂x)D when
nAwϕ � 1. Therefore, readout errors change the aver-
age measurement result of the pointer qubit by the overall
factor γ(n). Note that

γ(n) = 1− p(error||0〉⊗n)

p
(n)
1

, (101)

from Eq. (87), which relates the correction factor γ(n)
to the relative error rate p(error||0〉⊗n).

According to Eq. (99), one can deduce that |γ(n)| ≤ 1,
which means that readout errors reduce the weak value
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amplification, but never enhance it. This can be un-
derstood intuitively: the postselection results |1〉⊗n do
not give an amplification of ϕ as the results |0〉⊗n do;
so when they are mixed with the correct postselection
results |0〉⊗n, the amplification factor will always fall.

Notably, since the relative error rate p(error||0〉⊗n) can
decrease super-exponentially fast with the number of en-
tangled qubits n according to (90), and p

(n)
1 is close to

1 in the weak value amplification, the correction factor
γ(n) can then be increased to 1 very efficiently with n.
This is verified by the numerical results in Fig. 7, where
the correction factor γ(n) versus the number of entangled
qubits, n, is plotted for different weak values (including
Aw =∞). The results again show how entanglement can
significantly strengthen the postselected weak measure-
ment against readout errors.

D. Influence on Fisher information

In the last subsection, it was shown that readout er-
rors reduce the average measurement result by the fac-
tor γ (101), which is linear in the relative error rate
p(error||0〉⊗n), and does not depend on the loss rate
rloss. This suggests that the error rate in the postse-
lected events affects the result of the weak measurement,
but the loss of correct postselected events does not. Since
entanglement between the system qubits can dramati-
cally decrease the error rate, it would be sufficient in this
sense to use entanglement to suppress the effect of read-
out errors, regardless of the loss of correct postselected
events, the rate of which can increase with the number
of entangled qubits.

This is true for the average measurement result, be-
cause it does not depend on the size of the set of (correct)
postselected events. The loss rate mainly affects the size
of that set. However, the precision of estimating ϕ from
the average measurement results does depend on the loss
rate, since the estimation precision of a parameter gen-
erally relies on the size of the sample.

In this subsection, we study the effect of readout errors
on the Fisher information of estimating ϕ in postselected
weak measurements. We will show that the loss rate in-
deed affects the Fisher information. This implies that
both the loss rate and the average error must be sup-
pressed to maintain the precision of the measurement.

To compute the Fisher information, suppose we per-
form a POVM {Ê1, · · · , Êr} on the pointer state after
postselection. Then , when the n entangled qubits are
postselected in the state |0〉⊗n, and the final pointer state
is |Df0〉, then the probability to observe the jth measure-
ment outcome is

w0,j = 〈D0
f |Êj |D0

f 〉. (102)

Similarly, when the n entangled qubits are postselected
in the state |1〉⊗n, the final pointer state is |Df1〉, and
the probability to observe the jth outcome is

w1,j = 〈D1
f |Êj |D1

f 〉. (103)
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Figure 7. (Color online) This figure plots the correction factor
γ(n) of the measurement result versus the number of entan-
gled qubits n for different weak values Aw. It can be seen
that the correction factor can increase to 1 very fast with n,
which shows the effectiveness of entanglement in protecting
the weak value amplification against readout errors.

According to Eqs. (73) and (74), when ϕAw � 1,
|Df0〉 and |Df1〉 can be approximated by

|Df0〉 ≈ exp(−iϕAwσ̂x)|D〉,

|Df1〉 ≈ exp
(

iϕ
n2

A∗w
σ̂x

)
|D〉,

(104)

So the probabilities of obtaining the jth measurement
outcome from pointer states |Df0〉 and |Df1〉 are, respec-
tively,

w0,j =
〈D| exp(iϕA∗wσ̂x)Êj exp(−iϕAwσ̂x)|D〉

〈D| exp(2ϕImAwσ̂x)|D〉
,

w1,j =
〈D| exp(−i n

2

Aw
ϕσ̂x)Êj exp(i n

2

A∗w
ϕσ̂x)|D〉

〈D| exp
(
− 2 n2

|Aw|2ϕImAwσ̂x
)
|D〉

.

