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The method of wavefront shaping to control optical properties of opaque media is a promising tech-
nique for authentication applications. One of the main challenges of this technique is the sensitivity
of the wavefront-sample coupling to translation and/or rotation. To better understand how trans-
lation and rotation affect the wavefront-sample coupling we perform experiments in which we first
optimize reflection from an opaque surface – to obtain an optimal wavefront – and then translate or
rotate the surface and measure the new reflected intensity pattern. Using the correlation between
the optimized and translated/rotated patterns we determine how sensitive the wavefront-sample
coupling is. These experiments are performed for different spatial light modulator bin sizes, beam
spot sizes, and nanoparticle concentrations. We find that all three parameters affect the different
positional changes, implying that an optimization scheme can be used to maximize the wavefront-
sample coupling’s stability. We also develop a model to simulate sample translation/rotation and
its effect on the coupling stability, with the simulation results being qualitatively consistent with
experiment.

I. INTRODUCTION

In 1990 Freund predicted that precise optical de-
vices could be made using opaque media and wave-
front shaping [1]. Since then this technique has been
used to control: transmission through opaque mate-
rials [2], the polarization of light [3, 4], broadband
spectral characteristics [5–8], and the spatio-spectral
properties of random lasers [9–12]. It has also been
used to enhance fluorescence microscopy [13, 14],
achieve perfect focusing [13, 15], compress ultrashort
pulses [16, 17] and enhance astronomical and biologi-
cal imaging [18, 19]. Recently the technique’s biolog-
ical applications have been supplemented by photo
acoustic wavefront shaping (PAWS) which combines
wavefront shaping and ultrasound technology to bet-
ter image biological tissue [20–25].
Additionally, using optimal wavefront shaping to

control optical properties of opaque media has been
proposed as a method of implementing optical phys-
ically unclonable functions (PUFs) [26–28]. PUFs
are systems which use randomly distributed proper-
ties of a material (scatterers in opaque media, de-
fects in semiconductor chips, etc) to create unique
unclonable signatures [29, 30]. The unique signa-
tures of PUFs are of particular interest in authenti-
cation applications (such as authenticity verification
and tamper indication) as their uniqueness makes
counterfeiting a PUF unfeasibly difficult, if not im-
possible.
The envisioned application of optimal wavefront
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shaping to the implementation of optical PUFs is as
follows: an opaque surface marker – either intrinsic
to the surface (such as defects or roughness) or an
extrinsic glue (with scattering particles) – is inter-
rogated using a shaped wavefront and the surface’s
optical response is measured. The response is then
optimized using an optimization algorithm in order
to determine an optimal wavefront. The optimal
wavefront and surface response are then stored as a
challenge-response pair, which is used at later times
to verify that the surface is unchanged. Changes in
the challenge-response pair would indicate that the
surface had been tampered with.

In an ideal implementation of this type of op-
tical PUF, the changes in the challenge response
pair would occur only due to intentional tampering.
However, in reality there are other unintentional ef-
fects which can change the challenge-response pair
such as: dust accumulation, material changes due to
the environment (temperature, humidity, radiation),
drifts in the optical equipment, and sample position-
ing changes. These various effects can work together
to decouple the challenge and response, leading to
a false indication of intentional tampering. Given
these concerns it is necessary to quantify these un-
intentional effects if this technique is to be used in
the field.

In this study we specifically quantify the effects
on the challenge-response coupling due to changes
in sample positioning, including translation and ro-
tation. For our PUF samples we use a nanoparticle
(NP) doped polymer and for the optical response
we measure the reflected intensity pattern, with op-
timization working to focus the scattered light into
a target area. In addition to experimentally measur-
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ing the effects due changes in sample positioning, we
also use an extended random phase Gaussian beam
model [27] to simulate translation and rotation in
order to better understand the underlying physical
mechanisms.

II. THEORY

A. Extending the Random Phase Gaussian
Beam Model

Previously, we developed a random phase Gaus-
sian beam model (RPGBM) [27] to model optimized
transmission through an opaque material. One of
the weaknesses of this model was the treatment of
the material as only affecting the phase of the inci-
dent light, and not the amplitude. In order to take
these effects into account we use a random matrix
theory (RMT) model of scattering in disordered me-
dia [2, 31–40]. In the RMT model, scattering in a
disordered media is represented by complex-valued
matrices which map the incident electric field at in-
put channel m to the exiting electric field at output
channel n. Specifically, using the RMT formulation
of Vellekoop and Mosk, we can write the electric field
at the output channel n as

E′
t;n =

N
∑

m=0

tnmEm, (1)

