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We say that two (or more) state assignments for one and the same quantum system are compatible
if they could represent the assignments of observers with differing information about the system. A
criterion for compatibility was proposed in [Phys. Rev. A 65, 032315 (2002)]; however, this leaves
unanswered the question of whether there are degrees of compatibility which could be represented by
some quantitative measure, and whether there is a straightforward procedure whereby the observers
can pool their information to arrive at a unique joint state assignment. We argue that such measures
are only sensible given some assumption about what kind of information was used in making the
state assignments in the first place, and that in general state assignments do not represent all of the
information possessed by the observers. However, we examine one particular measure, and show
that it has a straightforward interpretation, assuming that the information was acquired from a
particular type of measurement, and that in this case there is a natural rule for pooling information.
We extend this measure to compatibility of states for k observers, and show that the value is the
solution to a semidefinite program. Similar compatibility measures can be defined for alternative
notions of state compatibility, including Post-Peierls (PP) and Equal Support (ES) compatibility.

I. INTRODUCTION

While there has been much debate about the exact
nature of the quantum state, the most persuasive in-
terpretation is that the state represents the knowledge
or belief of an observer about a given quantum system.
Using the state, the observer can assign probabilities to
the outcomes of any possible measurement of the system.
From this point of view, a pure state represents a state
of maximal knowledge (or minimal ignorance) about a
system, and a mixed state represents a description with
incomplete knowledge. Whether the state also reflects
the structure of an underlying physical reality is a sub-
ject of heated debate; but at a practical level, we make
state assignments based on our available information.

If the state assignment reflects the information of an
observer, it follows reasonably that two observers with
different information will make different state assign-
ments. This can arise naturally in a number of ways; for
example, one observer may have access to certain mea-
surement outcomes that another observer does not, or
may have additional information about how the system
was prepared. In [1] this question was examined, and a
necessary and sufficient condition was found which must
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be satisfied by any two or more state assignments which
reflect differing information about the same physical sys-
tem, provided that the information underlying all of these
assignments is accurate and reliable.

Classically, the state of knowledge about a system is
described by a probability distribution. New information
about the system can be acquired by performing a mea-
surement, and updating the state assignment based on a
measurement result is done using the Bayes rule. Clas-
sically, two probability distributions can be compatible
so long as they are not actually contradictory. Further-
more, it is possible to pool the information of different
observers using only their individual states of knowledge
(probability distributions), provided that the information
of different observers is independent. In this case, other
information (such as how the knowledge was obtained) is
not required.

A reasonable question is whether similar conditions
hold in quantum mechanics. Can we take the state as-
signment to reflect all information about a quantum sys-
tem? If so, under what conditions? What assumptions
do we have to make about how the information underly-
ing the state assignments was acquired?

In this paper, we look at different ways that a state
can be derived from underlying information, and show
that in general the state assignment does not completely
summarize all the information used to derive it. In par-
ticular, we consider two significantly different ways of
constructing the state. In the first case, the informa-
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tion is derived from measurement. Each party obtains
his or her information by making a measurement. In the
second case, each observer is given classical information
about how the system was prepared, for example from
the third party who prepared it. The method of pooling
information becomes clear once we know how the infor-
mation was obtained, but different types of information
can result in very different ways of acquiring a joint state
assignment. However, this does not rule out the possibil-
ity that within a very sharply defined context, it may be
possible and useful to both define reasonable measures of
compatibility, and give rules for for pooling state assign-
ments.

There have been various studies concerning compat-
ibility of state assignments and pooling of information
[1–8]. Quite recently, the authors in Ref. [8] used the
conditional states formalism [9] to show that earlier re-
sults [2, 4–7] can be recast in this more general formalism.
Our results differs from theirs in that the main focus of
this paper is an attempt to quantify the degree of com-
patibility in the assigned quantum states. We also note
that the problem of pooling information, so that a unique
joint state assignment can be derived, is very sensitive to
the type of information used to make the state assign-
ment in the first place, and illustrate this with a couple
of representative examples.

In Sec. II, we briefly describe the necessary and suf-
ficient condition for two different states to be compati-
ble. We discuss the possible existence of a compatibility
measure (or measures) that quantifies how much the two
states are compatible. In Sec. III, we show two signifi-
cantly different ways of obtaining the state assignment,
and argue that the state does not encapsulate the whole
information in general. In Sec. IV, we explore a partic-
ular compatibility measure, and show that this measure
is actually a distance measure between two states, while
in Sec. V we show how if we assume that the state as-
signments were derived from a particular type of mea-
surement, there is a simple rule for forming a joint state
assignment. In Sec. VI we extend this measure to com-
patibility of states for k observers, and show that it is the
solution of a semidefinite program; we then define similar
compatibility measures for two more restrictive notions
of compatibility, Post-Peierls (PP) and Equal Support
(ES) compatibility. We conclude the paper in Sec. VII.