(105)
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Therefore, the total probability of observing the jth out-
come from the final pointer state is

hj = p
(n)
0 w0,j(1− q0→1)n + p

(n)
1 w1,jq

n
1→0, (106)

where the probability of readout errors has been included.
Since ϕ� 1, we focus on the zeroth order of the Fisher

information, i.e., ϕ = 0. The Fisher information we ac-
quire from the pointer state by the POVM {Ê1, · · · , Êr}
is

Iϕ =
∑
j

(∂ϕhj)
2

hj
. (107)

The term ∂ϕhj can be expanded as

∂ϕhj = (w0,j∂ϕp
(n)
0 + p

(n)
0 ∂ϕw0,j)(1− q0→1)n

+ (w1,j∂ϕp
(n)
1 + p

(n)
1 ∂ϕw1,j)q

n
1→0.

(108)

From (105), we obtain that

w1,j |ϕ=0 = w0,j |ϕ=0,

∂ϕw1,j |ϕ=0 = − n2

|Aw|2
∂ϕw0,j |ϕ=0,

(109)

and Eqs. (75), (76) imply that

p
(n)
1 |ϕ=0 =

|Aw|2

n2
p

(n)
0 |ϕ=0,

∂ϕp
(n)
1 |ϕ=0 = −∂ϕp(n)

0 |ϕ=0.

(110)

Plugging these equations into (107), we get

Iϕ =
n2((1− q0→1)n − qn1→0)2

n2(1− q0→1)n + |Aw|2qn1→0

×
∑
j

(w0,j∂ϕp
(n)
0 + p

(n)
0 ∂ϕw0,j)

2

p
(n)
0 w0,j

.

(111)

When there are no readout errors, q1→0 = q0→1 = 0, so
the Fisher information is

Iϕ,0 =
∑
j

(w0,j∂ϕp
(n)
0 + p

(n)
0 ∂ϕw0,j)

2

p
(n)
0 w0,j

. (112)

Therefore, the Fisher information modified by the read-
out errors can be written as

Iϕ,0 = f(n)Iϕ,0, (113)

where

f(n) =
n2((1− q0→1)n − qn1→0)2

n2(1− q0→1)n + |Aw|2qn1→0

. (114)

The factor f(n) quantifies the effect of readout errors
on the Fisher information. Note that f(n) < 1 when
q1→0 6= 0, q0→1 6= 0, so readout errors always reduce
the Fisher information of the weak measurement, and

never increase it. Eq. (114) also shows the role of the
number of entangled qubits n and the weak value Aw on
the extent to which the readout errors can reduce the
Fisher information.

Fig. 8 plots how the Fisher information changes as n
increases. It shows that entanglement can recover some
lost Fisher information by raising the average shift, but
the Fisher information is still reduced by loss. As we
will see in the next subsection, when entanglement is
combined with a majority voting scheme, more Fisher
information can be recovered.

Before concluding this subsection, we want to point
out the relation between the modification factor f(n) for
Fisher information and the loss rate of correct postse-
lected events rloss. Generally, the probability of a single
readout error is low, so qn1→0 → 0 when n is not small.
And according to Eq. (94), (1−q0→1)n = 1−rloss. Hence,
from (114) we immediately have

f(n) ≈ 1− rloss. (115)

This explicitly shows the relation between f(n) and the
loss rate rloss, and verifies that the loss of correct postse-
lected events does indeed cause a reduction in the Fisher
information of the weak measurement.

