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Coherent feedback control of quantum systems has demonstrable advantages over measurement-
based control, but so far there has been little work done on coherent estimators and more specifically
coherent observers. Coherent observers are input the coherent output of a specified quantum plant,
and are designed such that some subset of the observer’s and plant’s expectation values converge in
the asymptotic limit. We previously developed a class of mean tracking (MT) observers for open
harmonic oscillators that only converged in mean position and momentum; Here we develop a class
of covariance matrix tracking (CMT) coherent observers that track both the mean and covariance
matrix of a quantum plant. We derive necessary and sufficient conditions for the existence of a
CMT observer, and find there are more restrictions on a CMT observer than there are on a MT
observer. We give examples where we demonstrate how to design a CMT observer and show it
can be used to track properties like the entanglement of a plant. As the CMT observer provides
more quantum information than a MT observer, we expect it will have greater application in future
coherent feedback schemes mediated by coherent observers. Investigation of coherent quantum
estimators and observers is important in the ongoing discussion of quantum measurement; As they
provide estimation of a system’s quantum state without explicit use of the measurement postulate
in their derivation.

I. INTRODUCTION

Quantum engineering has seen rapid growth in the
last two decades. Physicists, mathematicians and en-
gineers have been working in unison to control a num-
ber of diverse systems in the quantum regime [1–8].
Quantum control involving feedback has become partic-
ularly topical [9–12], as using information gained from
a system can lead to more stable operation of a control
protocol [13, 14]. Quantum feedback can be split into
two paradigms: measurement-based and coherent feed-
back. Measurement-based feedback involves some mea-
surement step in the feedback loop [9, 15], unfortunately
measurements of quantum systems are typically slow and
noisy as they involve coupling small quantum systems
to macroscopic read out devices. Coherent feedback on
the other hand is feedback where the controller and sys-
tem are coupled directly without measurement [16–18].
The advantage is that the time scales of the controller
and system can be made very similar as they are on the
same scale. But beyond this practical advantage, there
is increasing evidence that retaining the coherence of
the feedback signal provides an intrinsic advantage over
measurement-based feedback [15, 16, 19, 20].
Coherent feedback is still a relatively new paradigm,

and as such it lacks many of the tools commonly used
in classical, or for that matter, other quantum feedback
schemes. In particular, there are only a limited num-
ber of options for coherently estimating a state within a
feedback loop. It is well established classically that esti-
mation using the Kalman filter can provide improved per-
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formance over direct feedback schemes [21], and similar
demonstrations have been performed for measurement-
based quantum feedback [22]. Unfortunately, traditional
techniques do not appear to be applicable to coher-
ent feedback due to difficulties with quantum condition-
ing onto non-commutative subspaces of signals. The
Belavkin-Kalman filter fails in the case where the mea-
surement signal is replaced by a fully quantum non-
commutative output signal [23, 24]. Instead, we previ-
ously extended Luenberger’s approach for observer de-
sign to the quantum case, and developed a class of coher-
ent quantum observers (as shown in Fig. 1), which can
provide “estimates” for the observables of linear and bi-
linear quantum plants described by quantum stochastic
differential equations (QSDEs) [25, 26]. By “estimate”
we mean the observer’s mean observables converge to
that of the plant in the asymptotic limit, which allows
the observables of the coherent observer to act as sub-
stitutes for the plant. Consequently, an observer can aid
coherent feedback design by providing estimation of the
plant’s variables without the need for any measurements.

We have proved that MT coherent observers can al-
ways be found, consistent with the laws of quantum me-
chanics, if the plant is detectable. In some cases the es-
timation of mean-values is sufficient and feedback can be
improved with a MT coherent quantum observer. How-
ever, in many cases, the energy, correlations and indeed
entanglement of the observed system may be the target
of control or needed for feedback, for which the MT co-
herent quantum observer would not provide a reliable
estimate. To remedy this issue, we propose to develop
a modified coherent observer to track mean values, vari-
ances and correlations, namely, the CMT coherent ob-
server.
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In general, a CMT coherent observer outperforms a
MT coherent observer in several respects. For instance,
a CMT coherent observer allows us to achieve the most
similar quantum state to that of the plant. Further-
more, for a two-mode linear Gaussian system, the quan-
tum correlations are completely characterized by the first
and second moments [27], and thus entanglement can be
tracked by a CMT coherent quantum observer in this
situation. Therefore, one can conclude a CMT observer
can provide a better estimate in most cases. Nonethe-
less, we find that the error convergence rate of a CMT
coherent observer can not be made arbitrarily high, plus
we cannot guarantee that CMT coherent observers exist
for systems where MT coherent observers exist.

System Observer

FIG. 1. A quantum plant and the corresponding coherent
quantum observer in a cascade arrangement

Observers are already of importance in classical con-
trol [28, 29]. They are particularly important in feedback
control design when the plant is not completely charac-
terized [28]. Even though there are cases where an ob-
server is not a least squares estimator, they still are very
useful in practice [29]. Hence, we expect coherent quan-
tum observers will have utility in quantum control as
well.
The paper is organized as follows. We begin in Section

II by presenting the linear quantum state space model for
open harmonic oscillators in the Heisenberg picture. In
Section III, we briefly discuss quantum plants and (MT)
coherent quantum observers. In Section IV, we analyze
the existence of CMT coherent observers, and show the-
orems which tell us how to construct CMT observers to
be consistent with the laws of quantum mechanics. This
is followed by numerical simulations in Section V, which
illustrate the design and performance of CMT observers.
Section VI provides some concluding remarks and future
research directions. The mathematical notation we use
is defined in Appendix A.

