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We introduce a class of metamaterials with uniformly balanced gain and loss associated with com-
plex permittivity and permeability constants. The refractive index of such a balanced pseudo-passive
metamaterial is real. An unbounded uniform pseudo-passive medium has transport characteristics
similar to those of its truly passive and lossless counterpart with the same real refractive index.
However, bounded pseudo-passive samples show some unexpected scattering features which can be
further emphasized by including such elements in a photonic structure.
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In the last decade we have witnessed unprecedented
advancements in realizing artificial materials which are
specifically designed to exhibit features not found in na-
ture. In the electromagnetic domain, such metamaterials
are using their structural composition in order to obtain
access of all four quadrants in the real ε− µ plane. Var-
ious exotic phenomena ranging from negative refraction
to electromagnetic cloaking and super-lensing have been
actively pursued [1–8]. While these opportunities have
been extraordinary, optical materials exhibiting exotic
values of permittivity ε and/or permeability µ are often
prohibitively lossy. This is especially true for composite
optical meta-materials. A natural solution to the prob-
lem is to add a gain component and, thereby, to offset the
losses. A pathway to achieve this goal has been recently
proposed in Ref. [9], and subsequently explored in a num-
ber of publications [10–28]. This proposal capitalizes on
the notion of Parity-Time (PT ) symmetry by utilizing
balanced gain and loss elements which are judiciously
distributed in space such that the complex index of re-
fraction n(r) satisfies the relation n(r) = n∗(−r). This
research line gave many intriguing transport properties
like double refraction, unidirectional invisibility, asym-
metric transport, CPA/ Lasers etc.

An alternative approach is to compensate the losses
with gain while preserving the uniformity of the medium.
This can be done simply by doping the lossy medium with
active elements (dies), so that the doped material would
have a real refractive index n(r) =

√
εµ = n∗(r). The

question, however, is whether such a balanced loss/gain
medium with real and uniform refractive index will au-
tomatically behave as a regular passive lossless medium.
This is certainly true if the permeability µ is real, in
which case the negative contribution to ε′′ from gain will
simply offset the positive contribution from absorption
[29–31].

In this Letter we will concern with a different scenario
where both ε and µ are complex i.e. ε = ε′ + iε′′, µ =
µ′ + iµ′′. A typical example is plasmonic metamateri-
als where the effective permeability is associated with
the electric current induced in tiny ring resonators by

FIG. 1: (color online) The electric E(z) (y-z plane) and the
magnetic H(z) (x-z plane) field distribution (amplitude pro-
files) of a resonance localized mode λr = 1.256µm for a Bragg
grating with an embedded PP-defect (green). The grating
consists of 20 lossless bilayers (orange and white) at each
side of the defect. Their index of refraction is n1 = 1.45
and n2 = 1.755 and their width is d1 = 0.2167µm and
d2 = 0.179µm. The pseudo-passive (PP) defect layer has
index of refraction np = 3.48 corresponding to constituents
εp = 3.48− i0.01, µp = ε∗p while its width is dp = 0.0542µm.

oscillating magnetic fields. If both ε and µ are com-
plex, a real-value refractive index n can only be realized
if ε = ρ2µ∗ (where ρ is real), which is quite possible in
media with gain. In this case n = ρ|µ| and thus one
expects that an unbounded medium consisting of such
material will support traveling waves as its lossless pas-
sive counterpart with the same index of refraction. We
will therefore refer to media with real refractive index n
and complex ε′′ and µ′′ as pseudo-passive (PP) media.
Surprisingly, once a pseudo-passive medium is confined
in space, its scattering properties are completely differ-
ent than the ones of its passive counterpart. The differ-
ence becomes even more striking when a pseudo-passive
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material is a component of a photonic structure. For
example, the Fabry-Perrot resonances of a Bragg grat-
ing that contains pseudo-passive composite layers display
sub- or super unitary transmittance at the band-edges.
Remarkably, the same pseudo-passive material at specific
frequencies can act either as a perfect absorber, or it can
trigger lasing instability. Below we will consider the typ-
ical scenario (at optical frequencies) for which µ′′ > 0
(i.e. losses) while ε′′ < 0 (gain). We also point out
that our proposal, can be easily exploited for metamateri-
als in the microwave domain where current experimental
methods allow for a good control of the electromagnetic
constituents (for a manipulation of µ′′ see for example
Ref. [32] where even µ′′ < 0 has been demonstrated).
In fact, a recent experimental work in the THz domain
[33] indicated the possibility to manipulate the effective
constituents of a single-layer metamaterial consisting of
a strongly coupled ”I”-shaped metallic patch embedded
in a dielectric substrate by controlling the degree of po-
larization and magnetization of the unit cell.