The relation (115) can also be understood in a more
intuitive way: the Fisher information is proportional to
the size of the sample that is used for parameter estima-
tion, and the proportion of correct postselection results
in the whole set of postselected events is 1− rloss, so the
Fisher information is reduced by rloss, as indicated by
(115). This suggests the necessity of suppressing the loss
rate as well as the relative error rate.

E. Majority voting scheme for recovering Fisher
information

As the loss of correct postselection results can be detri-
mental to the Fisher information of the weak measure-
ment, it is necessary to eliminate or suppress the loss. In
this subsection, we introduce a majority voting scheme
on the postselection results to decrease the loss rate of
the correct postselection results and increase the effective
Fisher information of the weak measurement.

The idea comes from a simple observation on Eq. (72):
the true postselected states of the n system qubits are
correlated, and should either be all |0〉 or all |1〉. So
when readout errors occur, it is still possible to determine
whether the postselection is successful or not with high
probability from the majority of the observed states of
the n qubits. If one observes more |0〉’s than |1〉’s, it
is more likely that the n system qubits are postselected
to |0〉⊗n. And vice versa. This is the majority voting
scheme.

In this subsection, we will examine this scheme care-
fully, and show that it can effectively suppress the loss
of the correct postselection results, and recover the lost
Fisher information of the weak measurement.
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Figure 8. (Color online) This figure plots the modification
factor f(n) of the Fisher information versus the number of en-
tangled qubits n in the presence of readout errors, but without
majority voting, for different weak values. When n is small,
the Fisher information can increase with n, because the en-
tanglement eliminates some errors in the postselection results
and raises the proportion of correct postselected states that
have higher Fisher information. However, when n becomes
larger, the Fisher information starts to fall, since the loss rate
of correct postselected states dramatically increases with n in
this case.

Suppose at most k readout errors are allowed in the
postselected results of a batch of n qubits (i.e. the num-
ber of observed |0〉’s or |1〉’s, whichever is lesser, is no
more than some threshold k), and assume that the read-
out errors are independent of each other. The loss rate
of the correct postselected states in this case becomes

r′loss = 1−
k∑
j=0

(
n

j

)
(1− q0→1)n−jqj1→0, (116)

which is obviously lower than Eq. (94), so more correct

postselected events are retained by the majority voting
scheme.

Now, let us study the Fisher information Iϕ when ma-
jority voting is used. The total probability of postselect-
ing the n qubits in the state |0〉⊗n is

h
(k)
j = p

(n)
0 w0,j

k∑
j=0

(
n

j

)
(1− q0→1)n−jqj1→0

+ p
(n)
1 w1,j

k∑
j=0

(
n

j

)
qn−j1→0(1− q0→1)j .

(117)

Note that in the expansion of ∂ϕh
(k)
j in this case, Eqs.

(109) and (110) are unchanged. Therefore, the new
Fisher information with the majority voting scheme can
be derived by plugging the following replacement into Eq.
(111):

(1− q0→1)n −→
k∑
j=0

(
n

j

)
(1− q0→1)n−jqj1→0,

qn1→0 −→
k∑
j=0

(
n

j

)
qn−j1→0(1− q0→1)j .

(118)

The result is

Iϕ = f(n, k)Iϕ,0, (119)

where the factor f(n, k) is

f(n, k) =

n2

( k∑
j=0

(
n

j

)(
(1− q0→1)n−jqj1→0 − q

n−j
1→0(1− q0→1)j

))2

k∑
j=0

(
n

j

)(
n2(1− q0→1)n−jqj1→0 + |Aw|2qn−j1→0(1− q0→1)j

) ,
(120)

and Iϕ,0 is still the original Fisher information without
readout error, the same as Eq. (112).

Just like the modification factor f(n) in the case of
readout errors without majority voting, the overall fac-
tor f(n, k) in Eq. (119) determines the total change in
the Fisher information due to readout errors in the pres-
ence of majority voting. When the probability of a read-
out error is sufficiently low, the f(n, k) can be roughly
approximated by

f(n, k) ≈ 1− r′loss, (121)

where r′loss is given in (116), so it is only to be expected
that part of the Fisher information will be recovered,
since majority voting can retain some originally lost post-
selected events.