A. Information, Knowledge, and Belief

It seems necessary to make a bit more concrete what
we mean when we talk about different observers have dif-
ferent information about a given system. What, exactly,
do we mean by information in this context?

For clarity, we will draw somewhat arbitrary distinc-
tions between information, knowledge, and belief. When
does it make sense even to talk about compatibility and
state pooling? Arguably, two observers will only have a
basis for comparison between their state assignments if

they start from a fairly substantial base of shared knowl-
edge about the system.

For example, the two observers might both know that
the give system was prepared by a given type of exper-
imental apparatus, or by performing a particular gener-
alized measurement. This would represent their shared
knowledge base about the system. Given that shared
knowledge, the two observers might still have different
information about the system. For instance, they might
each have partial, but different, information about the
settings of the device that prepared the system; or they
might each have partial, but different, information about
the outcome of the generalized measurement. When we
refer to information in the discussion that follows, we will
mostly be using it in this rather restrictive sense—that
is, some amount of numerical data about the system, or
more generally, a probability distribution over such data.

If the two observers do not have a shared knowledge
base then it becomes harder to compare their state as-
signments, or for such comparisons to even make sense. If
two observers think that the system was prepared in rad-
ically different ways, then it is hard to see how they could
share their knowledge, even if their state assignments
were almost identical. This is where knowledge shades
over into belief. A number of authors have pointed out
that two observers in possession of the same facts might
nevertheless arrive at quite different state assignments if
they have different prior distributions or priors. (See, for
example, [3].)

In most discussions of compatibility—including that in
this paper—we are implicitly assuming that the observers
with compatible state assignments begin with identical
(or very similar) priors about the system, and a strong
base of shared knowledge. Their state assignments differ
due to the acquisition of different data about the sys-
tem. While there is certainly no necessity that different
observers should start from the same prior—quite the
contrary—in practice, it is quite common in science for
observers to come to consensus about particular exper-
imental systems, generally by sharing large amounts of
data from repeated trials or preparations.

It would be interesting to study the idea of compatibil-
ity for observers with different priors, and in particular
the process whereby consensus can be reached, but that
is beyond the scope of the current paper.

II. COMPATIBLE STATE ASSIGNMENTS

Let ρA and ρB be two different assignments of den-
sity matrix to the same system. If we assume that these
assignments were made by two observers with different
information, what restriction does this place on the state
assignments? We call two states that satisfy such a re-
striction compatible. A necessary and sufficient criterion
[1] for ρA and ρB to be compatible is that the intersection
of their supports is nonempty:

supp(ρA) ∩ supp(ρB) 6= ∅. (1)
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To show that this condition is necessary, we assume that
the information used to derive state descriptions ρA and
ρB is accurate and reliable. The two observers should
then be able to combine their information to produce a
joint state description ρAB . Since their information is
accurate and reliable, any measurement result which is
ruled out (i.e., assigned zero probability) by either party
should also be ruled out in the joint state ρAB . This then
implies

null(ρA),null(ρB) ⊆ null(ρAB)

⇒ span{null(ρA),null(ρB)} ⊆ null(ρAB)

⇒ supp(ρAB) ⊆ supp(ρA) ∩ supp(ρB).

(2)

Sufficiency is proven by constructing an explicit situation
in which ρA and ρB could arise as state estimates by two
observers making different measurements. We introduce
purifications of ρA and ρB with two ancillas, and then
combine them into a single state. The given state then
results from Alice and Bob each measuring his or her
own ancilla and getting a particular outcome. See [1] for
details.

The compatibility criterion in Eq. (1) is robust against
sufficiently small distortions of the states. For example,
given ρA = |0〉〈0| and ρB = ε|0〉〈0|+(1−ε)|1〉〈1|, the two
states remain compatible until ε → 0. Unfortunately, it
is in some ways not very informative. The criterion is
an all-or-nothing property; it says only that two state
assignments could result from observers with differing in-
formation, but gives no clue how likely it is that they
did. This makes it natural to seek a measure of compat-
ibility that would indicate this likelihood. The measure
would be zero for incompatible states, and go up to one
for identical states. We discuss the possibility of such
measures in Secs. IV and VI.

We note that other (more restrictive) notions of com-
patibility also exist: see Ref. [3] for an extensive discus-
sion of this subject and a variety of different compatibility
criteria. We briefly look at two of these other criteria in
Sec. VI.

III. TYPES OF INFORMATION

We think of the state assignment as being based on in-
formation possessed by the observer; but information can
come in many different forms. In this paper, we consider
two different types of information in particular: classical
information about the state preparation, in which the
state assignment is made using the maximum entropy
estimate, and information derived from measurements.