The scattering properties of a pseudo-passive struc-
ture are understood better by considering monochro-
matic wave propagation in an one-dimensional set-up. In
the case of a uniform PP medium, the steady state (TE)
electric field E(z) is scalar and satisfies the Helmholtz
equation [34]

d2E(z)

dz2
+ n2

(ω
c

)2
E(z) = 0 (1)

where ω is the frequency of the field and c is the speed of
light in vacuum while the spatially dependent index of re-
fraction n =

√
εµ = ρ|µ| is considered real inside the uni-

form medium. In the case that the uniform PP medium is
extended over the whole space, Eq. (1) admits wave solu-
tions of the form E(z) = E+ exp(iknz)+E− exp(−iknz)
where k = ω/c is the free space wavevector. These solu-
tions are identical to the ones found at an infinite lossless
passive medium with index of refraction n.

These similarities between a PP medium and a loss-
less passive medium cease to exist once we turn to
the analysis of the associated scattering problem in-
volving non-uniform or uniform but bounded structures.
For simplicity we assume that the domain which con-
tains the pseudo-passive structure extends in the inter-
val 0 < z < L. We further assume that the scatterer is
embedded in a homogeneous medium with uniform in-
dex of refraction n0 which, for simplicity, we consider
it to be equal to unity i.e. n0 = 1. The solution of
Eq. (1) at the left of the scattering sample z < 0 is
EL = E+

L exp(ikz) + E−L exp(−ikz) while on its right
z > L is ER = E+

R exp(ikz) + E−R exp(−ikz). We can
relate the amplitudes of forward and backward propa-
gating waves on the left of the scattering domain with
the amplitudes on its right via the transfer matrix M(

E+
R

E−R

)
= M

(
E+
L

E−L

)
. (2)

In case of composite structures the transfer matrix (TM)
M is a product of transfer matricesMn associated with
each individual composite element i.e. M =

∏
nMn.

The individual TM’s are evaluated by imposing the ap-
propriate boundary conditions at the interface between
consequent layers n and n+ 1 of the structure. For a TE
mode we have that the field itself is continuous while its
spatial derivative satisfies the relation [34]:[

1

µn

(
∂En(z)

∂z

)
=

1

µn+1

(
∂En+1(z)

∂z

)]
interface

. (3)

The transmission t and reflection r amplitudes for
left and right incident waves are defined as tL ≡
E+
R/E

+
L , rL ≡ E−L /E

+
L and tR ≡ E−L /E

−
R , rR ≡ E+

R/E
−
R .

They are written in terms of the TM elements as

tL =
detM
M22

, tR =
1

M22
, rL = −M21

M22
, rR =

M12

M22
. (4)

Furthermore, we can show that detM = 1 and thus tL =
tR = t. The associated transmittance T and reflectances
RL,R are T = |t|2 and RL,R = |rL,R|2.

An alternative formulation of the scattering process
is provided by the scattering matrix S which connects
incoming and outgoing wave amplitudes i.e.(

E−L
E+
R

)
= S

(
E+
L

E−R

)
(5)

The scattering matrix can be written in terms of theM-
matrix elements as

S =

(
rL tR
tL rR

)
=

1

M22

(
−M21 1
det(M) M12

)
(6)

and is useful for the theoretical analysis of lasing insta-
bilities and perfect absorption. Below we provide some
examples which illustrate the anomalous scattering prop-
erties of a bounded structure that includes a PP-medium.

We start our analysis with the investigation of the
transport properties of a single PP-layer. The associated
TM that describes the scattering process is

M = D(L;n0)−1K(
np
n0

;
µ0

µp
)D(L;np)K(

n0
np

;
µp
µ0

) (7)

where the matrices D and K are defined as

K(
nl
nm

;
µm
µl

) =
1

2

(
1 + ( nl

nm
)(µm

µl
) 1− ( nl

nm
)(µm

µl
)

1− ( nl

nm
)(µm

µl
) 1 + ( nl

nm
)(µm

µl
)

)
D(L;n) =

(
exp(iknL) 0

0 exp(−iknL)

)
(8)

Using Eq. (4) we evaluate the transmission and reflec-
tion amplitudes of a single PP-layer:

t = 2 exp[−ikL]
2 cos[knpL]−i(yp+ 1

yp
) sin[knpL]

(9)

r = rL =
i(yp− 1

yp
) sin(knpL)

2 cos[knpL]−i(yp+ 1
yp

) sin[knpL]
; rR = r exp(−2ikL)
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The subindex p indicates that we refer to the constituents

of the PP-layer and yp ≡
√

εp
µp

is its complex admittance.

