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Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA

An article by Zhao et al. [Phys. Rev. A 86, 053413 (2012)] tests the local frame transformation
(LFT) theory by comparing it with benchmark coupled-channel calculations. The system under
consideration is an alkali-metal atom that is two-photon ionized in the presence of a static, external
electric field. Zhao et al. state that the differential cross sections computed in the LFT theory
disagree with their supposedly more accurate coupled-channel calculations. They went on to diag-
nose the discrepancy, and claimed that it originates in an inaccurate correspondence between the
irregular functions in spherical and parabolic-cylindrical coordinates, a correspondence that lies at
the heart of LFT theory. We have repeated the same tests, and find that our calculations rule
out the discrepancies that were claimed in [Phys. Rev. A 86, 053413 (2012)] to exist between the
LFT approximation and exact calculations. This Comment thus helps to clarify the accuracy of
the Harmin-Fano theory, and demonstrates that it is in fact remarkably accurate, not only for the
total photoionization cross section in the Stark effect, but also for the differential cross section in
photoionization microscopy.

PACS numbers: 32.80.Fb, 32.60.+i, 07.81.+a

I. INTRODUCTION

The Stark effect theory for non-hydrogenic atoms was
formulated by Harmin [1–3] and Fano [4], and it was an
impressive breakthrough that enabled the quantitative
interpretation of both resonant and non-resonant pho-
toabsorption spectra. One of the main points of the
Harmin-Fano theory lies in the fact that the scattering
observables at large electron distances can be intercon-
nected with the scattering information such as quantum
defects determined at small distances. This is permit-
ted because the Coulomb-Stark Schrödinger equation is
separable over a large range of electron distances in both
spherical coordinates (r, θ, φ) and parabolic-cylindrical
coordinates (ξ, η, φ). For example for an electric field of
strength 1 kV/cm this range is identified to be at least 50
atomic units. The interrelation is achieved by means of a
local frame transformation (LFT) at distances far smaller
than the Stark’s barrier maximum, i.e. r ≪ F−1/2 where
F is the field strength and r is the separation distance.
In this manner, the LFT allows the mapping of the reg-
ular and irregular solutions from spherical to parabolic-
cylindrical coordinates [4]. Specifically, the regular solu-
tions between the two coordinate systems obey the fol-
lowing relations:

fǫℓm(r)

r
=

∑

n1

ψǫF
n1m(r)[(UT )−1]ǫFm

n1ℓ for r ≪ F−1/2, (1)

where ℓ andm indicate the orbital and azimuthal angular
momentum quanta, respectively. The index n1 labels
successive eigenstates of the fractional charge βn1
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essentially the number of nodes in the up-field parabolic-
cylindrical coordinate ξ (see Eq. (3a) in Ref.[1]). The

crucial quantity [(UT )−1]ǫFm
n1ℓ

is a matrix element of the
local frame transformation where ǫ denotes the energy,
F is the strength of the electric field. fǫℓm(r)r−1 are the
regular solutions in spherical coordinates which vanish at
the origin and they correspond to the Coulombic regular
functions. Similarly, the term ψǫF

n1m(r) represents the
regular functions in parabolic-cylindrical coordinates.

On the other hand the mapping of the irregular solu-
tions reads

gǫℓm(r)

r
=

∑

n1

χǫF
n1m(r) csc(γn1

)(U)ǫFm
n1ℓ for r ≪ F−1/2,

(2)
where gǫℓm(r)r−1 is the irregular function in spherical co-
ordinates and it essentially corresponds to the irregular
Coulomb function which lags the regular solution by π/2
at small distances, r ≪ F−1/2. Note that this Eq. (2)
coincides with Eq. (20) of Ref.[5], except that the nota-
tion has been revised to agree with that of Ref.[1], where
this formula was initially derived. Here γn1

indicates the
phase that the electron’s wavefunction has accumulated
before and through the Stark barrier in the down-field
coordinate η. The factor csc(γn1

) ensures that the right
hand side (RHS) of Eq.(2) has the same energy normal-
ization amplitude at small r as the irregular Coulomb
function (see the discussion of Eq. (48) in Ref.[1]).