E′
r;n =

N
∑

m=0

rnmEm, (2)

with Em being the incident electric field at input
channel m, tnm are the transmission matrix ele-
ments, which maps the mth input channel to the
nth transmitted channel, and rnm are the reflection
matrix elements, which map the mth input channel
to the nth reflected channel. In this study we define
the input and output channels to be related to the
spatial coordinate on the sample surface, with the
coordinates discretized for calculation purposes.
In Vellekoop and Mosk’s model they only consid-

ered the transmission matrix elements [40], while in
this study we are concerned with reflection. There-
fore at this point we will derive the reflection matrix
elements. Assuming no absorption, the transmission
matrix, t, and reflection matrix, r are dependent on
each other via

r
†
r+ t

†
t = I, (3)

where I is the identity matrix and † denotes the con-
jugate transpose. The form of Equation 3 arises due

to conservation of energy in the absence of absorp-
tion. From Vellekoop and Mosk’s model we know
that the transmission matrix can be modeled as a
random unitary matrix, U, drawn from a circular
Gaussian distribution and scaled by a scalar trans-
mission coefficient, t, giving the transmission matrix
[34, 40]:

t = tU, (4)

where the form of Equation 4 is a consequence of
treating the scattering system using RMT.
Substituting Equation 4 into Equation 3 and re-

arranging terms we can derive an equation for the
reflection matrix

r
†
r = I− |t|2U†

U, (5)

r
†
r = (1− |t|2)I, (6)

which can be solved with a reflection matrix defined
as

r ≡ rV, (7)

where V is a unitary matrix and r is a scalar reflec-
tion term satisfying,

|r|2 = 1− |t|2. (8)

Since the reflection matrix terms should be indepen-
dent for a disordered medium [32, 34, 38, 40], for our
modeling we can draw the random unitary matrix V

from a circular Gaussian distribution. This choice is
also consistent with the maximal fluctuation theo-
rem, which predicts that all eigenchannels are either
open or closed [35, 36, 41].

B. Simulations

To model the effect of translation and rotation on
the coupling between an optimal wavefront and sam-
ple we begin by assuming a Gaussian beam incident
on the sample with an electric field of:

Em = E0 exp

{

− (m−m0)
2

σ2
− iψm

}

, (9)

where m0 is the peak position, σ is the Gaussian
width, and ψm is the phase mask due to the SLM.
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Substituting Equation 9 into Equation 2 and apply-
ing the RPGBM we find the electric field in the de-
tector plane to be:

Ed;n′ =

N
∑

n=0

N
∑

m=0

rnmE0 exp

{

− (m−m0)
2∆x2

σ2

−i2π
N
nn′ − iψm

}

,

(10)

where ∆x is the computational grid spacing,N is the
total number of grid spaces, and the term i 2πN nn′ is
the exponential term in the Discrete Fourier Trans-
form. Using Equation 10 and a microgenetic algo-
rithm [42] we systematically vary ψm and calculate
the intensity in the detector plane

Id;n′ = |Ed;n′ |2, (11)

to find the phase mask giving a focused spot in the
detector plane. At this point we note that during
experiments we typically bin the SLM pixels into
super-pixels of side length b (i.e. the bin area is b×b
px2). For our 1-D simulations we still use bins but
with them corresponding to groupings of grid points.

Once the optimized wavefront is found we use nu-
merical transformations, discussed below, to model
sample translation and rotation. For each positional
change we recalculate the intensity profile in the de-
tector plane and compare the new profile, Ii, to the
original optimized profile, I0,i using the Pearson cor-
relation coefficient:

c ≡

N
∑

i=0

(Ii − I)(I0,i − I0)

√

N
∑

i=0

(Ii − I)2
N
∑

i=0

(I0,i − I0)2

, (12)

where I0,i is the initial optimized profile, Ii is the

intensity profile after translation or rotation, I0 is
the average value of I0,i, and I is the average value
of Ii. The coefficient varies from -1 to 1 with 1 cor-
responding to perfect correlation and -1 correspond-
ing to perfect negative correlation. When perform-
ing simulations we use one spatial dimension, due to
computational restraints, and Equation 12 is used
as written with only one index. However, in our
experimental results we use two dimensions, which
requires Equation 12 to be extended with a second
index and all sums are turned into double sums.

FIG. 1: (Color online) Schematic diagram of
transverse translation modeling using a grid with

16 points and a bin size of b = 2. As the
translation, ∆m, is increased the wavefront shifts
to the right, with the left wavefront bins becoming
zero, and the right wavefront bins going off grid.
Note that while not shown the amplitude shifts as

well.

