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The Foldy–Wouthuysen transformation is known to uncover the nonrelativistic limit of a gen-
eralized Dirac Hamiltonian, lending an intuitive physical interpretation to the effective operators
within Schrödinger–Pauli theory. We here discuss the opposite, ultrarelativistic limit which requires
the use of a fundamentally different expansion where the leading kinetic term in the Dirac equa-
tion is perturbed by the mass of the particle and other interaction (potential) terms, rather than
vice versa. The ultrarelativistic decoupling transformation is applied to free Dirac particles (in the
Weyl basis) and to high-energy tachyons, which are faster-than-light particles described by a fully
Lorentz-covariant equation. The effective gravitational interactions are found. For tachyons, the
dominant gravitational interaction term in the high-energy limit is shown to be attractive, and equal
to the leading term for subluminal Dirac particles (tardyons) in the high-energy limit.

PACS numbers: 11.10.-z, 03.65.Pm, 04.25.dg, 95.36.+x, 98.80.-k

I. INTRODUCTION

The Foldy–Wouthuysen transformation [1] is an es-
tablished method, used to calculate the nonrelativistic
limit of effective Hamiltonians describing spin-1/2 par-
ticles. The procedure has been applied with good effect
to the Dirac–Coulomb Hamiltonian [2, 3], uncovering the
fine-structure terms for atomic levels, notably, the zitter-
bewegung term, and the Russell–Saunders (spin-orbit)
coupling (Thomas precession). Recently, the analogue
of the Russell–Saunders coupling in a gravitational field
(the Fokker precession, see Refs. [4–6]) has been recov-
ered from the gravitationally coupled Dirac Hamiltonian,
which is referred to as the Dirac–Schwarzschild Hamilto-
nian [5].
The Foldy–Wouthuysen program, in its original

form [1], is inherently perturbative in nature. In a typical
case, the structure of a generalized Dirac Hamiltonian is
given as ~α · ~p + β m + δH (in the standard Dirac repre-
sentation of the Clifford algebra, see Appendix A). Here,
the “dominant” term is taken as β m, where β is the
4 × 4 Dirac β matrix, ~α · ~p is the kinetic operator (~α is
the vector of Dirac α matrices, and ~p is the momentum
operator), and δH contains the potential terms. One
then expands about a Dirac particle “at rest”, with the
dominant term given by the “rest mass” term βm. The
Foldy–Wouthuysen procedure then uncovers the leading
nonrelativistic kinetic term ~α · ~p → ~p 2/(2m) + . . . and
transforms the potential terms δH into a form where
the operators acquire an intuitive physical interpretation.
At some risk to oversimplification, one can say that the
Foldy–Wouthuysen transformation applies to the regime
|~α · ~p| ≪ |βm|, and |δH | ≪ |βm|.
In some cases, such as for a free Dirac particle [2],

it is sometimes possible to perform the transformation
without any perturbative expansion in the momenta or
other expansion parameters. There have been attempts
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to generalize the idea of a nonperturbative method to
more general Hamiltonians, and a set of interesting iden-
tities have been derived Ref. [7]. However, the alterna-
tive Foldy–Wouthuysen transformation [7] suffers from
an explicit breaking of the parity symmetry in the trans-
formation, which involves the fifth current, and is known
to produce spurious parity-breaking terms in a number
of applications, e.g., to the Dirac–Coulomb Hamiltonian
(for an overview, see Refs. [6, 8, 9]). In general, nonper-
turbative methods (in the momenta of the Dirac parti-
cles) can only be applied when considerable additional
information is available for a specific Hamiltonian under
investigation, and when additional approximations are
made, such as the neglecting terms of second order and
higher in the field strengths [see Eq. (21) of Ref. [10]].

To the best of our knowledge, the opposite perturba-
tive expansion, namely, perturbation theory of a Dirac
Hamiltonian about the ultrarelativistic limit, has not yet
been considered in the literature; it is the subject of the
current paper. This expansion has to follow a funda-
mentally different paradigm; in the ultrarelativistic limit,
mass terms and potential terms are suppressed in com-
parison to the kinetic term; the expansion is valid in the
regime |βm| ≪ |~α · ~p|, and |δH | ≪ |~α · ~p|. Ultrarela-
tivistic particles are best described in the helicity basis
[Chap. 23 of Ref. [11]], while in fact, the solutions of the
free Dirac equation approach those of the Weyl equa-
tion in the massless limit (see Chap. 2.4.3 on p. 87 of
Ref. [3]). The Weyl equation describes massless spin-1/2
particles, which transform under the fundamental (12 , 0)
representation of the Lorentz group and travel exactly at
the speed of light (these are the “neutrinos in the original
standard model”).

We here investigate the ultrarelativistic decoupling
transformation with a special emphasis on the gravita-
tional coupling of a particle to a central gravitational
field. To this end, in Sec. II, we briefly recall the un-
derlying covariant formalism, distinguishing the case of
a “normal” (subluminal) Dirac particle from a particle
described by the tachyonic Dirac equation [4–6]. The
latter equation describes faster-than-light particles, still
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in a fully Lorentz-covariant formalism [12]. The ultra-
relativistic limit specifically is relevant to tachyons be-
cause these particles cannot travel slower than light; they
remain superluminal upon Lorentz transformation [13–
17]. In the ultrarelativistic limit, the particle’s speed ap-
proaches the light cone and the influence of tardyonic as
well as tachyonic mass terms are suppressed in compari-
son to the kinetic terms. In Sec. III, the ultrarelativistic
decoupling transformation is applied to gravitationally
coupled tardyonic and tachyonic particles. Conclusions
are reserved for Sec. IV.