II. OPEN HARMONIC OSCILLATORS AND

LINEAR QSDES

The dynamics of an open quantum system are uniquely
determined by the parametrization (S,L,H) [30–32].
The self-adjoint operator H is the Hamiltonian describ-
ing the self-energy of the system. The unitary matrix S is
a scattering matrix, and the column vector L with opera-
tor entries is a coupling vector. S and L together specify
the interface between the system and the fields. In the
physics literature, it is common practice to describe open

quantum systems using a master equation for a density
operator ρ, and it can easily be obtained from the triple
(S,L,H); indeed, we have

dρ = (i [ρ,H ] + L∗ (ρ)) dt (1)

where L∗ (ρ) = LTρL♯ − 1
2L

♯LTρ − 1
2ρL

♯LT (notation
defined in Appendix A) and we assume natural units are
being used. Given an operator X defined on the initial
Hilbert space H, its Heisenberg evolution is defined by

dX =tr
[(

S†XS −X
)

dΛw

]

+ (L (X)− i [X,H ]) dt

+ dW †S† [X,L] +
[

L†, X
]

SdW, (2)

with

L (X) =
1

2
L† [X,L] +

1

2

[

L†, X
]

L, (3)

which is called the Lindblad superoperator (Note L∗ (·)
is the adjoint superoperator of L (·)). The operators W
are defined on a particular Hilbert space called a Fock
space F. When the fields (the number of fields is nw)
are in the vacuum states, these are the quantum Wiener
processes which satisfy the Itô rule

dWdW † = Inw
dt.

Input field quadratures W + W ♯ and −i
(

W −W ♯
)

are
each equivalent to classical Wiener processes, but do not
commute. A field quadrature can be measured using ho-
modyne detection [31, 33]. The gauge processes Λw are
input signals to the system as well.
We assume there is no interaction between different

fields, and thus hereafter we assume S to be the identity
matrix without loss of generality [15]. This assumption
eliminates the first term on the right hand side of Eq. (2).
To be specific,

dX =(L (X)− i [X,H ]) dt

+
1

2

(

[X,L]− [X,L†]
)

dW1

− i

2

(

[X,L] + [X,L†]
)

dW2, (4)

with
[

W1

W2

]

=

[

W +W ♯

−i(W −W ♯)

]

.

The quadrature form of the output fields is given by

[

dY1

dY2

]

=

[

L+ L♯

−i(L− L♯)

]

dt+

[

dW1

dW2

]

. (5)

In this work we focus on open harmonic oscillators.
The dynamics of each oscillator is described by two Her-
mitian operators position qi and momentum pi, which
satisfy the canonical commutation relations [qi, pj ] =
2iδij where δij is the Kronecker delta. For our purposes,
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it is convenient to collect the position and momentum op-
erators of the oscillators into an n-dimensional column
vector x (t) (n is a positive even number), defined by

x (t) =
(

q1 (t) , p1 (t) , q2 (t) , p2 (t) , . . . , qn

2
(t) , pn

2
(t)
)T

.
In this case the commutation relations can be re-written
as:

x (t)x (t)
T −

(

x (t)x (t)
T
)T

= 2iΘn (6)

where Θn = In

2
⊗ J with J =

[

0 1
−1 0

]

.

Harmonic oscillators, in particular, are defined by hav-
ing a quadratic Hamiltonian of the form H = 1

2x
TRx

with R being a Rn×n symmetric matrix, and a coupling
operator of the form L = Λx with Λ being a C

nw

2
×n ma-

trix (here nw and ny are positive even numbers). A spe-
cial property of open harmonic oscillators is that the dif-
ferential equations governing x(t) are linear. If we use an
ny-dimensional column vector y (t) to incorporate all the
quadratures of the output fields, then based on Eqs. (4)
and (5), the dynamics of a set of open harmonic oscilla-
tors can be described by the following linear QSDEs [15]:

dx (t) = Ax (t) dt+Bdw (t) , (7a)

dy (t) = Cx (t) dt+Ddw (t) (7b)

where A, B, C, D are Rn×n, Rn×nw , Rny×n and Rny×nw

matrices respectively defined in terms of H and L as
follows:

A = 2Θn

(

R+ ℑ
(

Λ†Λ
))

, (8a)

B = 2iΘn

[

−Λ† ΛT
]

Γn, (8b)

C = PT
ny

[

Tny

2

0ny

2
×

nw

2

0ny

2
×

nw

2

Tny

2

]

[

Λ + Λ♯

−iΛ + iΛ♯

]

, (8c)

D =
[

Iny
0ny×(nw−ny)

]

, (8d)

with

Tny

2

=
[

Iny

2

0ny

2
×

(nw−ny)
2

]

,

Γn = PnIn

2
⊗M,

M =
1

2

[

1 i
1 −i

]

,

and the symbol Pn denotes an n × n permuta-
tion matrix defined so that if we consider a col-
umn vector a =