A. Maximum entropy estimate

If an observer acquires classical information about the
way a system was prepared, he or she can make a state as-
signment based on the maximum entropy principle [10]:

choosing the state with the highest entropy consistent
with the given information. This takes a particularly
simple form if the information is in the form of an ex-
pectation value 〈Ô〉 ≡ Tr{Ôρ} = o. The observer can
construct a state assignment by maximizing the Von Neu-
mann entropy

S(ρ) = −Tr{ρ log ρ}, (3)

under the following two constraints:

f(ρ) ≡Tr{Ôρ} = o

g(ρ) ≡Tr{ρ} = 1.
(4)

This is a constrained maximization problem, and can be
solved with Lagrange multipliers:

∂S(ρ)

∂ρ
+ λ1

∂f(ρ)

∂ρ
+ λ2

∂g(ρ)

∂ρ
= 0

⇒ log ρ+ Î = λ1Ô + λ2Î .

(5)

The estimated state is

ρ̃ =
eλ1Ô+(λ2−1)Î

Tr{eλ1Ô+(λ2−1)Î}
, (6)

where we can solve for λ1 and λ2 from (4). This as-
signment is obviously based on the observer’s knowledge;
further information can alter the assignment. If an ad-
ditional piece of information 〈Â〉 = a is given, the state
changes accordingly:

ρ̃′ =
eλ

′
1Ô+λ′

2Â+(λ′
3−1)Î

Tr{eλ′
1Ô+λ′

2Â+(λ′
3−1)Î}

. (7)

If Alice and Bob wish to form a joint state assignment,
they must share all the information they have about the
state preparation and perform a maximum entropy as-
signment with this shared information. It is easy to see
that as long as all the information provided to Alice and
Bob is consistent—that is, that there exists a state with
all those expectation values—their state assignments will
be compatible. Moreover, the entropy of the joint state
ρAB must be less than or equal to the entropies of the
individual states: S(ρAB) ≤ S(ρA) and S(ρAB) ≤ S(ρB).

B. Learning measurement results

Consider now a different situation. Suppose that Alice
and Bob share two halves of an entangled state, which
we write in the Schmidt decomposition:

|Ψ〉 =
∑
j

λj |ψj〉 ⊗ |φj〉,

with 〈ψj |ψk〉 = 〈φj |φk〉 = δjk. Alice has the reduced
state

ρA = TrB{|Ψ〉〈Ψ|} =
∑
j

λ2j |ψj〉〈ψj |, (8)
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which can accurately predict the probabilities for any
measurement she makes. Suppose Bob makes a mea-
surement in the basis {φj}, and gets outcome k. Then
Alice’s state should immediately become ρA = |ψk〉〈ψk|.
She cannot, however, update her state until she learns
the outcome of Bob’s measurement. Until that point, her
original state assignment ρA is the best she can make.

C. The state does not include all information
about the system

As mentioned in Sec. 1, the state itself does not al-
ways include all the information an observer has about
a system. For information acquired from measurements,
this was shown by Jacobs [2], who demonstrated that if
ρA and ρB are compatible state assignments, which are
assumed to be obtained from the results of measurements
by Alice and Bob, then it is possible to construct an ini-
tial state and choice of measurement such that the joint
state assignment ρAB can be any density matrix at all,
so long as supp(ρAB) ⊆ supp(ρA) ∩ supp(ρB). Thus, in
general more information is needed than ρA and ρB in
order to construct ρAB ; ρA and ρB do not encapsulate
all of Alice and Bob’s information about the system.

Here we give another example showing that the same is
true if Alice and Bob make their state assignments using
classical information and the maximum entropy princi-
ple. Suppose Alice assigns the state of a qubit:

ρA = (Î + aX̂ + bŶ + cẐ)/2, (9)

where a2 + b2 + c2 ≤ 1. This same state can be obtained
from classical information in many ways. Here are two
examples:

1. 〈aX̂ + bŶ 〉 = a2 + b2, 〈Ẑ〉 = c

2. 〈bŶ + cẐ〉 = b2 + c2, 〈X̂〉 = a.
(10)

Suppose that Bob makes his state assignment

ρB = (Î + dŶ )/2 (11)

based on the classical information that 〈Ŷ 〉 = d. We
can readily see that ρA and ρB are compatible. (Indeed,
any two qubit states are compatible unless they are two
distinct pure state assignments.) Now suppose that Alice
and Bob share their information to obtain a joint state
assignment ρAB . The joint state in cases 1 and 2 will be
different:

1. ρAB = (Î + (a+ b(b− d)/a)X̂ + dŶ + cẐ)/2

2. ρAB = (Î + aX̂ + dŶ + (c+ b(b− d)/c)Ẑ)/2.
(12)

This shows that knowledge of the state assignments ρA
and ρB alone is not sufficient to know how to pool in-
formation in the case where the information is classical,
as well. The state assignment does not encapsulate all
information about the system.