II. FREE PARTICLES

A. Free Tardyonic Transformation

In principle it is well known that the Weyl equa-
tion, which describes a massless spin-1/2 particle, splits
into two equations, describing a left-handed and a right-
handed spinor (see Chap. 23 of Ref. [11] and p. 87 of
Ref. [3]),

i ∂tψL = HL ψL , HL = −~σ · ~p , (1)

i ∂tψR = HR ψR , HR = ~σ · ~p , (2)

The Weyl equations break parity; a left-handed spinor
transforms into a right-handed solution under the parity
operation. However, it is well known that the Dirac equa-
tion, whose bispinor solutions are constructed by stack-
ing the helicity spinors on top of each other, conserves
parity [18].
The massless equation, in turn, corresponds to the ul-

trarelativistic limit for a massive Dirac particle; we would
thus expect that the Dirac equation splits into two equa-
tions, describing left- and right-handed Weyl spinors, in
this limit. Thus, if we are to recover the massless (Weyl)
limit, plus corrections, from the Dirac equation, then we
need to necessarily invoke a parity-breaking transforma-
tion. We start from the free Dirac Hamiltonian

HFD = ~α · ~p+ β m =

(
m ~σ · ~p
~σ · ~p −m

)
(3)

and invoke the following unitary, parity-breaking trans-
formation

U =
1√
2
(1− β γ5) , U−1 = UT =

1√
2
(1 + β γ5) ,

(4)
which transforms HFD into HFD = U HFD U

−1,

HFD = −β~Σ · ~p+ γ5m =

(
−~σ · ~p m
m ~σ · ~p

)
(5)

The initial rotation with the U matrix corresponds to
a change of the basis of the Dirac algebra, into the so-
called Weyl basis (see Appendix A). The mass terms are
now off-diagonal and we may try to eliminate them by

an ultrarelativistic decoupling (ultrarelativistic Foldy–
Wouthuysen) transformation. To this end we define the
energy operator

E = −~Σ · ~p , (6)

and the transformation (see Sec 4.2 of Ref. [2]) and
Sec. 2.2.4 of Ref. [3])

SFD = −iβ γ5 mE Θ , S+
FD = SFD . (7)

so that the unitary transformation UFD becomes

UFD = exp(iSFD) = cos

(
mΘ

|~p|

)
+ β γ5

|~p|
E sin

(
mΘ

|~p|

)

(8)
Choosing Θ so that

cos

(
2
mΘ

|~p|

)
=

|~p|√
~p 2 +m2

, (9a)

sin

(
2
mΘ

|~p|

)
=

m√
~p 2 +m2

, (9b)

one finally obtains

HFD = UFDHFD U
−1
FD =

E
|~p|
√
~p 2 +m2 . (10)

In explicit (2 × 2)-matrix subform,

HFD = − β
~Σ · ~p
|~p|

√
~p 2 +m2

=



−~σ · ~p|~p|

√
~p 2 +m2 0

0
~σ · ~p
|~p|

√
~p 2 +m2


 , (11)

it becomes clear that the separation into a left-handed
(upper diagonal) and a right-handed (lower diagonal)
Hamiltonian has been achieved.
The eigenstates of the Hamiltonian (10) fulfill

i ∂tψi(t, ~r) = HFD ψi(t, ~r) , i = 1, 2, 3, 4 . (12a)

The first two solutions can be written as

ψ1(t, ~r) =

(
a−(~k)

0

)
e−iE t+i~k·~r , HFD ψ1 = E ψ1 ,

(12b)

ψ2(t, ~r) =

(
a−(~k)

0

)
eiE t−i~k·~r , HFD ψ2 = −E ψ2 .

(12c)

The physical momentum is ~k, and the helicity eigenvalue

is negative for both solutions, ~Σ · k̂ ψ1,2 = −ψ1,2, and
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E =
√
~k2 +m2 (here, k̂ is the unit vector in the ~k di-

rection). The solution ψ2 describes an antiparticle. The
two solutions of right-handed helicity are

ψ3(t, ~r) =

(
0

a+(~k)

)
e−iE t+i~k·~r , HFD ψ3 = E ψ3 ,

(12d)

ψ4(t, ~r) =

(
0

a+(~k)

)
eiE t−i~k·~r , HFD ψ4 = −E ψ4 ,

(12e)

The helicity is positive for these two solutions, ~Σ·k̂ ψ3,4 =
ψ3,4, with ψ4 describing an antiparticle. The eigenvalues
of the E operator for ψ1,2,3,4 are E,−E,−E,E, respec-
tively. If we apply the formalism to a Dirac neutrino,
them ψ1 would describe a left-handed neutrino, ψ2 would
describes a left-handed antineutrino, whereas ψ3 and ψ4

would describe right-handed neutrinos and right-handed
antineutrinos, respectively. For completeness, we recall
the form of the helicity spinors [3],

a+(~k) =

(
cos
(
θ
2

)

sin
(
θ
2

)
eiϕ

)
, (13a)

a−(~k) =

( − sin
(
θ
2

)
e−iϕ

cos
(
θ
2

)
)
. (13b)

where θ and ϕ are the polar and azimuthal angles of the
~k vector.