C. Translational Stability

1. Transverse Translation

Once the optimal wavefront, ψm, has been deter-
mined and the optimal intensity profile recorded we
can model transverse sample translation by shifting
the incident field’s index by ∆m, changing the elec-
tric field in the detector plane to be:

Ed;n′ =

N
∑

n=0

N
∑

m=0

rnmE0 exp

{

− (m+∆m−m0)
2∆x2

σ2

−i2π
N
nn′ − iψm+∆m

}

.

(13)

The new intensity profile is then calculated using
Equation 11 and is compared to the untranslated
profile using Equation 12. Figure 1 shows a sketch
of the wavefront for different translation values with
the sample grid marked out and a bin size of 2∆x.
Using this method we calculate the correlation co-

efficient as a function of transverse translation for
three different bin sizes, shown in Figure 2, and four
different incident spot sizes, shown in Figure 3. The
model results, as a function of translation, are found
to follow a stretched exponential,

c(x) = A exp

{

−
(

x

σX

)β
}

+ c0 (14)

where c0 is a small offset from zero, A = 1− c0, and
the functions width, σX , and exponent, β depend
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FIG. 2: (Color online) Simulated correlation
coefficient as a function of sample translation for a
Gaussian width of 200 ∆x and three different bin
sizes with fits to a stretched exponential function.
As the bin size decreases the width of the stretched

exponential decreases.

on the bin and spot size. Equation 14 has a Half-
Width-Half-Max (HWHM) of W = σX(ln 2)1/β .

From Figure 2 we see that as the bin size increases
the HWHM of the correlation curve increases imply-
ing greater resistance to decorrelation as the sample
is translated. This can be understood as the frac-
tional translation is inversely proportional to the bin
size (i.e. a translation of 2 ∆x is a complete bin
shift for b = 2, while it is only 1/5 of a bin shift for
b = 10), meaning the change due to translation is a
smaller effect on the wavefront.

The other factor determining the fractional trans-
lation amount is the spot size of the incident beam,
with the fractional translation being inversely pro-
portional to the beam width. Figure 3 shows the
correlation curves for different spot sizes, with the
larger spot sizes resulting in greater HWHMs. As
with bin size, we find that the larger the segments
of the phase front, the more resistant to transverse
translation the wavefront coupling becomes. While
these results suggest greater stability for larger bin
sizes and spot sizes, the benefit needs to be weighed
against the smaller enhancements that result when
increasing the bin size or spot size [27].

FIG. 3: (Color online) Simulated correlation
coefficient as a function of sample translation for a
bin size of b = 5 and four different beam spot sizes
with stretched exponential fits. As the spot size
decreases the width of the stretched exponential
decreases, suggesting that smaller spot sizes result

in less coupling stability.

2. Translation Along Optical Axis

In addition to translating the sample in the trans-
verse axis after optimization, we can also translate it
along the optical axis resulting in the incident spot
size changing. We model this effect by transform-
ing the beam width, w0 → gw0, and bin size, b→ gb
–such that the ratio w/b is unchanged – as well as in-
troducing the effect of the changing Gaussian beam
curvature given by

R(g) = zr
√

g2 − 1

(

1 +
1

g2 − 1

)

(15)

where zR = 1
2
kw2

0 is the Rayleigh range and k =
2π/λ, with λ being the wavelength of the light used.
Figure 4 shows a sketch of the wavefront for different
spot sizes, with the bin size increasing with larger
spot sizes. Note that Figure 4 does not include the
phase related to the Gaussian curvature, nor does it
show the amplitude profile, which also changes with
spot size.

Since we experimentally measure the change in z
position, not the change in spot size, we can convert
from the spot size increase, g, to change in z position
by considering the Gaussian beam width,
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FIG. 4: (Color online) Schematic diagram of
modeling translation along the optical axis using a
grid with 16 points. As the sample is translated
along the optical axis the on sample beam width
changes, which changes the coupling between the
wavefront and sample grid. Namely, as the beam
width increases, the absolute bin size increases.

w(z) = w0

√

1 +

(

z

zR

)2

, (16)

which for a new width, gw0, can be rearranged to
give the z position:

z = zR
√

g2 − 1, (17)

Using the changes in the incident electric field de-
scribed above we model the effect of translations
along the optical axis on the wavefront coupling.
Figure 5 shows the correlation coefficient as a func-
tion of z translation for three different bin sizes, with
the HWHM increasing with larger bin sizes. This
result is similar to the transverse translation case,
with the explanation also being that larger bin sizes
reduce the fractional wavefront change due to trans-
lation.

We also simulate the effect of spot size on the
correlation coefficient as a function of z translation,
with the results shown in Figure 6. Note σ = 10
∆x corresponds to the beam waist. From Figure
6 the spot size appears to have little, if any, effect
on the correlation curves. This result is due to the
wavefront-sample coupling depending more on the
fractional bin size, rather than the absolute size of
the bin on the sample. In this case, since the bin’s
fractional size is unchanged by the spot size chang-
ing, the change in spot size shouldn’t affect the z
translational stability.