IV. MEASURES OF COMPATIBILITY

The compatibility criterion of [1] is all-or-nothing: ei-
ther two states are compatible, or they are not. This
includes extreme examples like ρA = |0〉〈0| and ρB =
ε|0〉〈0| + (1 − ε)|1〉〈1|. For any ε > 0 these states are
compatible, even though they are practically orthogonal
for very small ε. This leads to the natural question: can
we define measures of compatibility? Intuitively, while
compatibility indicates that two state assignments could
represent different information about the same system,
such a measure would represent a probability that they
actually do. We should therefore expect the measure to
go from 0 for incompatible states to 1 for identical states,
with some kind of smooth behavior in between.

From our earlier discussion, some caveats are clearly
needed. Since the states do not represent all informa-
tion about the system, it is impossible to truly mea-
sure the compatibility based on the state assignments
alone. For example, it is impossible to arrive at compat-
ible state assignments using classical information which
is contradictory; e.g., the two pieces of classical informa-
tion 〈X̂〉 = 0.5 and 〈X̂〉 = −0.5 lead to compatible state
assignments for a qubit, but are obviously inconsistent
with each other. (This inconsistency comes from the as-
sumptions of the Maximum Entropy procedure, where
these expected values are taken to be guaranteed proper-
ties of the state.) Therefore, in defining a compatibility
measure, one must implicitly assume that the state as-
signments represent information which was acquired in a
consistent manner—for example, by Alice and Bob per-
forming measurements on the same system.

One such measure was proposed by Poulin and Blume-
Kohout, in close analogy with the measure of distance
between classical probability distributions [4]. The cor-
rect interpretation of this measure is not exactly clear
in the quantum case, but it does have the right sort of
qualitative behavior, and reduces to a known measure in
the case of essentially classical state (i.e., when ρA and
ρB commute). In other cases, however, it is somewhat
difficult to compute, since it requires taking a minimum
over all pure state decompositions of density matrices.

Here we examine a different compatibility measure,
which was originally suggested by Kitaev [11]. The orig-

inal idea is to find a positive matrix R̂ that “fits” into
both the state matrix ρA and ρB to the greatest degree
possible.

Definition 1 (Compatibility Measure). Let ρA and ρB
be compatible states. Consider all positive matrices R̂ ≥ 0
such that

ρA − R̂ ≥ 0,

ρB − R̂ ≥ 0.
(13)

The compatibility measure K is defined as

K(ρA, ρB) = max
R̂≥0

TrR̂. (14)
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We have found no simple formula for this measure, in
general. (In Sec. VI we show that this value can be found
as the solution of a semidefinite program.) However, it
is possible to upper bound K(ρA, ρB) with the trace dis-
tance between ρA and ρB [12]):

K(ρA, ρB) ≤ 1−D(ρA, ρB)

where D(ρA, ρB) is the trace distance:

D(ρA, ρB) ≡ 1

2
Tr {|ρA − ρB |} . (15)

To see this inequality, define R̃ = ρA−R̂. We can rewrite
Eqs. (13) and (14) in terms of R̃:

R̃ ≥ 0,

ρB − ρA + R̃ ≥ 0,

ρA − R̃ ≥ 0,

(16)

and

K(ρA, ρB) = max
R̂≥0

Tr{R̂} = 1−min
R̃≥0

Tr{R̃}. (17)

This just rewrites the original definition of the measure
in terms of the new operator R̃. However, we can put
an upper bound on this quantity by relaxing the third
requirement above that ρA− R̃ ≥ 0. In this case, we can
find an exact expression for (17). From [13], we know
that ρB − ρA can be expressed as

ρB − ρA = Q̂− Ŝ, (18)

where Q̂ and Ŝ are positive operators with orthogonal
support. This implies that |ρB − ρA| = Q̂ + Ŝ. We can

satisfy (16) and minimize Tr{R̃} by choosing

R̃ = Ŝ =
1

2
(|ρB − ρA| − ρB + ρA). (19)

Then

K(ρA, ρB) ≤ 1− 1

2
Tr {|ρB − ρA|} = 1−D(ρA, ρB). (20)

It is easy to see that this measure has the right qual-
itative behavior for a measure of compatibility: it goes
from 0 for incompatible states (where, in general, the
above bound will be nonzero unless the states are actu-
ally orthogonal) to 1 for identical states (at which point
it will agree with the above bound).