B. Free Tachyonic Transformation

As we have just shown, one may accomplish an ex-
act diagonalization (in spinor space) of the free Dirac
Hamiltonian using the ultrarelativistic decoupling trans-
formation. However, one might counter argue that this
result is in principle familiar: An exact diagonalization
can also be accomplished using the Foldy–Wouthuysen
transformation (in its original form) for the free Dirac
Hamiltonian (see Sec. 4.2 of Ref [2]). The ultrarelativistic
transform leads to a form which asymptotically is equal
to the Weyl Hamiltonian (helicity basis) of a massless
particle, as it should be (in the ultrarelativistic limit).
Here, we shall make the point that, unlike the original
Foldy–Wouthuysen transform, which can only be applied
to tardyons, the ultrarelativistic decoupling can also be
used for Lorentz-invariant tachyons [12, 19, 20], whose
velocity remains superluminal upon Lorentz transforma-
tion [13–17].
A few general remarks on tachyonic spin-1/2 particles

might be in order. The tachyonic neutrino hypothesis
remains one of the driving forces behind the study of
the tachyonic Dirac equation [12]. The algbraic struc-
tures underlying the tachyonic spin-1/2 equation have
recently been studied in greater depth (see Refs. [20–24]
and references therein). Pertinent potentially relevant

astrophysical observations have recently been recorded
in Refs. [25–28]; other theoretical studies concern Dirac
equations with Lorentz-violating terms which can lead
to superluminal propagation for neutrinos [29, 30]. The
tachyonic Dirac Hamiltonian has recently been identi-
fied as a pseudo-Hermitian (“γ5–Hermitian”) Hamilto-
nian in Ref. [20]. Independent of the phenomenological
relevance of the concept of tachyons, the current section
of our paper, and Sec. III B demonstrate that it is pos-
sible to uncover the leading terms of generalized pseudo-
Hermitian [31–35] Dirac Hamiltonians in the ultrarela-
tivistic limit using the relativistic decoupling transfor-
mation.
The accepted generalized Dirac Hamiltonian for a free

tachyonic Dirac particle is given as [12, 19, 20]

HTD = ~α · ~p+ β γ5m, (14)

which is γ5-Hermitian, HTD = γ5H+
TD γ

5. We then fol-
low the same procedure outlined in Sec. II A, and begin
by performing the initial rotation U [see Eq. (4)], giving
us

HTD = U HTD U
−1 = β E + β γ5m. (15)

The Hamiltonian HTD is β-Hermitian, i.e., HTD =
βH+

TD β. Here, β is the Dirac β matrix which takes the
role of the γ5 matrix in the Weyl representation (see Ap-
pendix A). The β–Hermitian operator STD in this case
reads as

STD = −iβ β γ
5m

E Θ = −i γ5 mE Θ , STD = β S+
TD β .

(16)
The transformation

UTD = exp(iSTD) = cosh

(
m

|~p|Θ
)
+ γ5

|~p|
E sinh

(
m

|~p|Θ
)

(17)

fulfills the identity

U+
TD β UTD = exp(iSTD)β exp(iSTD) = β , (18)

i.e., it is β-unitary. It therefore conserves the PT -
symmetric scalar product 〈ψ|β|φ〉. Choosing [redefining,
see Eq. (9)] Θ so that

cosh

(
2
mΘ

|~p|

)
=

|~p|√
~p 2 −m2

, (19a)

sinh

(
2
mΘ

|~p|

)
=

m√
~p 2 −m2

, (19b)

one obtains

HTD = UTD HTD U
−1
TD = β

E
|~p|
√
~p 2 −m2 . (20)

This amounts to the exact ultrarelativistic decoupling
transformation of the free tachyonic Hamiltonian, in the
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helicity (“Weyl”) basis which has been shown to lead
to a very efficient description of the tachyonic bispinor
solutions [19, 24, 36]. The Taylor series expansion of
HTD gives rise to the terms

HTD ≈ β
(
E − m2

2E −
m4

8E3
)

= − β ~Σ · ~p
(
1− m2

2|~p|2 −
m4

8|~p|4
)
, (21)

which are the correction terms in the high-energy limit.
For the tachyonic case, the eigenstates of the Hamilto-
nian (20) are still given by Eq. (12), but one has to re-

place E =
√
~k2 +m2 →

√
~k2 −m2, in the sense of the

tachyonic dispersion relation.

III. TRANSFORMATION WITH

GRAVITATIONAL COUPLING

A. Gravitational Tardyonic Transformation

The study of the gravitationally coupled Dirac equa-
tion, for massless particles, was initiated by the ques-
tion of how the neutrinos (assumed by symmetry to
be strictly massless in the Original Standard Model)
interact with gravitational fields [37]. We follow this
route and start from the gravitationally coupled Dirac–
Schwarzschild Hamiltonian [5]

HDS =
1

2

{
~α · ~p, 1− rs

r

}
+ β m

(
1− rs

2r

)
. (22)

After the initial transformation into the Weyl basis, one
finds for HDS = U HDS U

−1
1 [see Eq. (4)]

HDS =
β

2

{
E , 1− rs

r

}
+ γ5m

(
1− rs

2r

)

=

(
− 1

2

{
~σ · ~p, 1− rs

r

}
m
(
1− rs

2r

)

m
(
1− rs

2r

)
1
2

{
~σ · ~p, 1− rs

r

}
)
. (23)

In order to proceed with the ultrarelativistic decoupling
transformation, we identify the odd partODS ofHDS and
define

ODS = γ5m
(
1− rs

2r

)
, SDS = −iβ

4

{
ODS,

1

E

}
, (24)

where SDS is Hermitian. The unitary transforma-
tion UDS = exp(iSDS) is applied to calculate HDS =
UDSHDS U

−1
DS , perturbatively,

H
′

DS ≈ HDS +
i1

1!
[SDS,HDS] +

i2

2!
[SDS, [SDS,HDS]] + . . .