[

a1 a2 · · · an
]T

, then Pna =
[

a1 a3 · · · an−1 a2 a4 · · · an
]T

.
In this work we are primarily interested in engineering

the A,B,C and D matrices rather than deriving them
from H and L. When engineering, instead of using Eqs.
(8) we instead typically use the so-called physical realiz-
ability conditions:

AΘn +ΘnA
T +BΘnw

BT = 0, (9a)

BDT = ΘnC
TΘny

, (9b)

These are algebraic constraints, independent of H and L,
which the coefficient matrices A,B,C and D must obey
for them to correspond to a physically realizable quantum
system. They were originally derived by requiring the
canonical commutation relations of x(t) (y(t)) hold for
all times, a property enjoyed by open physical systems
undergoing an overall unitary evolution [15, 33]. But
it has been proven that given a set of A,B,C and D
matrices that satisfy Eqs. (9), a corresponding H and
L can always be found that satisfy Eqs. (8) (e.g. see
Theorem 3.4 in [15]).

III. QUANTUM PLANTS AND COHERENT

QUANTUM OBSERVERS

The primary goal of this work is to create a coherent
quantum observer which asymptotically tracks the ob-
servables of some arbitrary quantum plant [15, 25, 26].
We assume the quantum plant is some system of open
harmonic oscillators with a set of Ap,Bp,Cp and Dp ma-
trices which are known but we are unable to change. The
linear QSDEs (see Section II) for the plant is then:

dxp (t) = Apxp (t) dt+Bpdwp (t) , (10a)

dyp (t) = Cpxp (t) dt+Dpdwp (t) (10b)

where Ap, Bp, Cp are R
nx×nx , Rnx×nwp and R

nyp
×nx ma-

trices respectively (here nx, nwp
and nyp

are positive even

numbers), and Dp =
[

Inyp
0
nyp

×(nwp
−nyp)

]

. Further-

more, Ap, Bp, Cp and Dp satisfy the following physical
realizability conditions

ApΘnx
+Θnx

AT
p +BpΘnwp

BT
p = 0, (11a)

BpD
T
p = Θnx

CT
p Θnyp

. (11b)

A (MT) coherent quantum observer is another system
of quantum harmonic oscillators which we engineer such
that the system variables track those of the quantum
plant asymptotically in the sense of mean values. As
shown in Fig. 1, the coherent quantum observer is driven
by the output of the quantum plant directly, and no mea-
surement is involved [25, 26, 34]. A coherent quantum
observer has equations of the form

dxo (t) = (Ap −KCp)xo (t) dt+Kdyp (t) +Bodwo (t) ,

(12a)

dyo (t) = Coxo (t) dt+Do

[

dyp (t)
T

dwo (t)
T
]T

(12b)

where the nx-dimensional column vector xo (t) de-
notes the “estimate” of xp (t). K, Bo are R

nx×nyp ,
R

nx×nwo matrices respectively, and Do is given by Do =
[

Inyo
0nyo

×(nyp
+nwo

−nyo)

]

. Note that the system de-

scribed by Eqs. (12) must also satisfy the following phys-
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ical realizability conditions

(Ap −KCp)Θnx
+Θnx

(Ap −KCp)
T

+KΘny
KT +BoΘnwo

BT
o = 0, (13a)

[

K Bo

]

DT
o = Θnx

CT
o Θnyo

(13b)

which put restrictions on K and Bo [25]. In the case of
Bo 6= 0, the algebraic constraints Eqs. (13) indicate that
an additional quantum noise signal w0(t) is needed.
We use µp (t) and µo (t) to denote the first moments of

the plant and the observer respectively, i.e.,

µp (t) = 〈xp (t)〉 ,
µo (t) = 〈xo (t)〉 .

The equations of motion for the first moments of the
plant and the observer are:

µ̇p (t) = Apµp (t) , (14a)

µ̇o (t) = (Ap −KCp)µo (t) +KCpµp (t) . (14b)

Now we define eµ (t) = µp (t)− µo (t) as the error which
gives the difference between the first moments of the
plant and the corresponding observer. And according
to Eqs. (14) , it evolves as

ėµ (t) = (Ap −KCp) eµ (t) . (15)

eµ converges to zero asymptotically if and only if Ap −
KCp is Hurwitz [25]. Hurwitz here means that all the
eigenvalues of Ap−KCp have strictly negative real parts,
and hence limt→∞eµ(t) = 0.
Thus given a quantum plant described by Eqs. (10),

the coefficient matrices of a MT coherent quantum ob-
server described by Eqs. (10) are designed such that

1. (Ap −KCp) is Hurwitz;

2. The system described by Eqs. (12) corresponds to
an open quantum harmonic oscillator.

Furthermore, a MT coherent quantum observer can
always be found with arbitrary rates of error conver-
gence (proportional to the real parts of eigenvalues of
Ap − KCp) for a detectable plant [25]. The term “de-
tectable” comes from classical control [29, 35], and it
means that each mode of the plant is either observable
or stable, where observability means only given the out-
puts the state of a mode can be determined in finite time.
Whether a plant is detectable or not can be judged en-
tirely from the Ap and Cp matrices (e.g., see [29, 35] for
details). Detectability then forms a sufficient (but not
necessary) condition for a MT coherent observer to ex-
ist.
A MT coherent observer is limited in that it only tracks

the mean values of the plant. The covariance matrix is
not guaranteed to match between the plant and the MT
coherent observer. This means that important proper-
ties, e.g. the entanglement or energy of the plant, may
not be correctly estimated. We aim to remove these limi-
tations and create a CMT coherent observer whose quan-
tum state is identical to the plant’s completely in the
asymptotic limit.