We will now show a couple of examples of this com-
patibility measure for states of qubits, in which the in-
formation which produces the state assignment is either
classical information about the preparation, or the re-
sults of measurements. For our first example, suppose
that Charlie prepares the pure state

ρ = (Î + ~r · ~̂σ)/2,

0 0.5 1 1.5 2 2.5 3
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 ) O ) /

K A,
B

FIG. 1. Compatibility measure between KA,B versus angle θ

where ~r = (rx, ry, rz) and ‖~r‖ = 1. Define an Hermitian

operator Ô = cos(θ/2)Ẑ + sin(θ/2)X̂. Charlie gives the

expectation values o = 〈Ô〉 = rx sin(θ/2) + rz cos(θ/2) to

Alice, and x = 〈X̂〉 = rx to Bob. Alice and Bob’s state
estimates are, respectively,

ρA = (Î + o · Ô)/2 = (Î + ~rA · ~̂σ)/2,

ρB = (Î + x · X̂)/2 = (Î + ~rB · ~̂σ)/2,
(21)

where ~rA = (o sin(θ/2), 0, o cos(θ/2)) and ~rB = (rx, 0, 0).
The measure K(ρA, ρB) is then

K(ρA, ρB) = 1− ‖rA − rB‖
2

= 1− 1

2
cos(θ/2)

√
r2x + r2z .

(22)

This expression obviously depends both on Charlie’s
choice of state and his choice of observables to pass on to
Alice and Bob. If we average this over all possible pure
states, then we get a simple result which depends only
on the choice of observable:

KA,B = E‖~r‖=1

[
1− 1

2
cos(θ/2)

√
r2x + r2z

]
= 1− (1/3) cos(θ/2).

(23)

We plot this in Fig. 1. The states ρA and ρB become
identical when θ = π, and therefore are perfectly com-
patible.

In our second example, the information comes from
measurement. Assume that the initial state is unknown
to Alice and Bob, so that they assume a completely mixed
state. That is,

ρ0 = Î/2.

Alice performs projective measurement {A0, A1} with
outcome 0 and 1,

A0 = |Ψ0〉〈Ψ0|, A1 = |Ψ1〉〈Ψ1|, (24)
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FIG. 2. Compatibility measure KA,B versus angle θ

where |Ψ0〉 = cos θ2 |0〉+ sin θ
2 |1〉 and |Ψ1〉 = − sin θ

2 |0〉+

cos θ2 |1〉. For θ = 0 this is a Ẑ measurement; for θ = π/2

it is an X̂ measurement. Bob also performs a projective
measurement of X̂:

B0 = |+〉〈+|, B1 = |−〉〈−|. (25)

However, as in the paper of Jacobs [6], we assume that
Alice and Bob don’t know the order of their measure-
ments, and that they each know only the outcomes of
their own measurements. Their state estimates are thus

ρiA =

1∑
j=0

BjAiA
†
iB
†
j +AiBjB

†
jA
†
i

pi
, pi =

1∑
j=0

pij

ρjB =

1∑
i=0

BjAiA
†
iB
†
j +AiBjB

†
jA
†
i

pj
, pj =

1∑
i=0

pij

(26)

where pij = Tr{BjAiA†iB
†
j + AiBjB

†
jA
†
i}. Let Ki,j =

K(ρiA, ρ
j
B), and KA,B = E[Ki,j ] =

∑
i,j pijKi,j . Shown

in Fig. (2) is the compatibility measure KA,B versus the
angle θ, where the compatibility measure saturates when
θ = π/2.

One caveat should be inserted here. When the degree
of compatibility is high, this implies that Alice and Bob
each have information that leads to almost the same state
assignment. This might lead one to think that when the
degree of compatibility is low, their information is only
marginally consistent. But this need not be the case.
Consider the example given in Eq. (8). While Alice’s
and Bob’s state assignments are guaranteed to be com-
patible, it is possible for their degree of compatibility to
be quite low—particularly if Bob makes a measurement
with many possible outcomes. But their information is
clearly perfectly consistent; Alice merely lacks one piece
of data possessed by Bob.

As we will see in the next section, this compatibility
measure has a natural interpretation in terms of a partic-

ular method for gathering information, which also leads
to a natural rule for pooling states.

V. POOLING STATES

Kurt Jacobs showed [2] that one can construct different
measurement situations—that is, initial states, choices of
measurement, and measurement outcomes—which yield
ρA and ρB when Alice and Bob each have only partial
knowledge of the outcomes, but that upon sharing infor-
mation will produce any state ρAB at all, so long as the
support of ρAB is in the intersection of the supports of
ρA and ρB . Given only ρA and ρB , the problem of deter-
mining ρAB—information pooling—is not uniquely solv-
able. However, if we make particular assumptions about
the type of measurement used to determine ρA and ρB ,
we can single out a particular state ρAB , by choosing
the measurement which maximizes the probability of the
outcome yielding ρA and ρB . This probability turns out
to be essentially identical to the compatibility measure
K(ρA, ρB).