(25)

which is a series of nested commutators, as with the clas-
sic Foldy–Wouthuysen transformation [1]. In the fol-
lowing, we carry the calculation to first order in the

Schwarzschild radius rs (first order in G) and keep in-
verse powers of E up to order 1/E .
It is advantageous to write the Hamiltonian (23) as

HDS = β E − β

2

{
E , rs

r

}
+ODS . (26)

The first commutator is given as

[SDS,HDS] = [SDS, β E ]−
[
SDS,

β

2

{
E , rs

r

}]

+ [SDS,ODS] . (27)

Let us investigate the first commutator [SDS, β E ], for
which one finds after a somewhat tedious calculation,

[SDS, βE ] = iODS +
i

4

1

E [E , [E ,ODS]]
1

E , (28)

where the double commutator is proportional to a three-
dimensional Dirac-δ function plus a spin orbit coupling
term,

[E , [E ,ODS]] = − 2π rs δ
(3)(~r)− rs

~Σ · ~L
r3

, (29)

which is of order unity in the expansion in inverse powers
of E . Despite the fact that the double commutator has
two instances of the operator E , the commutators ensure
that these instances of E act only on ODS, and not on
the reference state wave function, which would otherwise
generate inverse powers of E . For the operator E (or the
inverse thereof) to be the “dominant term”, it must oper-
ate on a wave function describing a high-energy particle.
Thus

1

E [E , [E ,ODS]]
1

E = O
(

1

E2
)
→ 0 . (30)

Alternatively, one may observe that, when using the Weyl
free–spinors given in Eq. (12) as reference states, the the
expectation values of both the Dirac–δ function and the

spin–orbit coupling term (~Σ·~L/r3) vanish for both diago-
nal as well as off-diagonal matrix elements. In conclusion,
to the order relevant for our investigation, we can replace

[SDS, β E ] → iODS , (31)

in our approximation. This relation ensures the odd
terms will be canceled out to the first order in ODS when
calculating the transformed Hamiltonian HDS according
to Eq. (25). One also establishes that

[
SDS,

β

2

{
E , rs

r

}]
= iγ5m

rs
r
, (32a)

[SDS,ODS] = iβ

(
−m

2

E +
1

2
m2

{
1

E ,
rs
r

})
,

(32b)
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so that the first commutator becomes

[SDS,HDS] = i

(
ODS + γ5m

rs
r
− βm

2

E +
β m2

2

{
1

E ,
rs
r

})
.

(33)
The double commutator is then

[SDS, [SDS,HDS]] = i
(
[SDS,ODS] +

[
SDS, γ

5m
rs
r

]

−
[
SDS, β

m2

E

]
+

[
S,
β m2

2

{
1

E ,
rs
r

}])
, (34)

where the first term is known from Eq. (32b). The other
relevant commutators are

[
SDS, γ

5m
rs
r

]
= iβ

m2

2

{
1

E ,
rs
r

}
, (35a)

−
[
SDS, β

m2

E

]
= O

(
1

E2
)
→ 0 , (35b)

[
SDS,

1

2
β m2

{
1

E ,
rs
r

}]
= O

(
1

E2
)
→ 0 . (35c)

We then have

[SDS, [S,HDS]] = β
m2

E − βm
2

{
1

E ,
rs
r

}
, (36)

where again we neglect higher-order terms. Because SDS

carries an inverse power of E , we can neglect the triple
commutator,

[SDS, [SDS, [SDS,HDS ]]] = O
(

1

E2
)
→ 0 . (37)

Thus

H
′

DS =HDS + i [SDS,HDS] +
i2

2!
[SDS, [SDS,HDS]]

=β

(
E + m2

2E −
1

2

{
E , rs

r

})
+O′

DS , (38)

where

O′

DS = −γ5m rs
r
. (39)

The second iteration of the transform with

S′

DS = −iβ
4

{
O′

DS,
1

E

}
, U ′

DS = exp(iS′

DS) , (40)

will serve only to eliminate the remaining odd term.
Thus, the final result for HDS = U ′

DSH
′

DS U
′−1
DS reads

as

HDS = β

(
E + m2

2E −
1

2

{
E , rs

r

})
(41)

for a gravitationally coupled high-energy Dirac particle.