Eqs. (1) and (2) are the key parts of the LFT theory
and they permit the asymptotic scattering observables
to be expressed in terms of the photoabsorption dipole
amplitudes determined close to origin. Having clarified
and briefly reviewed the key concepts of LFT theory, the
following section focuses on the claims of Ref.[5].
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II. COMMENT

In Ref.[5] Zhao, Fabrikant, Du, and Bordas [5] observe
noticeable discrepancies between Harmin’s LFT theory
for the Stark effect of alkali-atoms [1–3] and the pre-
sumably accurate coupled-channel theory in their calcu-
lations of the differential cross sections for two-photon,
π polarized, ionization process of Na atoms in the pres-
ence of a uniform electric field. These discrepancies were
then claimed by Zhao et al. [5] to originate in an erro-
neous mapping of the irregular functions, Eq.(2), from
one coordinate system to another.
Because Zhao et al. [5] raise serious criticisms of the

LFT theory, it is important to further test their claims
of error and their interpretation of the sources of error.
Their contentions can be summarized as follows:
(i) The Harmin-Fano LFT accurately describes the to-

tal photoionization cross section, but it has significant
errors in its prediction of the differential cross section
that would be measured in a photoionization microscopy
experiment. They deduced this by comparing the results
from the approximate LFT with a numerical calculation
that those authors regard as essentially exact.
(ii) The errors are claimed to be greatest when the

atomic quantum defects are large, and almost negligible
for an atom like hydrogen which has vanishing quantum
defects. They then present evidence that they have iden-
tified the source of those errors in the LFT theory, namely
the procedure first identified by Fano that predicts how
the irregular spherical solution evolves at large distances
into parabolic coordinate solutions. Their calculations
are claimed to suggest that the local frame transforma-
tion of the solution regular at the origin from spherical to
parabolic coordinates (see Eq. (1)) is correctly described
by the LFT, but the irregular solution transformation is
incorrect (see Eq. (2)).
Here we reinvestigate the Ref.[5] main points with the

Harmin-Fano LFT, and present evidence that both of
their claims are erroneous.

III. RESULTS AND DISCUSSION

Consider the differential cross section of photoioniza-
tion microscopy, as shown in Fig.1 as a function of the
cylindrical coordinate ρ that is transverse to the applied
field direction. This example refers to the two-photon,
π polarized ionization process of Na atoms in the pres-
ence of an external electric field, for parameters of the
case addressed in Fig.1 of Ref. [5]. The first pulse ex-
cites a ground state Na atom into the 3p orbital, and the
second pulse excites the valence electron up to a high Ry-
dberg state energy. The strength of the field is F = 3590
V/cm, the energy is ǫ = −62 cm−1 and the detector is
placed at zdet = −1 mm. The red solid line refers to the
LFT results calculated within the R-matrix framework
and the black dots denote the ab initio numerical solu-
tion of the time-dependent Schrödinger equation through
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Figure 1. (color online). The differential cross section for pho-
toionization microscopy of a Na atom is shown as a function
of the cylindrical coordinate ρ. The red solid lines indicate
the LFT theory calculations, whereas the black dots denote
the velocity mapping results from our direct solution of the
two-dimensional inhomogeneous Schrödinger equation. Pan-
els (a) and (b) refer to energy ǫ = −62 cm−1 for the transitions
mint = 0 → mf = 0 and mint = 1 → mf = 1, respectively. In
all cases the field strength is F = 3590 V/cm and the detec-
tor is placed at zdet = −1 mm. Note the excellent agreement
that is evident between the LFT calculation and the accu-
rate full numerical treatment, which contrasts with the poor
agreement for the same parameters that was observed in the
calculations shown in Fig.1 of Ref. [5].

a “velocity mapping” technique (for further details see
Ref. [6]). Fig.1(a) includes coherent contributions from
the dipole transitions 3s → 3p → ǫs and 3s → 3p → ǫd
orbitals with an intermediate azimuthal angular momen-
tum mint = 0 to a final mf = 0. Fig.1(b) corresponds
instead to the dipole transitions from 3s → 3p → ǫd or-
bital with mint = 1 to mf = 1. Note that the atomic fine
structure has been neglected here and in the correspond-
ing study by Zhao et al.