FIG. 5: (Color online) Simulated correlation
coefficient as a function of sample translation for a
beam with a Gaussian width of 100 ∆x and three
different bin sizes with stretched exponential fits.
The correlation curves HWHM increases with large

bin sizes.

D. Rotational Stability

To simulate the correlation coefficient as a func-
tion of rotation we begin first by considering how
rotation affects the reflected laser beam. Due to the
nature of the transformations required, in this sec-
tion we use a continuous coordinate basis to derive
the transformations with the understanding that cal-
culations are performed using discrete Fourier Trans-
forms. In this case the reflection matrix, r, becomes
a response function R(x−y) where the reflected field
is given by

E′(x) =

∫ ∞

−∞

dyR(x − y)E(y) (18)

where E(y) is the incident field.
To determine the effects of sample rotation we

simulate rotation of the sample around the y axis
by an angle θ as shown in Figure 7. Due to the rota-
tion the beam and sample will intersect at different z
positions as you move from the center. Namely, the
difference in the intersection position is given by:

∆z(x) = x tan θ, (19)

where x is the transverse position in the lab (un-
rotated) coordinates. This transverse position de-
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FIG. 6: (Color online) Simulated correlation
coefficient as a function of sample translation for a
bin size of b = 1 ∆x and three different spot sizes
with stretched exponential fits. The correlation
curves are unaffected by the change in spot size.

FIG. 7: (Color online) Coordinates of lab frame
and sample frame (denoted by ∗).

pendent offset will result in the addition of a linear
phase term to the incident field given by

∆ψ(x) = k∆z(x). (20)

The offset also affects the Gaussian beam parame-
ters of the incident field giving a transverse position
dependent Gaussian width of

w(x) = w0

√

1 +
1

z2R
x2 tan2 θ, (21)

and a transverse position dependent curvature of

R(x) = x tan θ

[

1 +
z2R

x2 tan2 θ

]

. (22)

Finally, rotating the sample results in coordinate
transformation for the sample surface. The trans-
formation from the sample coordinates (denoted by
a superscript *) to the lab coordinates is given by

x = x∗ cos θ, (23)

where x∗ is the transverse position on the sample
and x is the transverse position in the lab coordi-
nates. Note that Equation 23 implies that for a ro-
tation of θ = π/2, all the sample coordinates trans-
form into x = 0, which is expected as the sample is
parallel to the optical axis in this configuration.
With the changes given by Equations 20–23 we

can write the field reflected from the rotated sample
as:
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E′(x∗) =

∫ ∞

−∞

ds∗R(x∗ − s∗)E0 exp

{

− s∗2 cos2 θ

w2
0(1 +

1
z2

R

s∗2 cos2 θ tan2 θ)
− iψ(s∗ cos θ)

− i
s∗2 cos2 θ

s∗ cos θ tan θ
[

1 +
z2

R

s∗2 cos2 θ tan2 θ

] − iks∗ sin θ

}

. (24)

At this point applying Fraunhoffer diffraction the-
ory will predict the field in a plane parallel to the
sample. However, the detector is setup to be par-
allel to the unrotated sample. Therefore to account
for the coordinate transformation between the sam-
ple and lab coordinates we apply angular spectral
decomposition to calculate the diffracted field in the
detector plane [43–45].
Angular spectral decomposition begins by first

transforming the electric field reflected from the
sample into its spectral representation by taking the
Fourier transform of Equation 24:

E ′(u∗) =

∫ ∞

−∞

dxE′(x∗)ei2πu
∗x∗

(25)

where u∗ is the angular frequency in the sample coor-
dinates. Using a spectral coordinate transform [43]
we can rotate the reflected field into the lab coordi-
nates as

E ′(v) = E ′(u∗ cos θ + (λ−2 − u∗2)1/2 sin θ) (26)

where v is the angular frequency in the lab coordi-
nates. Next we calculate the field in the lab’s spa-
tial coordinates, which requires taking the Inverse
Fourier Transform of the field and the determinate
of the coordinate transform’s Jacobian, |J(u∗)| [43].
The Jacobian term is required to preserve energy
conservation as the coordinate transform is nonlin-
ear [43]. These considerations result in the reflected
field in the lab coordinates being,

E′(x) =

∫ ∞

−∞

du∗E ′(u∗ cos θ + [λ−2 − u∗2]1/2 sin θ)

×|J(u∗)|e−i2πu∗x,
(27)

where the determinate of the Jacobian is given by
[43],

J(u∗) = cos θ − u∗√
λ−2 − u∗2

sin θ. (28)