B. Gravitational Tachyonic Transformation

We start from the tachyonic, gravitationally coupled
(TG) Dirac Hamiltonian derived in Appendix C,

HTG =
1

2

{
~α · ~p,

(
1− rs

r

)}
+ β γ5m

(
1− rs

2r

)
. (42)

The initial rotation into the Weyl basis of the Dirac alge-
bra using the transformation U defined in Eq. (4) leads
to the Hamiltonian HTG = U HTG U

−1, which reads as

HTG =
β

2
{E , 1− rs

r
}+ β γ5m

(
1− rs

2r

)

=

(
− 1

2{~σ · ~p, 1−
rs
r } m

(
1− rs

2r

)

−m
(
1− rs

2r

)
1
2{~σ · ~p, 1− rs

r }

)
, (43)

where E has been defined in Eq. (6). One identifies the
odd part of the Hamiltonian HTG and writes

OTG = β γ5m
(
1− rs

2r

)
, STG = −iβ

4

{
OTG,

1

E

}
.

(44)
The β-unitary transformation UTG = exp(iSTG) is ap-
plied to calculate H′

TG = UTG HTG U
−1
TG, perturbatively,

H
′

TG = HTG+
i1

1!
[STG,HTG]+

i2

2!
[STG, [STG,HTG]]+ . . .

(45)
in full analogy with the Dirac–Schwarzschild Hamilto-
nian. After a somewhat tedious calculation, neglecting
(as before) the Dirac-δ and spin–orbit coupling terms,
one finds

[STG, βE ] = iOTG , (46a)

[
STG,

β

2

{
E , rs

r

}]
= i β γ5m

rs
r
, (46b)

[STG,OTG] = iβ m2 1

E − iβ
m2

2

{
1

E ,
rs
r

}
. (46c)

The first commutator becomes

[STG,HTG] = i

(
OTG − βγ5m

rs
r

+ β
m2

E

−βm
2

2

{
1

E ,
rs
r

})
. (47)

The double nested commutator is

[STG, [STG, H ]] = i
(
[STG,OTG]−

[
STG, β γ

5m
rs
r

]

+

[
STG, β

m2

E

]
−
[
STG, β

m2

2

{
1

E ,
rs
r

}])
, (48)

The last two commutators are of order 1/E2 and can
therefore be neglected. With the help of the result

[
S, βγ5m

rs
r

]
= i

βm2

2

{
1

E ,
rs
r

}
. (49)
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and with Eq. (46c), one finds

[STG, [STG,HTG]] = −β m2 1

E + β m2

{
1

E ,
rs
r

}
. (50)

Thus,

H
′

TG =HTG + i [STG,HTG] +
i2

2!
[STG, [STG,HTG]]

=β

(
E + m2

2E −
1

2

{
E , rs

r

})
+O′

TG , (51)

where

O′

TG = βγ5m
rs
r
. (52)

A second transformation with

S′

TG = −iβ
4

{
O′

TG,
1

E

}
, U ′

TG = exp(iS′

TG) , (53)

eliminates O′

TG, and we obtain the following final result

for HTG = U ′

TG H
′

TG U
′−1
TG,

HTG = β

(
E − m2

2E −
{E
2
,
rs
r

})
. (54)

It differs from the result given in Eq. (41) only in the
sign of the kinetic term −m2/(2E), due to the tachyonic
dispersion relation.

IV. CONCLUSIONS

We have studied the ultrarelativistic decoupling trans-
formation for the free Dirac equation (Sec. II A),
and for the free tachyonic Dirac equation (Sec. II B).
These transformations lead to a full separation of the
Dirac equation in the helicity basis. Unlike the ex-
act Foldy–Wouthuysen transformation, which transforms

the free Dirac Hamiltonian into the form β
√
~p2 +m2

(see Ref. [2]), the ultrarelativistic transformation leads
to a separation in the helicity basis, with the trans-

formed Hamiltonian being proportional to (−β ~Σ · ~p) [see
Eqs. (10) and (20)]. The eigenstates of this Hamiltonian
are naturally obtained in the helicity basis [see Eq. (12)]
and are formally identical (upon a redefinition of the
energy parameter E) to the eigenstates of the massless
Dirac equation (see Chap. 2.4.3 on p. 87 of Ref. [3]).
The latter eigenstates are known to transform under the
fundamental (12 , 0) representation of the Lorentz group;
the “helicity of the massless spinors does not flip upon a
Lorentz transformation”. This observation is intimately
linked to the fact that massless Dirac spinors describe
particles which always move at the speed of light; it is
impossible to “overtake” the particle, which otherwise
leads to a helicity flip (see Ref. [24]).
The initial unitary transformation U given in Eq. (4)

transforms the Dirac equation into the Weyl basis (see

Appendix A), which is naturally identified as the ultra-

relativistic basis for the description of the Dirac algebra:
Namely, the Dirac ~α matrices are replace, in the Weyl

basis, by matrices (−β ~Σ · ~p), which are diagonal in the
(2 × 2)-spinor space and describe the Hamiltonian for a
massless Dirac particle. The Dirac and Weyl representa-
tions of the Clifford algebra are complementary: In the
Dirac basis, the “dominant term” in the Hamiltonian is
β m, and the odd (off-diagonal) kinetic terms ~α · ~p are
eliminated by the Foldy–Wouthuysen transformation. In

the Weyl basis, the kinetic term (−β ~Σ · ~p) is diagonal
(“dominates in the ultrarelativistic limit), while the off-
diagonal mass term γ5m needs to be eliminated by the
ultrarelativistic decoupling transformation.