IV. CMT COHERENT OBSERVERS FOR OPEN

HARMONIC OSCILLATORS

As an extension of a MT observer, here we create a
CMT observer which tracks the covariance matrix of a
quantum plant. We require that a CMT observer should
also track the mean values, and thus every CMT observer
is also a MT observer (but not vice versa).
Let us use Σp (t) and Σo (t) to denote the covariance

matrices of the plant and the observer respectively, and
Σpo denotes the cross variance:

Σp (t) =
1

2

〈

xp (t)x
T
p (t) +

(

xp (t)x
T
p (t)

)T
〉

− 〈xp (t)〉〈xT
p (t)〉,

Σo (t) =
1

2

〈

xo (t)x
T
o (t) +

(

xo (t)x
T
o (t)

)T
〉

− 〈xo (t)〉〈xT
o (t)〉,

Σpo (t) =
〈

xp (t)x
T
o (t)

〉

− 〈xp (t)〉〈xT
o (t)〉.

The evolutions for the correlation matrices of the plant
and observer are given by:

Σ̇p (t) =ApΣp (t) + Σp (t)A
T
p +BpB

T
p , (16a)

Σ̇po (t) =ApΣpo (t) + Σpo (t) (Ap −KCp)
T

+Σp (t) (KCp)
T
+BpK

T , (16b)

Σ̇T
po (t) =ΣT

po (t)A
T
p + (Ap −KCp)Σ

T
po (t)

+KCpΣp (t) +KBT
p , (16c)

Σ̇o (t) = (Ap −KCp)Σo (t) + Σo (t) (Ap −KCp)
T

+KCpΣpo (t) + ΣT
po (t) (KCp)

T

+KKT +BoB
T
o , (16d)

where Σp (t), Σo (t) and Σpo (t) are real matrices with
Σp (t) and Σo (t) nonnegative. The difference between
Σp (t) and Σo (t) is eΣ (t) = Σp (t)−Σo (t). Then a CMT
coherent quantum observer is defined as

Definition 1 Given a system described by Eqs. (10), a
system described by Eqs. (12) is a CMT coherent quan-
tum observer for the system described by Eqs. (10) if

1. The system described by Eqs. (12) is a MT coher-
ent quantum observer for the system described by
Eqs. (10);

2. The covariance matrix of the observer described
by Eqs. (12) tracks that of the plant described by
Eqs. (10) asymptotically, i.e.,

lim
t→∞

Σp (t)− Σo (t) = lim
t→∞

eΣ (t) = 0.

Our main theorem which concerns the existence of a
CMT coherent quantum observer of the form (12) is pre-
sented below.
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Theorem 1 There exists a CMT coherent quantum ob-
server described by Eqs. (12) for a quantum plant de-
scribed by Eqs. (10) if and only if

1. Ap −KCp is Hurwitz;

2. The following identity

lim
s→0

(Eo ⊗ Eo − Ep ⊗ Ep)

×
(

sI4n2
x
− In2x

⊗A−A⊗ In2x

)−1

× vec
(

BBT
)

= 0 (17)

holds. Here

Ep =
[

Inx
0nx

]

,

Eo =
[

0nx
Inx

]

,

and the coefficient matrices of a joint plant-
observer system are given by

A =

[

Ap 0
KCp Ap −KCp

]

,

B =

[

Bp 0
KDp Bo

]

;

3. The system described by Eqs. (12) is physically re-
alizable.

Proof 1 First of all, in order to ensure the convergence
of eµ (t), Ap −KCp must be Hurwitz.
The covariance matrix for the joint plant-observer sys-

tem denoted Σ (t) =

[

Σp (t) Σpo (t)
ΣT

po (t) Σo (t)

]

satisfies the fol-

lowing Lyapunov differential equation

Σ̇ (t) = AΣ (t) + Σ (t)AT +BBT . (18)

Note that

Σp (t) = EpΣ (t)ET
p ,

Σo (t) = EoΣ (t)ET
o

and thus

vec (Σp (t)) = Ep ⊗ Epvec (Σ (t)) , (19)

vec (Σo (t)) = Eo ⊗ Eovec (Σ (t)) . (20)

By using the Laplace transform L (·) to Eq. (18), we can
obtain

L (vec (Σ (t))) =
(

sI4n2
x
− In2x

⊗A−A⊗ In2x

)−1

×
(

vec
(

BBT
)

s
+ vec (Σ (0))

)

,

then

L (vec (Σo (t)− Σp (t))) =

(Eo ⊗ Eo − Ep ⊗ Ep)
(

sI4n2
x
− In2x

⊗A−A⊗ In2x

)−1

×
(

vec
(

BBT
)

s
+ vec (Σ (0))

)

.

Since a CMT observer has the property that
limt→∞eΣ (t) = 0, we have to require that all the
poles of L (vec (eΣ (t))) are located on the left side of the
s-plane. Or equivalently,

lim
s→0

sL (vec (eΣ (t))) =lim
s→0

(Eo ⊗ Eo − Ep ⊗ Ep)

×
(

sI4n2
x
− In2x

⊗A−A⊗ In2x

)−1

× vec
(

BBT
)

=0 (21)

which gives Eq. (17).
Finally, Eqs. (12) must correspond to an open har-

monic oscillator, which requires that the physical realiz-
ability condition given by Eqs. (13) should hold [15, 25].