To see how efficiently the majority voting scheme can
work for protecting the Fisher information against the
readout errors, we study the factor f(n, k) in detail nu-
merically.
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Fig. 9 plots the factor f(n, k) versus k for different
n. The line k = 0 corresponds to the case without ma-
jority voting. The figure shows the modification factor
f(n, k) has a dramatic increase from k = 0 to k = 1 (and
larger k), and can almost reach 1 with proper k. This
implies that with the majority voting scheme, the loss
of correct postselection results can be almost completely
suppressed, and nearly all of the lost Fisher information
can be recovered.

This is a remarkable result. By contrast, when no ma-
jority voting scheme is used, the lost Fisher information
can only be partially recovered by the entanglement, as
indicated by Fig. 8. This verifies the effectiveness of the
majority voting scheme in protecting Fisher information
against readout errors.

A notable point in Fig. 9a is that for n = 6, when
k = 3, there is a small drop in f(n, k). This is because
when n is even and k = n/2, if the probability of readout
errors is not small, a large fraction of the failed post-
selections will be identified as successful ones, and the
failed postselections contain much lower Fisher informa-
tion than the successful ones. So the Fisher will fall in
this case. However, if the probability of readout errors
is sufficiently low, the fraction of misidentified postselec-
tions will be very small, then the Fisher information will
not drop. Fig. 9b shows the latter case.

It is also worth mentioning that according to Eq. (119),
the effect of readout errors with the majority voting
scheme on the Fisher information is an overall reduction
by the factor f(n, k), so when the original Fisher infor-
mation Iϕ,0 is maximized, the reduced Fisher informa-
tion Iϕ is also maximized. This implies that the optimal
measurement to maximize the original Fisher informa-
tion will still be the optimal when readout errors exist
and the majority voting scheme is used. So the opti-
mal measurement on the pointer qubit does not need to
change in the presence of readout errors. This may be
convenient for practical applications.

F. Effect of majority voting scheme on the
measurement result

In the last subsection, we showed that the majority
voting scheme can efficiently recover almost all of the
Fisher information lost by readout errors. A separate
question is how the measurement result is affected by
the majority voting scheme. In this subsection, we will
investigate this problem in detail. We still measure σ̂x on
the pointer qubit after postselecting the n system qubits,
similar to Sec. VIIC.

According to Eq. (97), if we allow at most k errors in
the postselection result of the n system qubits, the real
average result from the pointer qubit after the postselec-
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Figure 9. (Color online) This figure plots the modification
factor f(n, k) of the Fisher information versus the allowed
number of readout errors k for different n when the majority
voting scheme is used. The number of allowed readout errors,
k, is from 0 to 3. The weak value is Aw = 30. The figure shows
that when k climbs to half of n, f(n, k) can be very close to 1.
It implies that with a proper number of readout errors allowed
in postselecting the n qubits, the majority voting strategy can
recover almost all the Fisher information lost by the readout
errors.
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tion is

δ〈σ̂x〉

=

( k∑
j=0

(
n

j

)(
p

(n)
0 (1− q0→1)n−jqj1→0δ〈σ̂x〉0

+p
(n)
1 (1− q0→1)jqn−j1→0δ〈σ̂x〉1

))/
( k∑
j=0

(
n

j

)(
p

(n)
0 (1− q0→1)n−jqj1→0

+ p
(n)
1 (1− q0→1)jqn−j1→0

))
=− γ(n, k)

n sin 2nϕImAwVar(σ̂x)D

η
(n)
0

,

(122)
where we have used (1− 〈σ̂x〉2D) = Var(σ̂x)D, and

γ(n, k) =

p
(n)
0

k∑
j=0

(
n

j

)(
(1− q0→1)n−jqj1→0 − (1− q0→1)jqn−j1→0

)
k∑
j=0

(
n

j

)(
p

(n)
0 (1− q0→1)n−jqj1→0 + p

(n)
1 (1− q0→1)jqn−j1→0

) .
(123)

Similar to the case without majority voting, γ(n, k)
is the correction factor of the average measurement re-
sult, using the majority voting scheme with at most k
errors allowed. From Eq. (123) one can deduce that
|γ(n, k)| ≤ 1, so the readout errors still reduce the weak
value amplification even when majority voting is used.