With gravitational coupling in a central, static field,
the dominant attractive term is found to be described by
the replacement E →

{
E

2 , 1−
rs
r

}
in Eqs. (41) and (54),

where E is the energy operator defined in Eq. (6). This re-
placement holds both for tardyons and tachyons and is a
consequence of the structure of the Dirac–Schwarzschild
Hamiltonian given in Eqs. (22) and (42). Namely, the
dominant interaction in the high-energy limit is given
by the anticommutator correction 1

2

{
~α · ~p,

(
1− rs

r

)}
in

the original Hamiltonians (before ultrarelativistic decou-
pling) given in Eqs. (22) and (42). The somewhat sur-
prising observation that high-energy tachyons are at-
tracted by gravitational fields finds a natural explanation
in the energy-mass equivalence, and in the observation
that both tachyons as well as tardyons travel at speeds
very close to the speed of light in the high-energy limit.
Indeed, the only difference in the effective high-energy
Hamiltonians (41) and (54) lies in the sign of the ki-
netic term ±m2/(2E), which is due to the changes in the
dispersion relation for tardyons as opposed to tachyons.
Higher-order corrections to the gravitational coupling are
discussed in Appendix D.

The ultrarelativistic decoupling transformation should
find applications beyond the description of gravita-
tional interactions, for highly relativistic particles sub-
ject to electromagnetic fields, and further applications to
“nearly massless” electrons in graphene can be imagined
(here, the “speed of light” is replaced by the Fermi veloc-
ity vF , and dislocation potentials are added “by hand”,
see Ref. [38]).

Appendix A: Dirac and Weyl Basis

In the Dirac basis, we have

~α =

(
0 ~σ
~σ 0

)
, β =

( 12×2 0
0 −12×2

)
. (A1)

The γ matrices in the Dirac basis are γ0 = β and

~γ =

(
0 ~σ
−~σ 0

)
, γ5 =

(
0 12×212×2 0

)
. (A2)
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In the Weyl basis, we have

~αW =

(
−~σ 0
0 ~σ

)
, βW =

(
0 12×212×2 0

)
. (A3)

We define the vector of ~αW matrices so that the “upper”
solution includes the left-handed neutrino, whereas the
“lower” spinor contains the right-handed Dirac antineu-
trino [see Eq. (12)]. The γ matrices in the Weyl basis are
γ0W = βW and

~γW =

(
0 ~σ
−~σ 0

)
, γ5W =

(
−12×2 0

0 12×2

)
, (A4)

so that γ5W = −β. We notice that ~αW = βW ~γW and also

~αW = −β ~Σ where

~Σ =

(
~σ 0
0 ~σ

)
. (A5)

The vector of Pauli spin matrices is denoted as ~σ. Note
that some authors define the vector ~γW with the opposite
sign, which also reverses the sign of γ5W = i γ0W γ1Wγ

2
W γ3W.

Incidentally, the Coulomb coupling identifies particles
(which are attracted) and antiparticles (which are re-
pulsed). It is interesting to verify whether the interpre-
tation is preserved under the transformation to the Weyl
representation. We start from the Hamiltonian

HC = ~α · ~p− Zα

r
, (A6)

which describes a massless particles in a Coulomb field
(here, Z is the nuclear charge number, while α is the fine-
structure constant). Transformation to the Weyl repre-
sentation is accomplished by the rotation

HC = U HC U
−1 = −β ~Σ · ~p− Zα

r

=

(
−~σ · ~p− Zα

r 0
0 ~σ · ~p− Zα

r

)
. (A7)

A comparison with Eq. (12) reveals that states with pos-
itive unperturbed energy (positive eigenvalue of the op-
erator −~σ ·~p for the upper spinor and positive eigenvalue
of ~σ ·~p for the lower spinor) are attracted by the Coulomb
field. By contrast, states with negative unperturbed en-
ergy (negative eigenvalue of the operator −~σ · ~p for the
upper spinor and negative eigenvalue of ~σ ·~p for the lower
spinor) are repulsed by the Coulomb field.

Appendix B: Operators

We wish to explore the application of the operator

1/E = −1/(~Σ · p) to a reference state wave function. To
this end, we assume that f = f(~r) is a test function, and

we defined the Fourier transform F and Fourier back-
transform F−1 as follows,

(Ff)(~k) =
∫

d3r exp(−i~k · ~r) f(~r) , (B1)

(F−1F )(~r) =

∫
d3k

(2π)3
exp(i~k · ~r) f(~k) . (B2)

One first multiplies the operator

1/E → −1/(~Σ · ~k) = −
~Σ · ~k
~k2

(B3)

in Fourier space and then transforms back to coordinate
space,

(
1

E f
)
(~r) =

[
F−1

(
−
~Σ · ~k
~k2

(F f) (~k)
)]

(~r)

= −
∫

d3k

(2π)3

∫
d3r′

~Σ · ~k
~k2

ei
~k·(~r−~r′) f(~r′) .

(B4)

For a reference state with a special value ~ks of the wave
vector [see Eq. (12)],

fs(~r) = ψ1(~r)|~k→~ks,t=0 =

(
a−(~ks)

0

)
exp

(
i~ks · ~r

)
,

(B5)
one has

(F fs)(~k) =
(
a−(~ks)

0

)
δ(3)(~k − ~ks) (B6)

and so

−
~Σ · ~k
~k2

(F fs)(~k) =
1

|~ks|

(
a−(~ks)

0

)
δ(3)(~k − ~ks) , (B7)

whose Fourier backtransform is
(
1

E fs
)
(~r) =

1

|~ks|

(
a−(~ks)

0

)
exp

(
i~ks · ~r

)
. (B8)

This corresponds to the naive result that we obtain when
interpreting the E operator as an energy operator and
applying it to the eigenstates of the free Hamiltonian,
given in Eq. (12).