Assume that Alice and Bob have no information re-
garding the quantum system, then the density matrix ρ0
is maximally mixed,

ρ0 = Î/D,

where D is the dimension of the state space. Alice and
Bob carry out some joint measurement {M̂jk}, where∑
jk M̂

†
jkM̂jk = I, and Alice gets result j while Bob gets

result k. Then

ρA =

∑
k

M̂jkM̂
†
jk∑

k

Tr
{
M̂†jkM̂jk

}

ρB =

∑
j

M̂jkM̂
†
jk∑

j

Tr
{
M̂†jkM̂jk

}

ρAB =
M̂jkM̂

†
jk

Tr
{
M̂†jkM̂jk

} (27)

Given fixed states ρA and ρB , consider all measurements
which yield ρA and ρB for some pair of outcome of j and
k. We will show that the particular measurement that
maximizes the probability of ρAB is the positive matrix
that satisfies (13). This gives a particular interpretation
for the compatibility measure defined in section 4.

For simplicity, we start by considering only positive
measurement operators,

M̂†jk = M̂jk ≥ 0, M̂2
jk ≡ Êjk.

We can lump together all the measurement outcomes
other than the “correct” one (i.e., the one that is as-
sumed to actually occur), so we can restrict ourselves to
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the case where j = 0, 1 and k = 0, 1, and

Ê00 + Ê01 + Ê10 + Ê11 = Î

Without loss of generality, we assume that the outcome
(0, 0) is the case of interest. Then we can rewrite (27) as

ρA =
Ê00 + Ê01

Tr{Ê00 + Ê01}
,

ρB =
Ê00 + Ê10

Tr{Ê00 + Ê10}
,

ρAB =
Ê00

Tr{Ê00}
.

(28)

Let a ≡ Tr(Ê00 + Ê01), b ≡ Tr(Ê00 + Ê10). We want to

make Tr{Ê00} as large as possible while keeping ρA and

ρB fixed and having Ê01, Ê10, Ê11 all still positive. This
corresponds to the measurement for which the particular
outcomes (0, 0) are most probable. Assume first that

Ê00 = cR where c is a constant and 0 < R < Î. Note
that

supp(Ê01) ∩ supp(Ê10) = ∅. (29)

Otherwise, we can always move the intersection part to
Ê00 to make the above statement true. Since

Ê01 ∝ ρA −
c

a
R ≥ 0,

Ê10 ∝ ρB −
c

b
R ≥ 0,

(30)

together with (29), implies that

c

a
R =

c

b
R = R̂.

Thus, the constant c is chosen to equal to a and b, and
matrix R = R̂. We have one last requirement

Ê11 = Î − c(ρA + ρB − R̂) ≥ 0.

From that, we can choose c to be the largest value such
that Ê11 ≥ 0. From the solution for R̂ in section 4, we
see that

(1/c) = max
|ψ〉,〈ψ|ψ〉=1

1

2
〈ψ| (ρA + ρB + |ρA − ρB |) |ψ〉.

(31)
The probability of (0, 0) outcome is then

p00 =
Tr{Ê00}

D
= c

Tr{R̂}
D

. (32)

We now show that the probability of (0, 0) outcome will

be maximized if Tr{R̂} is as large as possible within the
constraints given by (13). Consider a different positive

operator R̂′ that satisfies

R̂′ − R̂ ≥ 0,

ρA − R̂′ ≥ 0,

ρB − R̂′ ≥ 0.

(33)

Defining Ê00 = cR̂′ retains the positivity of {Êij}, while
the probability of (0, 0) outcome becomes

p′00 =
TrÊ00

D
=
cR̂′

D
= p00 + c

Tr(R̂− R̂′)
D

≥ p00. (34)

So to maximize the probability of the (0, 0) outcome,

we must choose Tr{R̂} as large as possible subject to
the constraints of (13). This concludes our proof. The

combined density matrix will then be ρAB = R̂/Tr{R̂},
and the probability of the outcome will be

p00 = c
K(ρA, ρB)

D
, (35)

where c is given in (31).
We have shown that we can actually find the particu-

lar measurement such that when two parties pool their
information, the probability of the joint outcome is maxi-
mized. Note, however, that this required us to make very
particular assumptions about the initial state (maximally
mixed—the state of maximal ignorance) and the type of
measurements that were done (positive measurement op-
erators). With a different initial state or more general
measurements, this result need not have held. Such as-
sumptions must always be made to justify a particular
choice of compatibility measure and information pooling
procedure.

VI. EXTENSION AND RELATION TO OTHER
COMPATIBILITY MEASURES

The measure of state compatibility in Sec. IV was de-
fined for two states, ρA and ρB . This can be generalized
to a set of k states, P = {ρi}ki=1, by defining the compat-
ibility of the set P, KBFM (P), to be the value obtained
from the following optimization:

Maximize:
R

Tr [R] ,

Subject to: R ≤ ρi, 1 ≤ i ≤ k; R ≥ 0.
(36)

While no simple formula is known for this measure for
any number of states k, the optimizations in Eqs. (13,
36) are examples of a general class of problems called
semidefinite programs (SDPs) [14, 15]. These are effi-
ciently numerically solvable (e.g., using [16, 17]).