With E′(x) calculated we now can calculate the elec-
tric field in the detector plane straightforwardly as

Ed(x
′) =

∫ ∞

−∞

dxE′(x)ei
k

Z
xx′

, (29)

where Z is the distance between the sample and de-
tector.
Using the model of sample rotation described

above – with the equations converted to a discrete
basis for computation – we calculate the wavefront
coupling stability as a function of sample rotation
for different bin sizes, shown in Figure 8, and dif-
ferent spot sizes, shown in Figure 9. From Figure
8 we find that the correlation curve as a function
of rotation follows a stretched exponential function
with the bin size having no effect on the HWHM.
This effect arises due to the relative magnitudes of
the changes to the beam due to rotation. For in-
stance, if we assume small angles, such that θ2 ≈ 0,
Equation 24 becomes,

E′(x∗) ≈
∫ ∞

−∞

ds∗R(x∗ − s∗)E0

× exp

{

− s∗2

w2
0

− iψ(s∗)− iks∗θ

}

,

(30)

where the only remaining influence of rotation is the
linear phase term ks∗θ. As this term only depends
on the on sample position, and not the bin size it
is easy to see why the bin size does not affect the
rotational stability. To justify this for larger angles,
θ2 >> 0, we note that at these larger angles the
wavefront-sample coupling is already broken by the
linear phase term.
While the coupling’s rotational stability is found

to be independent of bin size, from Figure 9 we
find that the spot size has a drastic effect on the
coupling’s stability, namely, that as the spot size
increases the coupling stability decreases. This ef-
fect is a direct result of Equation 19, which shows
that the scale of the z offset is linearly related to
the transverse position, meaning that for larger spot
sizes there will be larger z offsets, resulting in greater
phase changes.
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FIG. 8: (Color online) Simulated correlation
coefficient as a function of sample rotation for a
Gaussian width of 200 ∆x and four different bin
sizes. All four curves are found to be within error
of each other suggesting that the bin size does not

affect rotational stability.

FIG. 9: (Color online) Simulated correlation
coefficient as a function of sample rotation for a bin
size of b = 5 ∆x and four different spot sizes with

stretched exponential fits. The correlation
coefficient’s HWHM is found to increase with

smaller spot size, suggesting that smaller spot sizes
are more resistant to sample rotation.

III. METHOD

To experimentally determine the coupling sta-
bility of an optimized wavefront under translation
and rotation we use an optimized reflection setup
and ZrO2 doped polyurethane (PU) nanocompos-
ites. The preparation of the ZrO2/PU nanocom-
posites is as follows. Spherical zirconia nanoparti-
cles, ZrO2 NPs, are synthesized by forced hydrolysis
followed by calcination at temperature and time of
600◦C and 1 h, respectively [46]. The ZrO2 NPs
are then hydrophobized by boiling the dispersion
of the ZrO2 NPs (2 mg/mL) in 1 vol% solution
of n-octadecyltriethoxysilane (Gelest, SIO6642.0) in
toluene [47]. The hydrophobized ZrO2 NPs are
dispersed in 10 wt% bisphenol A diglycidyl ether,
BADGE (EPONTM resin 828, Miller-Stephenson
Chemical Company, Inc.) solution in toluene at
a 20 mg/mL concentration with the aid of sonica-
tion. Toluene acts as a thinner for the otherwise
viscous BADGE fluid. The remaining BADGE is
then added to yield the desired weight fraction of
ZrO2 NPs. The mixture is further sonicated until
a homogeneous mixture is achieved and the toluene
is evaporated in vacuum. Once the BADGE mix-
ture is prepared an equivalent amount of diethylene
triamine, DETA (Epikure 3223 curing agent, Miller-
Stephenson Chemical Company, Inc.) is added and
the mixture is mixed thoroughly and then poured
onto a rectangular glass slide (1”x1.5”). The poly-
mer is then polymerized in an 80 ◦C oven for 2 hours
with the resulting films having thickness of 1-3 mm
and a scattering length of approximately 4 µm. This
implies that multiple scattering events occur within
the sample when illuminated.