Appendix C: Formalism for Gravitational Coupling

We here follow the conventions used in Refs. [4, 5]
for the flat–space and curved–space Dirac gamma matri-
ces. Specifically, the flat–space and curved–space Dirac
gamma matrices are distinguished in this Appendix using
a tilde (γ̃) and an overline (γ) respectively. We draw in-
spiration from the book [39] and denote indices related to
a local Lorentz frame (“anholonomic basis”) with capital
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Latin indices A,B,C, . . . = 0, 1, 2, 3. The curved-space
Dirac gamma matrices γµ satisfy the condition that

{γµ(x), γν(x)} = 2gµν(x) , (C1)

where gµν(x) is the curved-space-time metric. The γµ(x)
are expressed in terms of the flat-space Dirac γ̃ matrices
γ̃A as follows,

γµ(x) = eµA γ̃
A , γµ(x) = eAµ γ̃A , (C2)

where the eµA are the coefficients which relate the locally
flat Lorentz frame to the global space-time coordinates
(the “vierbein”). Greek indices µ, ν, ρ, . . . = 0, 1, 2, 3 de-
note the global coordinates. Latin indices starting with
i, j, k, . . . = 1, 2, 3, . . . are reserved for “spatial” global
coordinates, which leaves I, J,K, · · · = 1, 2, 3, . . . for spa-
tial coordinates in the anholonomic basis. This nota-
tion addresses some ambiguities which could otherwise
result from other approaches [37, 40–46]. For exam-
ple, unless the Dirac matrices are distinguished by over-
lining or tildes, the expression γ1 could be associated
with a flat-space matrix γ̃I=1 or with a curved-space
matrix γi=1. We use the “West–Coast” convention for
the flat-space metric, which we denote as ηAB = ηAB =
diag(1,−1,−1,−1). The curved-space metric is recov-
ered as

ηAB =
1

2
{γ̃A, γ̃B} , (C3)

gµν(x) =
1

2
{γµ(x), γν(x)} = eAµ e

B
ν ηAB , (C4)

gµν(x) =
1

2
{γµ(x), γν(x)} = eµA e

ν
B η

AB . (C5)

For the curved–space metric around a gravitational cen-
ter, we use the isotropic Schwarzschild metric in the Ed-
dington reparameterization [47], i.e.

gµν = diag(w2,−v2,−v2,−v2) , (C6)

gµν = diag(w−2,−v−2,−v−2,−v−2) , (C7)

w =
1− rs

4r

1 +
rs
4r

, v =
(
1 +

rs
4r

)2
. (C8)

For the Schwarzschild geometry, the vierbein coefficients
read as follows,

e0µ = δ0µ w , eAµ = δAµ v , (C9)

eµ0 =
δµ0
w
, eµA =

δµA
v
. (C10)

Here, δµA = δAµ denotes the Kronecker-δ (which is of
course equal to unity for the two indices being equal and
zero otherwise).
In full analogy with the case of a “normal” massive

Dirac particle (see Refs. [4, 5]), we write the Dirac action

for a tachyon in curved spacetime as

S =

∫
d4x

√
− det g(x) (C11)

× ψ(x) γ5(x)
(
i

2
γρ(x)

←→∇ ρ − γ5(x)m
)
ψ(x) ,

where ψ(x) γ5(x) takes the role of the “tachyonic adjoint”
(see Ref. [36]) and

∇ρ = ∂ρ − Γρ(x) , (C12)

Γµ(x) =
i

4
ωAB
µ (x) σ̃AB , σ̃AB =

i

2
[γ̃A, γ̃B] ,

(C13)

ωAB
ν (x) = eAµ ∇ν e

µB = eAµ ∂ν e
µB + eAµ Γµ

νλ e
λB . (C14)

Here, the Γµ
νλ are the Christoffel symbols, and the

ωAB
ν (x) are known as the Ricci rotation coefficients.

Under a spinor Lorentz transformation with generators
ΩAB(x),

ψ′(x′) = S(Λ(x))ψ(x) = exp

(
− i

4
ΩAB(x) σ̃AB

)
ψ(x)

(C15)
we have covariance, i.e., ∇′

ν ψ
′(x) = ∇′

ν [S(Λ(x))ψ(x)] =
(∂ν − Γ′

µ) [S(Λ(x))ψ(x)] = S(Λ(x))∇ν ψ(x), where
the tranformed Ricci rotation coefficients Γ′

µ =
i
4 ω

′AB
µ (x) σ̃AB are calculated with respect to the trans-

formed local coordinates.
The curved-space fifth current γ5(x) needs to be clari-

fied. Adopting Eq. (18) of Ref. [37] for West–Coast sign
conventions, one finds

γ̃5(x) =
i

4!