Within the SDP formalism, for a given problem it is
possible to construct a related dual problem (see Ap-
pendix A for an outline of how to do so). For the SDP
in Eq. (36) this dual problem is

Minimize:
M={Mi}ki=1

k∑
i=1

Tr [ρiMi] ,

Subject to:

k∑
i=1

Mi ≥ I; Mi ≥ 0, ∀i.

(37)
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Any feasible solution to this dual SDP upper-bounds
KBFM (P) due to the property of weak duality that all
SDPs obey. Furthermore, the two optimal solutions will
be equal. (This can be shown using Slater’s theorem.)
Note that the set M = {Mi}ki=1 resembles a measure-
ment, except that it is required to sum to more than the
identity in the SDP’s constraints. It would be interesting
if there was an operational interpretation of this.

A. Post-Peierls (PP) Compatibility

The SDPs given in Eqs. (36) and (37) are similar in
form to an SDP found in [18] where the task of state
exclusion is addressed. State exclusion asks: given a
system prepared in an unknown state from a given set
P = {ρi}ki=1, when is it possible to perform a measure-
ment on the unknown state to conclusively rule out one of
the preparations? If it is not possible, how small an error
can one make when attempting to exclude a preparation
by performing a measurement?

The task of state exclusion can be regarded as encapsu-
lating another compatibility criteria, that of Post-Peierls
(PP) compatibility [3]. For a set of states to be compat-
ible in the PP sense, for any measurement that could be
performed, there should exist at least one outcome that
would occur with non-zero probability for all states in
the set. Hence, if state exclusion is possible, the set of
states is PP incompatible. How small an error it is pos-
sible to make when attempting to exclude a state gives a
measure of the set’s PP compatibility.

We can use the SDP from [18] to define a measure
KPP (P) of PP compatibility for a set P, as the result of
the following optimization:

Definition 2. The PP compatibility of a set P, KPP (P),
is defined as:

Maximize:
N

Tr [N ] ,

Subject to: N ≤ ρi, 1 ≤ i ≤ k; N = N†.
(38)

The associated dual to this SDP is:

Minimize:
M={Mi}ki=1

k∑
i=1

Tr [ρiMi] ,

Subject to:

k∑
i=1

Mi = I; Mi ≥ 0, ∀i.

(39)

By strong duality, the result of both optimizations
Eqs. (38) and (39) will be the same. Notice the simi-
larity in form to Eqs. (36) and (38) on the one hand, and
to Eqs. (37) and (39) on the other.

Caves et al. show that if a set of states is BFM compat-
ible, then it is also PP compatible [3]. This can readily
be seen from the two measures of compatibility defined
by Eqs. (36) and (38). If the set P is BFM compatible
then KBFM (P) > 0 and there exists a positive semidef-
inite R satisfying the constraints of Eq. (36) such that

Tr[R] > 0. Being positive semidefinite implies that R is
Hermitian, so by setting N = R we obtain an N satis-
fying the constraints of Eq. (38) such that Tr[N ] > 0.
This implies that KPP (P) > 0 and the set is also PP
compatible. Thus, we have the following result:

Theorem 1. KPP (P) ≥ KBFM (P).

B. Equal Support (ES) Compatibility

A third compatibility measure for quantum states,
stronger than both BFM and PP compatibility, is that of
equal support (ES) [3]. A set of states P is ES compatible
if and only if the states have the same support. Again,
we can define a measure of ES compatibility KES(P) by
an SDP:

Definition 3. The ES compatibility of a set P, KES (P),
can be defined as:

Maximize:
λ

λ,

Subject to: λ

k∑
j=1

ρj ≤ ρi 1 ≤ i ≤ k;λ ≥ 0.
(40)

It can be shown (Appendix A 1) that the dual SDP is:

Minimize:
{αi}Di=1,M={Mi}ki=1

k∑
i=1

Tr [ρiMi] ,

Subject to:

D∑
i=1

αi ≥ 1;

k∑
j=1

ρj

k∑
i=1

Mi ≥

α1

. . .

αD

 ;

αi ∈ R, αi ≥ 0,Mi ≥ 0, ∀i.
(41)

Again, the primal and dual SDPs will give the same value,
and will return 0 if the states in P are ES incompatible
as they do not have equal support.

Caves et al. show that if a set of states is ES com-
patible, then it is also BFM compatible. Equivalently, if
the states are BFM incompatible, then they are also ES
incompatible. This can be rederived by comparing the
SDPs in Eqs. (37) and (41). If P is BFM incompatible,
then there exists a setM that satisfies the constraints of
Eq. (37) such that:

k∑
i=1

Tr [ρiMi] = 0. (42)

By picking the set {αi}Di=1 to be the eigenvalues of∑k
j=1 ρj ,

(
{αi}Di=1 ,M

)
will be a feasible solution to the

SDP in Eq. (41) that returns KES = 0. Therefore, P is
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also ES incompatible. The fact that a feasible solution to
the BFM dual SDP can be used as the basis for a feasible
solution to the ES dual gives:

Theorem 2. KBFM (P) ≥ KES (P).