Clearly, our LFT and numerical calculations are in
excellent agreement, which contradicts the disagreement
found by Ref.[5]. In fact, our calculations agree well with
the LFT calculations of Zhao et al. as can be seen in the
corresponding panels in Fig.1 of Ref. [5] (within an over-
all normalization factor). Interestingly, in panel (a) of
Fig.1 our LFT (red solid line) agrees with our numerical
results (black dots). Hence, the disagreement observed
by the Zhao et al originates from errors in those authors’
coupled-channel calculations and not from inaccuracies of
the LFT mapping of the irregular functions from spheri-
cal to parabolic coordinates (see Eq. (2)).
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Figure 2. (color online). The irregular solutions in spherical
coordinates at negative energies, ie E = −135.8231 cm−1, il-
lustrated for r = (r, θ = 5π

6
, φ = 0). In all panels the orbital

angular momentum and the azimuthal quantum number are
set to be ℓ = 1, m = 1 and the black solid line indicates
the analytically known irregular coulomb function, namely

g
(C)
ǫℓm(r)r−1. Accordingly, the red dots correspond to the LFT

calculations of irregular function, namely g
(LFT )
ǫℓm (r)r−1. Pan-

els (a-c) depict the LFT calculations for a maximum number

of n1 states equal to n
(tot)
1 = 12, 19 and 25, respectively. All

the n
(tot)
1 correspond to βn1

< 1.

Indeed, Figs.5(b-c) of Zhao et al. documents their con-
tention that the left and right side of Eq. (2) are not even
approximately equal. We have repeated those calcula-
tions for identical choices of field strength, energy, and
quantum numbers, and our results give evidence that if
the summation on the RHS of Eq. (2) is converged, the
equation is satisfied accurately.

Fig.2 compares the analytically known irregular

Coulomb function g
(C)
ǫℓm(r)r−1 (black solid line) with the

corresponding frame-transformed (FT-) irregular func-

tion g
(LFT )
ǫℓm (r)r−1 (red dots) at energy ǫ = −135.8231

cm−1 [7] and field strength F = 640 V/cm. Both irregu-
lar functions are expressed in spherical coordinates with
angles being fixed according to the expression r = (r, θ =
5π
6 , φ = 0). In addition, the orbital and azimuthal an-
gular momentum are set to be ℓ = 1, and m = 1. These

Figure 3. (color online). The irregular solutions in spheri-
cal coordinates at a negative energy, namely E = −135.8231
cm−1, illustrated for r = (r, θ = 5π

6
, φ = 0) and ℓ =

6, m = 1. The black solid line indicates the analytically

known irregular coulomb function, namely g
(C)
ǫℓm(r)r−1 and

the red dots correspond to the FT-irregular function, namely

g
(LFT )
ǫℓm (r)r−1. In the LFT calculations the total number of

n1 states is n
(tot)
1 = 25. The field strength is F = 640 V/cm.

are the same as in Fig.5(b) of Ref.[5].

In Fig.2 panels (a-c) correspond to the FT-irregular
function with different total numbers of n1 states in-
cluded in the sum of Eq. (2). More specifically, pan-
els (a-c) refer to a total number of n1 states equal to

n
(tot)
1 = 12, 19 and 25, respectively. Notice that for an

increasing number of n1 states the FT-irregular function
(red dots) converges better and better to the correspond-
ing Coulomb irregular function (black solid line). Specif-
ically, panel (c) shows excellent agreement and the cor-
rect nodal pattern is predicted. Our panel (c) does not
exhibit the discrepancies presented in the corresponding
Fig.5(b) of Zhao et al. Ref.[5].

A major conclusion here is that the convergence crite-
ria of Ref.[5] in Fig.5(b) are not sufficient since Fig.2 im-
plies that one must in general consider all the n1 states

that fulfill the relation of βn1
< 1, ie n

(tot)
1 = 25 for

this case, and not only a few of them. Analysis of the
RHS of Eq. (2) shows that the frame transformation ma-
trix elements U ǫFm

n1ℓ
decrease rapidly for n1 ≥ 7 (i.e.