Fig. 10 plots the factor γ(n, k) versus k for different n.
When k increases, the amplification of the measurement
result has a small drop. The reason is similar to that for
the drop in the Fisher information in Fig. 9a. That is,
when k increases, more errors are allowed by the majority
voting strategy, and erroneous postselections correspond
to much lower weak values than correct postselections,
so the amplification factor is reduced.

The results of this section and the last section suggest
that there is a balance between the number of entangled
qubits n and the allowed number of readout errors k in
the majority voting scheme. On the one hand, to effec-
tively restore the lost Fisher information, k should not be
too small; otherwise, the majority voting scheme cannot
recover most of the lost successful postselections, and a
considerable part of Fisher information will still be dis-
carded. On the other hand, if k is too large, there will
be too many wrong postselection results mixed into the
correction postselections, which will decrease both the
Fisher information and the weak value amplification fac-
tor. Therefore, for a given number of entangled qubits
n, one needs to find a suitable number of allowed read-
out errors k, so that the effects of readout errors can be
effectively suppressed.
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Figure 10. (Color online) This figure plots the correction
factor γ(n, k) of the measurement result versus the allowed
number of readout errors k for different n, when the major-
ity voting scheme is employed. The weak value is Aw = 30.
The lines for n = 8, 9, 10 almost overlap, since they are very
close to each other. The figure shows that when k increases, a
small drop in the measurement result may occur, due to more
errors being induced by the majority voting scheme.

VIII. SUMMARY

In this paper, we studied the optimization of postse-
lected weak measurements to improve the performance
of weak value amplification. This problem is approached
in two ways: one is to maximize the postselection prob-
ability with a fixed weak value, which aims to improve
the usage of resources; the other is to maximize the weak
value for a given postselection probability, which aims to
enhance the amplification ability of weak measurements.

We found that both of these can be significantly in-
creased by using entangled systems, which results in that
the Fisher information of the measurement can also be
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increased, and can approximately saturate the Heisen-
berg limit. Based on this, we proposed a protocol for
entanglement-assisted weak measurement. We provided
the optimal choice of initial state and postselection of
the system for this protocol, and illustrated it by a qubit
example with simple quantum circuits.

Furthermore, we considered the influence of readout er-
rors on the protocol. Readout errors are more harmful to
postselected weak measurements than to other quantum
measurements, since even a small rate of readout errors
can give rise to severe disturbance in a postselected weak
measurement when the postselection probability is low.
So it is particularly necessary to consider the effect of
readout errors in postselected weak measurements.

There are two major problems resulting from readout
errors. One is that an error will occur in the measure-
ment result; the other is that the Fisher information of
the measurement will decrease. We found that entangle-
ment between the systems can eliminate the error in the
measurement result very efficiently, so the first problem
can be solved. Moreover, entanglement can also retrieve

some of the lost Fisher information. To further suppress
the loss of Fisher information, we introduced a major-
ity voting strategy, and showed that with this strategy,
almost no Fisher information will be lost.

Postselected weak measurement is a useful scheme to
measure tiny physical effects, and how to exploit quan-
tum resources to overcome its low efficiency and improve
the sensitivity is of great interest in practical applica-
tions. It is worth mentioning that recently squeezing was
also found useful in increasing the SNR of postselected
weak measurement [64]. We hope that our work will help
to deepen the understanding of this innovative measure-
ment protocol, and extend it to broader applications.
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