With the samples prepared we place them inside of
an optimized reflection setup consisting of: a Coher-
ent Verdi Nd:YVO4 CW laser, a Boulder Nonlinear
Sciences LCOS-SLM, a Thorlabs CMOS camera and
various optics. See Figure 10 for a schematic of the
experimental setup. The Verdi is operated at full
power (10 W), where the laser is most stable. Since
the 10 W output is well above the damage threshold
of the SLM we use a 90:10 beamsplitter to pick off 1
W of the laser, which is then expanded and passed
through a half-waveplate (HWP) polarizer pair to
further control the beam intensity, as well as main-
tain the correct polarization for the SLM. The beam
is then reflected off the SLM and focused onto the
sample using a 20× high working distance objective.
The resulting speckle pattern reflected from the sam-
ple is then collected by the same objective and re-
flected onto the Thorlabs camera. The camera and
SLM are interfaced to a computer which uses a mi-
crogenetic algorithm [42] to optimize the wavefront
such that the reflected light produces a spot focus
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FIG. 10: (Color online) Schematic of optimized
reflection setup.

on the camera array.

To translate the samples accurately we use a Thor-
labs flexure stage with differential micrometers giv-
ing a translational sensitivity of 500 nm. In order
to minimize the effect of translational cross talk we
set the sample zero position to be near the middle of
the full micrometer range, as per the manufacturers
instructions. For rotating the sample we use a New-
port precision rotation stage with a sensitivity of 30
arc seconds (145.4 µrad)

The procedure for measuring the positional sta-
bility of the wavefront coupling is as follows. First,
the optimal wavefront, which produces the largest
intensity in the target area, is determined using a
microgenetic optimization algorithm [42]. Once the
optimal wavefront is found the target intensity pro-
file is imaged four times and averaged to find the op-
timized intensity profile. The sample is then trans-
lated or rotated a fixed distance and the new inten-
sity profile is measured four times and averaged to
find the intensity profile corresponding to the new
position. This process is then repeated until the
intensity in the target area is the same as the back-
ground, which corresponds to full decoupling of the
wavefront. Once the intensity profiles are measured
they are each compared to the optimized intensity
profile using Pearson’s correlation coefficient, Equa-
tion 12.

FIG. 11: (Color online) Measured correlation
coefficient as a function of sample translation in

the transverse direction for a 25 wt% sample, spot
size of 2.2 µm and three different bin sizes with
stretched exponential fits. Like the simulated

results the fit width is found to decrease as the bin
size decreases.

IV. RESULTS AND DISCUSSION

A. Bin Size

The first experimental parameter we vary when
measuring the translational and rotational wave-
front coupling stability is the SLM bin size. For
these measurements we use a sample with a NP
concentration of 25 wt%, three different bin sizes,
b = {8, 12, 18}, and a spot size of 2w0 = 2.2 µm.
We begin by measuring the correlation coefficient

as a function transverse translation for the three dif-
ferent bin sizes as shown in Figure 11, with the data
fit to Equation 14. From Figure 11 we see that as
the bin size increases the HWHM of the correlation
curves increases, as tabulated in Table I. Addition-
ally from Figure 11 we see that the correlation curves
change shape as the bin size increases with the small
bin sizes having much steeper decays, correspond-
ing to β < 1, and the larger bin sizes having more
gradual decays, corresponding to β > 1. Both these
results, the change in HWHM and β with bin size,
are consistent with simulation.
After translating the sample in the transverse di-

rection we next translate the sample along the opti-
cal axis. Figure 12 shows the correlation coefficient
as a function of z position for the different bin sizes
tested. We find that as the bin size increases the
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FIG. 12: (Color online) Measured correlation
coefficient as a function of sample translation along
the optical axis for a 25 wt% sample, spot size of
2.2 µm and three different bin sizes with fits to

stretched exponentials.

coupling stability increases, with the HWHM be-
coming larger as listed in Table I. The curves are
also found to intersect near zero as the z transla-
tion approaches a value equal to the Rayleigh range.
These results, the HWHM increase and curve in-
tersection, are predicted by simulations. However,
the intersection point in the simulations is closer to
z = 1.8 zR, while the experimental intersection is
closer to z = zR.

At this point it is important to note the relative
stability lengths of transverse and optical axis trans-
lation. From Table I we find that for the smallest bin
size the transverse HWHM is only 37.3 nm while the
z HWHM is 1364 nm, corresponding to a scale differ-
ence of 36.6 ×. This scale difference, also observed in
the simulations, implies that the wavefront-sample
coupling is more sensitive to transverse translation
than to optical axis translation. The underlying
mechanism of this difference is related to the dif-
ferent effects each translation produces. Transverse
translation results in the center of the beam chang-
ing position on the sample surface, thereby effec-
tively shifting the fields index, but leaving the re-
flection matrix’s indices the same. This shift quickly
breaks the coupling between the optimal wavefront
and the sample. On the other hand, for translation
along the optical axis the center of the beam is un-
changed and only the beam width shifts. This means

FIG. 13: (Color online) Measured correlation
coefficient as a function of sample rotation for a 25
wt% sample, spot size of 2.2 µm and three different
bin sizes. The correlation curves for each bin size
are found to be within experimental uncertainty of
each other, suggesting that bin size does not play a

role in the rotational stability.