We have found necessary and sufficient conditions for
the existence of a CMT observer. According to Theo-
rem 1, a CMT observer can track the mean values and
covariance matrix of the plant asymptotically. This is
true even if the plant does not possess a steady state re-
gardless of initial conditions. But it is still a challenging
task to construct a CMT observer by solving Eqs. (13)
and (17). Therefore we consider a special case where it
is easier to construct a CMT observer. Specifically, we
assume Ap is Hurwitz. Any plant with a unique steady
state has an Ap matrix which is Hurwitz.
The primary advantage of Ap being Hurwitz is that we

can guarantee the existence of steady state values for all
the covariance matrices, i.e., limt→∞ Σ̇p(t) = 0. Solving
Eqs. (16) in steady state gives:

(Ap −KCp) eΣ + eΣ (Ap −KCp)
T

+KCp (Σp − Σpo) +
(

Σp − ΣT
po

)

(KCp)
T

+BpB
T
p −KKT −BoB

T
o = 0 (22)

where the steady state eΣ := limt→∞eΣ (t).
Furthermore when Ap −KCp is Hurwitz (as required

for a CMT observer), it can be concluded that eΣ = 0.
Substituting eΣ = 0 to Eq. (22) gives

KCp (Σp − Σpo) +
(

Σp − ΣT
po

)

(KCp)
T

+BpB
T
p −KKT −BoB

T
o = 0 (23)

in steady state.

Theorem 2 Assume the quantum plant described by
Eqs. (10) is detectable with Ap Hurwitz. The system de-
scribed by Eqs. (12) is a CMT coherent quantum observer
for the plant described by Eqs. (10) if and only if

1. Ap −KCp is Hurwitz;

2. The following matrix inequality

KCp (Σp − Σpo) + (Σp − Σpo)
T (KCp)

T

+BpB
T
p −KKT − iKΘnyp

KT

− i (A−KCp)Θn
x
− iΘnx

(A−KCp)
T � 0 (24)
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holds, where (Σp − Σpo) is the unique solution to
the following Sylvester equation

Ap (Σp − Σpo) + (Σp − Σpo) (Ap −KCp)
T

+BpB
T
p −BpK

T = 0. (25)

Assuming the two conditions above hold, the coupling op-
erator characterizing the interaction between the observer
and additional boson fields is then given by Lo = Λoxo

where Λo is any
nwo

2 × nx complex matrix such that

Λ†
oΛo =− i

4
Θn

x
(A−KCp)−

i

4
(A−KCp)

T Θnx

+
i

4
Θnx

KΘnyp
KTΘnx

− 1

4
Θnx

KCp (Σp − Σpo)Θnx

− 1

4
Θnx

(Σp − Σpo)
T
(KCp)

T
Θnx

− 1

4
Θnx

BpB
T
p Θnx

+
1

4
Θnx

KKTΘnx
. (26)

Proof 2 Since the plant described by Eqs. (10) is de-
tectable, one can always find K to make Ap −KCp Hur-
witz. With the assumption of Ap being Hurwitz, and ac-
cording to Eq. (23), Bo must satisfy

BoB
T
o =KCp (Σp − Σpo) +

(

Σp − ΣT
po

)

(KCp)
T

+BpB
T
p −KKT , (27)

and the corresponding physically realizability condition is

BoΘnwo
BT

o =− (Ap −KCp)Θnx
−Θnx

(Ap −KCp)
T

−KΘnyp
KT (28)

Therefore Bo can be determined based on Eqs. (27) and
(28).
In accordance with the physical form of an open har-

monic oscillator described by Eqs. (12) with Lo = Λoxo,
Bo is given by [15, 25, 26])

Bo = 2iΘnx

[

−Λ†
o ΛT

o

]

Γnwo
. (29)

Here Γnwo
is defined in Section II.

By using the form of Bo given in Eq. (29), we can
obtain that

BoB
T
o = −4Θnx

ℜ
(

Λ†
0Λ0

)

Θnx
, (30)

then

ℜ
(

Λ†
oΛo

)

=− 1

4
Θnx

KCp (Σp − Σpo)Θnx

− 1

4
Θnx

(Σp − Σpo)
T (KCp)

T Θnx

− 1

4
Θnx

BpB
T
p Θnx

+
1

4
Θnx

KKTΘnx
(31)

due to Eq. (27).
Similarly, we have

BoΘnwo
BT

o = −4Θnx
ℑ
(

Λ†
oΛo

)

Θnx
, (32)

then

ℑ
(

Λ†
oΛo

)

=− 1

4
Θn

x
(A−KCp)−

1

4
(A−KCp)

T
Θnx

+
1

4
Θnx

KΘnyp
KTΘnx

(33)

based on Eq. (28).
Therefore, Λo is any

nwo

2 × nx complex matrix such
that

Λ†
oΛo =− i

4
Θn

x
(A−KCp)−

i

4
(A−KCp)

T
Θnx

+
i

4
Θnx

KΘnyp
KTΘnx

− 1

4
Θnx

KCp (Σp − Σpo)Θnx

− 1

4
Θnx

(Σp − Σpo)
T
(KCp)

T
Θnx

− 1

4
Θnx

BpB
T
p Θnx

+
1

4
Θnx

KKTΘnx

� 0.