The Fabry-Perrot resonances are defined by the re-
quirements T = 1 and R = 0 and occur at frequencies
ωFP = kFPc for which sin(kFPnpL) = 0. This implies
perfect resonant transmission with no losses and no gain,
regardless of the value of yp and despite the fact that
the constituents are complex. Let us now calculate the
transport characteristics of the PP-layer at ω 6= ωFP. For
example, at the middle between two consecutive Fabry-
Perrot resonances, i.e. when cos[knpL] = 0, we have:

T =
∣∣∣ 2
yp+1/yp

∣∣∣2 , R =

∣∣∣∣ (yp − 1/yp)

(yp + 1/yp)

∣∣∣∣2 , (10)

A ≡ 1− T −R =
2
(
yp − y∗p

)2∣∣y2p + 1
∣∣2 = −8

(Im[yp])
2

|y2p + 1|2
< 0

Remarkably, the off-resonance value of A is always neg-
ative and independent of the slab thickness L indicating
that its origin is associated with surface scattering rather
than bulk scattering precesses. In fact, it is straightfor-
ward to show that a PP-layer will result in amplification
A < 0, for any frequency ω, irrespective of the sign of ε′′.

Next we consider the transport properties of a lossless
Bragg grating (BG) with one PP-defect layer. In the
THz domain such a layer can be potentially realized using
the recent experimental proposal of Ref. [33]. Below
we will assume, without loss of generality, that ε′′ < 0.
Before going on with our analysis we recall that a lossless
passive defect layer supports a resonant defect mode with
a frequency ωr lying inside the photonic band gap of the
BG. This resonance mode is localized in the vicinity of
the defect layer and decays exponentially away from the
defect. Near ωr, the entire composite structure displays
a strong resonant transmission with T = 1 (and thus
R = 0) due to the excitation of the localized mode.

A completely different scenario emerges when the de-
fect layer consists of a PP-medium. We find that the res-
onance localized mode has transmittance and reflectance
values which are larger (smaller) that unity in distinct
contrast to the case of lossless defect layers. The super
(sub)-unitary transmission/reflection is related with the
distribution of the electro-magnetic field around the PP-
defect. Let us consider the case for which the electric field
E(z) takes its maximum value (anti-nodal point) at the
position of the defect layer (see Fig. 1). Obviously the as-
sociated magnetic field H(z) will be having a nodal point
at the defect layer. Then, an estimation of the absorbed
energy, due to the PP-layer, gives A ≈ |Ed|2Im(ε′′) < 0
and thus T +R = 1 − A � 1. The transmission and
reflection spectrum are shown in Fig. 2a and confirm the
previous expectations.

The opposite scenario is observed in the case that
the magnetic field H(z) has a maximum in the domain
around the defect layer. In this case T +R = 1−A � 1

FIG. 2: (color online) (a) The transmittance T (ω), reflectance
R(ω) and absorption A(ω) for the set-up of Fig. 1 (ε′′ < 0).
Because A < 0 (amplification) we plot in the subfigure the
|A|. A super-unitary transmittance and reflectance is evident
in the frequency domain around the resonance frequency. (b)
The amplification/absorption coefficient Θ versus frequency
has a singular point at resonance frequency which signifies a
lasing action. (c) The same set-up as in Fig. 1 for the case of
CPA frequency. In this case the electric field as a minimum at
the defect layer while the magentic field has a maximum (d)
The amplification/absorption coefficient Θ versus frequency
shows a zero at the CPA frequency.

(we recall that A ≈ |Hd|2Im(µ′′) > 0) and thus we have
attenuation of the incident light.

The amplification/attenuation mechanism is bet-
ter investigated by introducing the overall amplifica-
tion/absorption coefficient Θ(ε′′, ω) defined as the ratio
of the total intensity of outgoing to incoming waves:

Θ(ε′′, ω) ≡
|E−L |2 + |E+

R |2

|E+
L |2 + |E−R |2

(11)

The above expression can be written in the following form

Θ(ε′′, ω) =

∣∣∣1 +
E−

R

E+
L

M12

∣∣∣2 +
∣∣∣E−

R

E+
L

−M21

∣∣∣2
|M22|2

(
1 +

∣∣∣E−
R

E+
L

∣∣∣2) (12)

where we have used the fact that detM = 1. The
case Θ(ε′′, ω) > 1 indicates that an overall amplification
has been achieved at the system. The opposite limit of
Θ(ε′′, ω) < 1 corresponds to attenuation. The two ex-
treme cases of Θ(ε′′L, ωL) → ∞ and Θ(ε′′CPA, ωCPA) → 0
indicate that the system has reached a lasing instabil-
ity or behaves as a coherent perfect absorber (CPA)
[35] respectively. The condition for the former case is
M22(ε′′, ω) = 0 which is satisfied for some values ε′′ = ε′′L
and ω = ωL. In fact, the complex zeros of M22 corre-
spond to the poles of the scattering matrix S, see Eq.
(6). If ε′′ = 0 they lie at the lower part of the complex-ω
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plane due to causality. As |ε′′| increases the poles move
towards the real axis and at a critical value ε′′ = ε′′L one
of these poles becomes real ω = ωL, thus signifying the
transition to a lasing action. We have confirmed in Fig.
2b that the singularity in Θ(ε′′ = ε′′L, ω = ωL)→∞ cor-
responds to the lasing point as it is calculated from the
analysis of the poles of the associated scattering matrix.