that the field’s positional indices and the reflection
matrix’s indices match for a longer translation, re-
sulting in the increased positional stability.
Next we measure the correlation coefficient dur-

ing sample rotation. Figure 13 shows the correla-
tion coefficient as a function of rotation angle for
the three different bin sizes, with all three correla-
tion curves found to be within uncertainty of each
other. Fitting the curves to Equation 14 we deter-
mine their HWHMs, reported in Table I, and find
that the HWHMs are unchanged as a function of
bin size. These results are consistent with simula-
tion where the correlation coefficient as a function
of angle follows a Gaussian with the width being
unaffected by bin size.

B. Spot Size

The next experimental parameter (that can affect
the correlation as a function of translation and ro-
tation) which we vary is the beam spot size. These
measurements are performed using a 25 wt% NP
concentration sample, a bin size of b = 16, and four
different spot sizes having Gaussian widths of σ =
1.1 µm, 60 µm, 240 µm, and 540 µm. Note that the
beam waist for the system corresponds to σ = 1.1
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Bin Size X HWHM (nm) Z HWHM (nm) Rot. HWHM (µrad)
18 693.6 ± 9.0 2844 ± 26 254 ± 12
12 137.8 ± 5.9 2228 ± 32 261 ± 12
8 37.3 ± 3.9 1364 ± 22 265.1 ± 6.2

TABLE I: Translational and rotational HWHMs for different bin sizes. For both x and z translation
smaller bin sizes yield larger HWHM, while the rotation HWHM is unchanged, within experimental

uncertainty, for each bin size.

FIG. 14: (Color online) Measured correlation
coefficient as a function of sample translation in
the transverse direction for a 25 wt% sample, bin

size of b = 16, and four different spot sizes.

µm, or a spot size of 2w0 = 2.2 µm.
For each spot size we first translate the sample

in the transverse direction and measure the correla-
tion coefficient at each position, as shown in Figure
14. From Figure 14 we find that as the spot size in-
creases the correlation curves broaden (the HWHM
are listed in Table II), which is consistent with simu-
lation. The underlying mechanism of this increase in
stability is due to the larger spot size causing trans-
verse translations to have a smaller effect on the inci-
dent wavefront, as the fractional change in wavefront
with transverse translation is inversely proportional
to the spot size.
We next measure the effect of changing the spot

size on the correlation coefficient as a function of
optical axis position. Figure 15 shows the correla-
tion coefficient as a function of z translation for the
four different spot sizes, with all four curves over-
lapping within experimental uncertainty. This over-
lap results in the HWHM of each curve, see Table
II, being within uncertainty of each other, which is
consistent with simulation. As discussed in the sim-

FIG. 15: (Color online) Measured correlation
coefficient as a function of sample translation along
the optical axis for a 25 wt% sample, bin size of

b = 16, and four different spot sizes.

ulation section, this effect is due to the bin size to
spot size ratio being unchanged with changing spot
size. This implies that the more important quantity
to the translational stability is the fractional bin size,
and not the absolute bin size.

After measuring the translational coupling stabil-
ity with different spot sizes we move on to measuring
the effect of the spot size on the correlation coeffi-
cient as a function of rotation as shown in Figure 16.
From Figure 16 we find that as the spot size increases
the correlation curves narrow, see Table II for the
HWHMs, and the initial decay steepens, with the
stretch parameter approaching β = 1. These results
are consistent with simulation, with the underlying
mechanism once again related to larger spot sizes
producing larger wavefront distortions than small
spot sizes.
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Spot Size (µm) X HWHM (nm) Z HWHM (nm) Rot. HWHM (µrad)
1.1 270.6 ± 9.4 2045 ± 40 462 ± 10
60 557 ± 23 2048 ± 50 411 ± 12
240 699 ± 81 2040 ± 25 219.8 ± 7.3
540 796 ± 28 2050 ± 44 140.9 ± 3.5

TABLE II: Translational and rotational HWHMs for different incident spot sizes.

FIG. 16: (Color online) Measured correlation
coefficient as a function of sample rotation for a 25
wt% sample, bin size of b = 16, and four different

spot sizes.

C. Nanoparticle Concentration

Thus far we have considered the effects of bin size
and spot size on the wavefront-sample coupling’s
ability to withstand sample rotation and transla-
tion, with the results found to be consistent with
simulations using the extended RPGBM. The final
experimental parameter we consider is the NP con-
centration of the samples, which is not modeled by
the extended RPGBM. Therefore we do not have
any simulation results to make comparisons too. In
order to effectively model the effect of NP concen-
tration the transmission and reflection matrices need
to be calculated in such a way as to take scatterer
concentration into account, which cannot be done
by the random unitary matrix model used by the
extended RPGBM. Work is currently underway to
address this limitation, but is beyond the scope of
this study.