ǫµνρδ√
− det g(x)

γ̃µ(x) γ̃ν(x) γ̃ρ(x) γ̃δ(x) , (C16)

where ǫ is the fully antisymmetric Levi-Civita tensor,
with ǫ0123 = 1. We recall that the flat-space γ̃5 is

γ5 = γ5 =
i

4!
ǫABCDγ̃

A γ̃B γ̃C γ̃D . (C17)

For the Schwarzschild geometry, one easily finds

det g(x) = − w2v6 ,
√
− det g(x) = w v3 , (C18)

γ5(x) = γ5(x) = iγ̃0γ̃1γ̃2γ̃3 = γ̃5 ≡ γ5 , (C19)

i.e., the flat– and curved–space γ5 matrices are identical.
Variation of the action (C11) gives us

(
iγµ∇µ − γ5m

)
ψ = 0 , (C20)

which can be rewritten as

i(γ0)2 ∂0ψ =
(
γ0 γi pi + iγ0 γµ Γµ + γ5m

)
ψ . (C21)

An explicit calculation of the Ricci rotation coefficients
show that

γ0 γµ Γµ = − ~α ·
~∇w

2w2v
− ~α · ~∇v

wv2
, (C22)
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which is in agreement with Ref. [4, 5], where the ~α =

γ̃0 ~̃γ matrices are flat–space matrices. With the help of
Eq. (C21), one then finds that i∂tψ = Hψ, where

H =
w

v
~α · ~p+ ~α · [~p, w]

2v
+
w~α · [~p, v])

v2
+ βγ5mw ,

(C23)

and β = γ̃0. We now stretch the spatial coordinates with
the help of the operator v3/2, in analogy to the tardyonic
case [4, 5], and find the γ5–Hermitian Hamiltonian

H ′ = v3/2H v−3/2 =
1

2

{
~α · ~p, w

v

}
+ βγ5mw , (C24)

with H ′ = γ5H ′+ γ5. Approximating w and v, according
to Eq. (C8), to the first order in gravity,

w ≈ 1− rs
2r
, v ≈ 1 +

rs
2r
, (C25)

one finds the tachyonic gravitationally (TG) coupled
Hamiltonian

HTG =
1

2

{
~α · ~p,

(
1− rs

r

)}
+ β γ5m

(
1− rs

2r

)
. (C26)

In the main body of the article, standard notation is ex-
clusively used for the flat-space Dirac matrices (no over-
lining and no tildes), i.e., we denote the γ̃µ as γµ.

Appendix D: Higher-Order Terms

As discussed in Secs. II and III, the only differ-
ence between the effective high–energy Hamiltonians for
tardyons [Eq. (41)] and tachyons [Eq. (54)], derived in the
main body of this work, is due the different dispersion re-
lations for (free) tardyons and tachyons, while the gravi-
tational interaction terms are identical to first order in rs
and first order in 1/E . This observation can be traced to
the fact that the terms multiplying the kinetic operator
and the mass in Eqs. (22) and (42), namely, X = 1− rs

r ,

and Y = 1− rs
2r fulfill the relationship Y 2/X = 1+O(r2s).

One then easily reveals the cancellation mechanism for
the terms of first order in rs by treating X and Y in
the non-transformed Hamiltonians (22) and (42) as con-
stants. However, this does not imply that gravitational
effects are the same for tardyons and tachyons, in higher
orders of G (higher orders of rs).
The ultrarelativistic decoupling transformation, keep-

ing terms second order in rs, and to the first order in 1/E
(see Appendix B), is expected to lead to differences in the
gravitational interaction terms. In the calculation, one

needs to take into account the fact that in higher orders
of the gravitational coupling constant, we cannot use the
starting Hamiltonians as defined in Eqs. (22) and (42).
Instead, we must must use higher order approximations
to the gravitational terms, which are otherwise neglected
in Eq. (C25) (see also Refs. [4–6]). These lead to the
initial Hamiltonians

Hds =
1

2

{
~α · ~p, 1− rs

r
+

9 r2s
16r2

}

+ β m

(
1− rs

2r
+
r 2
s

8r2

)
(D1)

for tardyons and

Htd =
1

2

{
~α · ~p, 1− rs

r
+

9 r2s
16r2

}

+ βγ5m

(
1− rs

2r
+
r 2
s

8r2

)
(D2)

for tachyons. We then transform these Hamiltonians into
the Weyl basis using the transform U defined in Eq. (4).
Calculations become tedious and lengthy. One observa-
tion in generalizing the decoupling transformation is that
given a function f = f(~r), then to first order of 1/E one
finds

1

E f E + E f
1

E = 2 f +
1

E [E , [E , f ]] 1E → 2 f . (D3)

As discussed in Sec. III A, this is due to the fact that the
two operators E act only on the function f(~r), and not
on the wavefunction, thus they do not give “dominating”
energy terms. After three iterations of the transform (per
Hamiltonian), one finds for tardyons

Hds = β

(
E + m2

2E −
1

2

{
E , rs

r

}
+

9

32

{
E , r

2
s

r2

}

−7m2

64

{
1

E ,
r 2
s

r2

}
+

3m2

16

rs
r

1

E
rs
r

)
, (D4)

while for tachyons

Htg = β

(
E − m2

2E −
1

2

{
E , rs

r

}
+

9

32

{
E , r

2
s

r2

}

+
7m2

64

{
1

E ,
r 2
s

r2

}
− 3m2

16

rs
r

1

E
rs
r

)
. (D5)

The final two terms in these Hamiltonians have opposite
signs, indicating a difference in the gravitational interac-
tion for tachyons and tardyons.
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