The other limiting case of CPA is achieved when the
two terms in the numerator of Eq. (12) become simul-
taneously zero i.e. when E−R = E+

LM21 and E−R =
−E+

L /M12. These two relations are simultaneously sat-
isfied when M21M12 + 1 = 0 → M11M22 = 0 (re-
call that detM = 1). The CPA frequency ω = ωCPA

is evaluated from the condition M11(ωCPA) = 0 (the
frequencies for which M22(ω) = 0 are excluded since
they correspond to lasing action). It should be stressed
that a CPA requires coherent incident fields which sat-
isfy an appropriate phase and amplitude relationship
E−R = E+

LM21 = −E+
L /M12. An example of a CPA

is shown in Fig. 2d.
The above super/sub-unitary scattering features be-

come more pronounced when one of the composite layers
of the Bragg grating is substituted by a pseudo-passive
medium [36]. Specifically, the Fabry-Perrot (FP) reso-
nances which are closer to the band edges will correspond
to photons with small group velocities. Therefore each in-
dividual photon at this frequency resides in the PP-layers
for a long time. This long time interaction with the PP-
medium leads to strong amplification/attenuation fea-
tures. The magnitude of the enhancement/suppression
is a growing function of the total thickness of the stack,
as opposed to the case of a uniform pseudo -passive slab.
In Fig. 3 we show a typical transmission spectrum of
such composite structure.

In the particular case of a FP resonance close to a pho-
tonic band edge of a BG, consisting of two layers A and B,
the field inside the periodic structure is a superposition of
the forward and backward Bloch waves with Bloch wave
number close to either the middle of the Brillouin zone,
or to its boundary. In either case, the middle of each
individual layer coincides with the node or the antinode
of the respective standing wave inside this particular uni-
form layer. The nodes (antinodes) of oscillating electric
field coincide with the antinodes (nodes) of oscillating
magnetic field and vice versa.

At the same time, if the lower edge of a photonic band
gap has electric field node (magnetic field antinode) in
the middle of each A-layer, then the upper edge of the
same photonic band gap has electric field antinode (mag-
netic field node) in the middle of each A-layer [37]. As a
consequence, Fabry-Perrot resonances close to neighbor-
ing photonic band edges will have different dominating
components - electric or magnetic - of the oscillating field
inside a particular layer.

In our example in Fig. 3 the A-layers consists of a PP-
medium with negative ε′′ and positive µ′′, which means

FIG. 3: (color online) The electric E(z) (blue line at y-z plane)
and the magnetic H(z) (red line at the x-z plane) fields (am-
plitude profiles) of two representative FP modes which reside
at the upper (left inset) and lower (right inset) band edges.
The grating consists of 50 bilayers (orange indicates a PP-
layer and white a lossless passive layer). In the insets we
show the field profiles for the first half of the structure, i.e.
25 layers. Left (right) inset correspond to the FP resonance
at the upper (lower) edge of the lower (upper) band. The con-
stituents of the PP-layers are εp = 4− 0.001i, µp = ε∗p with a
width layer dp = 0.1309µm. The lossless passive layers have
constituents ε = 3 and µ = 1 and width d = 0.3023µm. The
transmittance T (ω), is shown in the main panel.

that the Fabry-Perrot resonances with the dominant elec-
tric field component in the A-layers will be enhanced,
while the resonances with dominant magnetic field com-
ponent in the A-layers will be suppressed. This is exactly
what we see in Fig. 3, where the resonant transmission at
every other photonic band edge is enhanced (suppressed).

In conclusion, we have introduced a class of pseudo-
passive metamaterials for which the losses are balanced
by gain in a way that the index of refraction is real and
uniform throughout the medium. Although the light
propagation in an unbounded pseudo-passive medium
has the same characteristics as in a passive lossless
medium with the same index of refraction, their scat-
tering properties differ dramatically. When such me-
dia are incorporated in a photonic structure, it can lead
to super/sub-unity transmittance/reflectance indicating
strong absorption and amplification mechanisms for the
total structure. In many occasions these effects can turn
to a coherent perfect absorption of incident waves or to
lasing instabilities. It will be interesting to investigate
the realization of these phenomena under vectorial con-
ditions and in higher dimensions.
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