Eq. (24) can then be derived using the identity
−Θnx

Θnx
= Inx

. Note that all the steps above are re-
versible.

As studied in [25], a MT coherent quantum observer
can always be found if the plant described by Eqs. (10) is
detectable. However, as we intend to track the covariance
matrix of a linear quantum plant using coherent observers
at the same time, not all values ofK that make Ap−KCp

Hurwitz are applicable to the design of a CMT coherent
observer. Indeed, there are systems where mean value
coherent observers exist but CMT observers can not be
constructed. It is worth mentioning that Bo can be 0
if no additional noise is needed to ensure the physical
realizability of an observer described by Eqs. (12) .

V. APPLICATIONS AND EXAMPLES

In this section, we present some numerical examples to
illustrate the design and performance of CMT coherent
quantum observers. We also compare the behavior of MT
vs. CMT observers.

A. CMT observers vs. MT observers for a

single-mode quantum harmonic oscillator

In this example we consider tracking a single-mode
Gaussian system. Consider an optical parametric oscil-
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lator as the linear quantum plant given by

dxp =

[

−0.4 0
0 −0.6

]

xpdt− dwp, (34a)

dyp = xpdt+ dwp (34b)

where Ap =

[

−0.4 0
0 −0.6

]

, Bp = −I2 and Cp = Dp =

I2.
If we choose K to be 3I2, then using Eq. (28) one

can choose Bo =

[

1 0
0 −2

]

to construct a MT coherent

quantum observer.
However, in this case, according to Eq. (27) we have

BoB
T
o =

[

−1.6842 0
0 −2.2857

]

(35)

which is negative, and thus a CMT coherent observer
cannot be designed with K = 3I2.
Alternatively, one can set K = I2. First, we can cal-

culate the steady state Σp − Σpo =

[

1.1111 0
0 0.9091

]

using Eq. (25). Then by substituting K and Σp − Σpo

to Eq. (24), we find the Eq. (24) holds. Applying the
Cholesky decomposition, one can determine

Λ0 =

[

0.6742 0.7416i
0 0.0745

]

.

Hence,

Bo =2iΘ2

[

−Λ†
0 ΛT

0

]

Γ4

=

[

−1.4832 0 0 0.1491
0 −1.3484 0 0

]

.

Then the CMT observer is specified by

(S,L,H)

=



I2,





−0.5 −0.5i
0.6742 0.7416i

0 0.0745



xo,
1

2
xT
o

[

0 0.05
0.05 0

]

xo



 ,

which can be synthesized as an open harmonic oscillator
using the results in [15, 17].
We choose the initial covariance matrix for the joint

plant-observer system as

Σ (0) =

[

1.1I2 0
0 2I2

]

which corresponds to a Gaussian separable joint state

[27]. The initial amplitudes are µp (0) =
[

1 1
]T

and

µo (0) =
[

0 0
]T

.
We can calculate Σp (t) and Σo (t) explicitly by using

the Laplace transform, and then

eΣ (t) = Σp (t)− Σo (t)

=

[

− 2
9e

− 9

5
t − 7

9e
− 14

5
t 0

0 2
11e

− 11

5
t − 13

11e
− 16

5
t

]

.

 t (s)
0 1 2 3 4 5

|| 
e
Σ

(t
)||

F

0

0.5

1

1.5

2

 ν
-(t

)

0.9

0.95

1

1.05

1.1

FIG. 2. (Color online) Plot of the behavior of a CMT observer
with the solid line and the dash-dot line corresponding to
||eΣ(t)||F and ν− (t) (see Eq. (40) in [27]) respectively. The
joint system is initialized in a Gaussian separable state.

We investigate the convergence of the covariance ma-
trices between the plant’s and the coherent observer’s by
plotting the Frobenius matrix norm of the covariance er-
ror matrix ||eΣ(t)||F =

√

tr (e2Σ) against time in Fig. 2.
When ||eΣ(t)||F = 0 one can be certain that eΣ(t) = 0,
and hence the covariance matrices of the plant and ob-
server are identical. We can see the CMT observer is
performing as expected. The matrix Σo (t) is tracking
Σp (t) asymptotically as time goes to infinity.

We also investigate the quantum correlations between
the plant and the CMT observer. For Gaussian two-
mode systems, entanglement is completely quantified by
the smallest symplectic eigenvalue ν− (t) of the partially
transposed state, and the joint state is entangled if and
only if ν− (t) < 1 [25, 27]. In Fig. 2 we plot the smaller
symplectic eigenvalue as a function of time. We find that
the plant and the CMT observer eventually become en-
tangled as depicted by the dash-dot line in Fig. 2.