U ǫFm
n1=15, ℓ = −1.5236× 10−22). This behavior arises from

the amplitude, 1/Rn1
of the regular function of the down-

field degree of freedom which vanishes due to tunneling
under the Stark barrier (i.e. 1/Rn1=15 = 6.3946×10−22).
Furthermore, the amplitude, 1/Sn1

, of the χ parabolic ir-
regular functions in Eq. (2) for n1 ≥ 7 vanishes as well
(i.e. for 1/Sn1=15 = 3.3501 × 10−22). Note that here
we strictly follow the notation of Ref.[1]. On the other
hand the quantity csc(γn1

) = Rn1
Sn1

(see Eq. (47) in
Ref.[1]) rapidly increases for n1 ≥ 7 (i.e. csc γn1=15 =
4.6678 × 1042). Therefore, on the RHS of Eq. (2) the
quantities, 1/Rn1

, 1/Sn1
and csc γn1

simplify yielding
non-vanishing matrix elements for all the n1 states with
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βn1
< 1. The calculations of these quantities are based

on R-matrix eigenchannel theory (see [6]). This quan-
titative analysis shows that photoabsorption observables
rapidly converge as n1 is increased mainly due to the
amplitudes 1/Rn1

, while the frame-transformed irregu-
lar function converges far more slowly.
For almost all applications, the states with βn1

< 1 are
the physically relevant ones since they correspond to an
attractive Coulomb potential in the down-field degree of
freedom η. Only for these states can the wave function
probe the ionic core, which represents the only part of
the Hamiltonian that couples the different n1 parabolic
channels. On the other hand the states for βn1

> 1 cor-
respond to a repulsive Coulomb potential in the η degree
of freedom, that effectively shields the ionic core.
Our calculations do confirm, however, one example

of difficulty with the local frame transformation theory
that was pointed out by Zhao et al., specifically Fig.5(c)
of Ref.[5] is presented in Fig.3. We use the same pa-
rameters as in Fig.2 and the total number of n1 states

is set to n
(tot)
1 = 25. Here the FT-irregular function

for ℓ = 6 (red dots) does not exhibit the same conver-
gence to the exact irregular Coulomb function as was ob-
served for the case of ℓ = 1 in Fig.2(c). The biggest dis-
crepancies occur in classically forbidden region, namely
10 a.u. < r < 25 a.u. Such a high-ℓ state is unusual
because most of the disagreement shown in this compar-
ison (see Fig.3) resides in a classically forbidden range of
r; hence the solutions plotted are testing the LFT in a
region not typically expected to have strong excitation.
The study by Ref.[5] has thus been useful in point-

ing out that regimes such as the ℓ = 6 case exist where
the LFT irregular function is inaccurate. Nevertheless it

should be kept in mind that those discrepancies for high
ℓ are nearly always unimportant because such states for
any atom in the periodic table are associated with neg-
ligible quantum defects, whereby the irregular function
plays virtually no role since it is always multiplied by
sinπµℓ.

In summary, the Harmin-Fano theory does not show
the inaccuracies claimed by Zhao et al. and the LFT
is sufficiently accurate to describe the differential cross
section of an alkali atom in the presence of an exter-
nal electric field. Our calculations further show that the
crucial element of the LFT theory, namely the frame-
transformation of the irregular function in Eq. (2), ac-
curately predicts the correct Coulomb irregular function
in the field-free zone, namely close to origin. Further-
more, one factor that can restrict the accuracy of Eq. (2)
has been demonstrated in our study, namely the limited
number of n1 states that contribute to the summation be-
cause of the restriction of βn1

to the range 0 < βn1
< 1.

This limitation is sufficiently accurate for low ℓ states,
e.g. with ℓ ≤ 2, but needs to be improved if any applica-
tion is sensitive to the small-r irregular function for high
ℓ such as the ℓ = 6 example considered here and by Zhao
et al.
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