VII. CONCLUSIONS

The problem of state compatibility is rather subtle,
because state assignments do not perfectly reflect the in-
formation used to create them. Different measures of
compatibility (and different methods of pooling informa-
tion) may make sense for different ways that Alice and
Bob may have acquired their information. It is certainly
impossible to define a measure of compatibility without
some assumption about what type of information was
used to produce the state assignments. By contrast, the
qualitative criterion of [1] only requires that the states
might describe the same system.

Looking at different methods of acquiring information,
however, remains an interesting question. Within a par-
ticular assumption about information gathering, it may
make sense to define measures of compatibility and meth-
ods of pooling states, and these might be useful in prac-
tice. We defined one such measure—which is the solution
of a semidefinite program—and one such pooling method,
which have an interpretation based on the assumption
that the observers’ state assignments derive from infor-
mation acquired by measurements of a particular form.

There is still considerable room for development in this
area.

Moreover, as discussed in Sec. VI, there are other quite
different approaches to the problem of state compatibility
[3], based on the existence of measurements that discrim-
inate between pairs of states; these approaches lead to
an entire hierarchy of compatibility conditions. We have
shown that for two of these criteria (PP and ES compat-
ibility), we can define measures of compatibility based
on SDPs, just as for BFM compatibility. It would be
interesting to determine whether compatibility measures
for the other definitions given in [3] (Weak and Weak′)
also can be formulated as SDPs. The status of these
other idea of compatibility leaves much to be explored,
and may be the key to understanding compatibility and
the ability (or inability) to achieve consensus between
observers with different priors.
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Appendix A: Semidefinite Programs

Here we give the form of a semidefinite program and
the relation between the primal and dual problems as
formulated in [15]. An SDP is formed of three elements,
{A,B,Φ}. A and B are Hermitian matrices and Φ is a
Hermicity preserving superoperator.

Using these, we define the primal problem to be:

Maximize:
X

α = Tr[AX],

Subject to: Φ(X) ≤ B; X ≥ 0.
(A1)

The related dual is then given by:

Minimize:
Y

β = Tr[BY ],

Subject to : Φ∗(Y ) ≥ A; Y ≥ 0.
(A2)

Here Φ∗ is the dual map to Φ, given by:

Tr[Y Φ(X)] = Tr[XΦ∗(Y )]. (A3)

1. ES Compatibility SDP

Here we show that the SDP given in Eq. (41) is the dual
to that defined in Eq. (40). First we rewrite Eq. (40) so
that it has the same structure as Eq. (A1). This leads
to:

Maximize:
λ,{λi}Di=1

α = Tr



λ
λ1

. . .

λD




1
0

. . .

0


 .

Subject to: λ− λi ≤ 0, ∀i;λ1 . . .

λD

 k∑
j=1

ρj ≤ ρi, ∀i;

λ ≥ 0; λi ≥ 0, ∀i.
(A4)

Comparing Eq. (A4) with Eq. (A1), we see that:

• A is a D + 1 by D + 1 matrix:

A =


1

0
. . .

0

 . (A5)

• B is a D(k+ 1) by D(k+ 1) matrix where the first
D entries on the diagonal are 0, and the remaining
matrix is block diagonal with the blocks given by
ρi:

B =



0
. . .

0
ρ1

. . .

ρk


. (A6)

• X, the variable matrix, is a D+ 1 by D+ 1 matrix:

X =


λ
λ1

. . .

λD

 . (A7)

• Y is a D(k + 1) by D(k + 1) matrix whose first
D entries on the diagonal we label by αi, and the
remaining block diagonal with the elements we de-
note by Mi:

Y =



α1

. . .

αD
M1

. . .

Mk


. (A8)

• The map Φ is given by:
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Φ (X) =



λ− λ1
. . .

λ− λD λ1 . . .

λD

∑k
i=1 ρi

. . . λ1 . . .

λD

∑k
i=1 ρi



. (A9)

Using Eq. (A3), we see that Φ∗ must satisfy:

D∑
i=1

αi (λ− λi) +

k∑
i=1

Tr

Mi

λ1 . . .

λD

 k∑
j=1

ρj



=Tr




λ
λ1

. . .

λD

Φ∗





α1

. . .

αD
M1

. . .

Mk






,

(A10)

and hence Φ∗(Y ) produces a D + 1 by D + 1 matrix:

Φ∗ (Y ) =


∑D
i=1 αi −α1

. . .

−αD

+
∑k
i=1 ρi

∑k
j=1Mi

 . (A11)

If we now substitute these elements into Eq. (A2), we obtain Eq. (41).