As the CMT observer tracks both the first and second
moments of the plant, and the quantum state is Gaus-
sian, we expect the quantum state of the CMT observer
to be identical to that of the plant in the asymptotic
limit. This is not guaranteed to be the case for the MT
observer that only tracks the means. We compare the
performance of the CMT and MT observers in this re-
gard by plotting the quantum fidelity between the ob-
server and the plant as a function of time in Fig. 3.
Quantum fidelity is widely used to quantify how close
two mixed states are [36, 37]. For Gaussian states, the
fidelity between two states can be calculated analytically
(see Eq. (7) in [36]). In this paper, we use F (t) to de-
note the fidelity, and the closer F (t) is to 1 the more
similar the two sates are to each other. In Fig. 3, in
the asymptotic limit, the state of a CMT observer (with

Bo =

[

−1.4832 0 0 0.1491
0 −1.3484 0 0

]

) is closer to the
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plant state compared to a MT coherent observer (with

Bo =

[

1 0
0 2

]

), as anticipated.

 t  (s)
0 1 2 3 4 5

 F
(t

)

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

FIG. 3. (Color online) Plot of the fidelity F (t) (see Eq. (7)
in [36]) as a function of time with the solid line and the dash-
dot line corresponding to a CMT observer and a MT observer
respectively.

B. Entanglement tracking of a two-mode quantum

harmonic oscillator using a CMT observer

In this example we consider a linear quantum plant
which consists of two oscillators that are initially sepa-
rable but eventually become entangled. The (S,L,H)
description of the plant is

(S,L,H)

=

(

I4,

[

0.5 0.5i −0.5 −0.5i
0 0 −1 −0.5i

]

xp ,

1

2
xT
p







0 0.05 0 0.25
0.05 0 −0.25 0
0 −0.25 0 0.05

0.25 0 0.05 0






xp






.

The plant can be regarded as a directly coupled system
of two quantum harmonic oscillators [15, 38] or a cascade
of two oscillators [31, 38]. The initial covariance matrix

for the plant is Σp (0) =

[

1.1I2 0
0 2I2

]

and its evolution

is governed by the linear QSDEs

dxp =







−0.4 0 0 0
0 −0.6 0 0
1 0 −1.4 0
0 1 0 −1.6






xpdt

+







−1 0 0 0
0 −1 0 0
1 0 1 0
0 1 0 2






dwp, (36a)

dyp =







1 0 −1 0
0 1 0 −1
0 0 −2 0
0 0 0 −1






xpdt+ dwp. (36b)

We now design a CMT coherent observer for the plant
described by Eqs. (36). One can choose the observer gain
K to be

K =







0.2 0 −0.1 0
0 0.05 0 −0.1
0.6 0 −0.1 0
0 0.4 0 −0.1






. (37)

Then we find that Eq. (24) holds, and thus a CMT ob-
server can be constructed according to Theorem 2 with
(Λo is not unique)

Λo =







0.5167 0.5952i −0.2914 −0.1887i
0 0.0571 −0.0167i 0.1343
0 0 0.9316 0.4887i
0 0 0 0.027






.

Equivalently, the CMT observer can be written as:

(S,L,H)

=















I4,















−0.025 −0.1i −0.2 −0.3i
0.05 0.05i 0.05 0.05i
0.5167 0.5952i −0.2914 −0.1887i

0 0.0571 −0.0167i 0.1343
0 0 0.9316 0.4887i
0 0 0 0.027















xo ,

1

2
xT
o







0 0.0125 0 0.1125
0.0125 0 −0.15 0

0 −0.15 0 0.075
0.1125 0 0.075 0






xo






,

and in principle it can be synthesized following the
methodology in [15, 17].
We initialize the observer to Σo (0) = 2I4, which is

different to the plant initial condition, but still separable.
We now confirm that the entanglement between the

oscillators of the plant is correctly tracked by the CMT
observer. In Fig. 4 we plot the smallest symplectic eigen-
value of the partially transposed state of both the ob-
server νo− (t) and the plant ν

p
− (t) as a function of time.

νo− (t) converges to ν
p
− (t) asymptotically, as expected.

This confirms that even quantum correlations inside the
two-mode Gaussian plant can be tracked by the CMT
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observer, which allows for control of the plant based on
quantum characteristics that were unavailable with a MT
observer.

 t (s)
0 1 2 3 4 5

 ν
-(t

)

0.8

1

1.2

1.4

1.6

1.8

2

FIG. 4. (Color online) Plot of an entanglement measure (see
Eq. (40) in [27]) of the observer νo

−
(t) (the solid line) and the

plant νp
−
(t) (the dash-dot line) as a function of time.

C. Failed tracking of the covariance matrix of a

singe-mode quantum harmonic oscillator

Consider a plant with the following linear QSDEs

dxp =

[

−1 1
1 −1

]

xpdt+

[

−
√
2 0

0 −
√
2

]

dwp, (38a)

dyp =

[ √
2 0

0
√
2

]

xpdt+ dwp (38b)

For the quantum plant given by Eqs. (38) (Note that Ap

is not Hurwitz), no matter what values we choose K and
Bo to be, Eq. (17) cannot be satisfied. It is thus that a
CMT coherent quantum observer can never be designed
for the plant given by Eqs. (38).
There do exist plants which cannot be tracked by a

MT observer. For instance, certain undetectable plants
cannot be tracked even in the mean values sense. How-
ever, in this example, a MT observer can be constructed
even though a CMT observer cannot be. Specifically, we
can choose K = I2 to make Ap − KCp Hurwitz, and
then Bo is determined as shown in [25]. Therefore, in
this case, we are only able to approach the mean val-
ues of the quantum plant without tracking its covariance
matrix. This demonstrates that there are additional con-
straints when constructing a CMT observer compared to
a MT observer.

VI. DISCUSSION AND OUTLOOK

We have created a CMT observer that tracks both
the mean values and covariances of a system of linear

quantum oscillators. The CMT observer (and the previ-
ously developed MT observer) will asymptotically track
the plant’s steady state, even if the plant is being driven
by an arbitrary input field.

In future work it will be investigated whether an ob-
server can be used in a feedback loop to better control the
behavior of a plant than would otherwise be possible with
direct feedback. It has already been shown that coherent
feedback has advantages over measurement-based feed-
back. We expect that coherent observer mediated feed-
back will have an advantage over direct feedback in the
same sense a classical observer mediated feedback has an
advantage over direct feedback. Especially in the linear
quadratic Gaussian setting of stochastic control theory,
an estimation provided by an observer is highly desir-
able for feedback in order to optimize certain quadratic
cost function (e.g., cooling of cavities) [17, 39]. It is also
absorbing to explore how quantum correlations such as
entanglement can be made use of to facilitate coherent
feedback control. In terms of quantum state regulation
or other coherent control schemes, it is possible to ma-
nipulate the observer so that the state of the plant can
be indirectly steered via entanglement.

Furthermore, we expect that a CMT observer will be
more useful than a MT observer as it tracks the covari-
ance matrix of the plant as well. Important properties
of a quantum system, such as energy, entanglement and
other quantum correlations are a function of the system’s
covariance matrix rather than merely its mean values.

Our work on a CMT coherent observer also raises some
interesting fundamental questions with regard to engi-
neering quantum systems in comparison to classical sys-
tem. Classifying what plants can or cannot be tracked
with a MT observer appears to be identical to classi-
cal observer theory, i.e., a K must be found such that
Ap − KCp is Hurwitz. There is well established clas-
sical theory which then relates this requirement to no-
tions such as observability and detectability [29, 35, 40].
A CMT observer, on the other hand, has additional
requirements which are fundamentally quantum in ori-
gin. Namely, Eq. (24) must be satisfied in addition to
Ap −KCp being Hurwitz. It remains an open question
on how to interpret this additional requirement and if the
classical notions of observability and detectability can be
appropriately extended when discussing the tracking of
a quantum plant’s covariance matrix.

Even though we are attempting to copy the entire
quantum state of the plant with a CMT observer (un-
like a MT observer), we emphasize there is no contradic-
tion with the no-cloning theorem [41, 42]. In Theorem
1 we make no assumptions about the plant. Hence,there
may be systems whose steady state is dependent on the
initial condition. In these cases the no-cloning theorem
would forbid cloning of the entire steady state. There is
no contradiction between this conclusion and Theorem
1, as it does not guarantee the existence of an observer
for all plants. Indeed, in the cases where the no-cloning
theorem suggests an observer should not exist, Theorem
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1 could be used to prove this explicitly.
Outside of quantum engineering, the design and im-

plementation of a CMT observer also looks to provide
some insight into quantum measurement. When the out-
put of the plant is measured, an optimal estimate of
the quantum state of the plant can be calculated using
the Belavkin-Kalman filter (also referred to as stochas-
tic trajectories) [9]. However, research suggests the sit-
uation becomes much more complicated when there is
no measurement step. It has been proven the Belavkin-
Kalman filter fails in the presence of a fully quantum non-
commutative output signal [23, 24, 43] and furthermore
the measurement-based filter is challenging to be real-
ized efficiently with quantum hardware [44]. The CMT
observer is the first coherent method of providing an es-
timate of the full quantum state of a plant. Note we
never invoke the measurement postulate when deriving
the CMT observer. It is entirely derived in the frame-
work of open systems. Creating and better understand-
ing estimators for quantum systems which do not explic-
itly require the measurement postulate is an important
part of further refining our understanding of quantum
measurement.
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Appendix A: Notation

In this paper the asterisk is used to indicate the Hilbert
space adjointX∗ of an operatorX , as well as the complex
conjugate z∗ = x − iy of a complex number z = x + iy
(here, i =

√
−1 and x, y are real). Real and imaginary

parts are denoted by ℜ (z) = z+z∗

2 and ℑ (z) = z−z∗

2i

respectively. The conjugate transpose A† of a matrix
A = {aij} is defined by A† =

{

a∗ji
}

. The conjugate

A♯ =
{

a∗ij
}

and the transpose AT = {aji} of a ma-

trix is defined so that A† =
(

AT
)♯

=
(

A♯
)T

. det (A)
denotes the determinant of a matrix A, and tr (A) rep-
resents the trace of A. vec(A) denotes the vectoriza-
tion of a matrix A. ‖A‖F denotes the Frobenius norm,

i.e., ‖A‖F =
√

tr (A†A). The mean value (quantum
expectation) of an operator X in the state ρ is de-
noted by 〈X〉 = Eρ [X ] = tr (ρX). The commutator
of two operators X,Y is defined by [X,Y ] = XY − Y X .
The anticommutator of two operators X,Y is defined by
{X,Y } = XY + Y X . The tensor product of operators
X,Y defined on Hilbert spaces H,G is denoted X ⊗ Y ,
and is defined on the tensor product Hilbert space H⊗G.
In (n ∈ N) denotes the n dimensional identity matrix.
0n (n ∈ N) denotes the n dimensional zero matrix.
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