To measure the effect of NP concentration on the
wavefront-sample coupling’s rotational and transla-
tional stability we use three different samples with

FIG. 17: (Color online) Measured correlation
coefficient as a function of sample translation in

the transverse direction for a spot size of 2.2 µm, a
bin size of b = 20, and three different NP

concentrations with stretched exponential fits. As
the concentration increases the width increases.

concentrations of 1 wt%, 10 wt%, and 25 wt%, a
bin size of b = 20, and a spot size of 2σ = 2.2
µm. We first measure the effect of the different NP
concentrations on the coupling’s transverse transla-
tion stability with the correlation coefficient data
and stretched exponential fits shown in Figure 17.
From Figure 17 we find that the correlation curve
width increases with increasing concentration, albeit
only to a small degree. Table III lists the HWHMs
for the three concentrations, from which we see that
the increase in HWHM is larger than experimental
uncertainty, but is relatively small compared to the
changes due to the bin size and spot size. The in-
crease in the translational stability with increasing
concentration is due to the high concentration sam-
ples having more uniform surfaces, such that there is
less variation in the reflection matrix as the sample
is translated in the transverse direction.
While the effect of NP concentration is found to be

small on the wavefront-sample coupling’s transverse
translational stability, its influence is more appar-
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FIG. 18: (Color online) Measured correlation
coefficient as a function of sample translation along
the optical axis for a spot size of 2.2 µm, a bin size
of b = 20, and three different concentrations with

stretched exponential fits.

ent when we consider translation along the optical
axis. Figure 18 shows the correlation coefficent as
a function of z position and stretched exponential
fits for the three concentrations. From Figure 18 we
find that the three curves intersect near the Rayleigh
range (also observed for varying the bin size and
spot size) and that as the concentration increases the
HWHM (listed in Table III) of the curves decreases,
implying that the lower concentration samples are
more stable to translation along the optical axis.

The mechanism behing the increased stability of
low concentration samples to translation along the
optical axis is related to the relative light penetra-
tion depths of the different samples. As the con-
centration increases, the scattering length decreases
meaning that light penetrates less deeply into the
sample. This depth can be viewed as defining an ef-
fective interaction volume. For lower concentration
samples this volume is larger than that of higher con-
centrations. Therefore when translating the sample
along the optical axis, the fractional change in the
scattering volume will be smaller for large scatter-
ing volumes than for small scattering volumes. This
difference implies that the wavefront-sample inter-
action will be more affected in the higher concentra-
tion samples, than in the low concentration samples,
which is observed.

Lastly, we measure the effect of the NP concentra-

tion on the wavefront-sample coupling’s rotational
stability. Figure 19 shows the correlation coefficient
as a function of sample rotation for the three dif-
ferent concentrations and fits to stretched exponen-
tials. Similar to the transverse translation we find
that higher concentrations result in increased rota-
tional stability, with the HWHM, tabulated in Table
III increasing as a function of concentration. The ef-
fect of increasing concentration is also found to be
small, with the HWHM only varying by ≈ 60 µrad
between the 1 wt% and 25 wt% sample. This differ-
ence is due to the surface being more uniform for the
high concentration samples than for the low concen-
tration samples.

Apart from the correlation curve’s HWHM we also
note from Figure 19 that the correlation offset (c0
in Equation 12) is found to increase with increasing
concentration. This result is due to the nature of the
speckle pattern as a function of concentration. As
the concentration increases the speckle grain is found
to decrease (i.e. individual speckles become smaller)
resulting in a larger speckle density. If we compare
two different regions of the speckle pattern we find
that the similarity of the two regions increases with
the speckle density. This implies that comparing
two images with high speckle density will result in
more similarity and therefore a larger background
correlation coefficient.

FIG. 19: (Color online) Measured correlation
coefficient as a function of sample rotation for a

spot size of 2.2 µm, a bin size of b = 20, and three
different sample concentrations with Gaussian fits.
The half-width angle decreases as a function of
increasing concentration, suggesting that higher
concentrations are more stable under rotation.
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Concentration X Half-Width (nm) Z Half-Width (nm) Rot. Half-Width (µrad)
1 628 ± 17 2582 ± 80 215.6 ± 1.6
10 670 ± 22 2090 ± 51 237.1 ± 1.4
25 715 ± 16 1365 ± 25 276.4 ± 2.7

TABLE III: Translational and rotational HWHMs for different NP concentrations

V. CONCLUSIONS

In the above sections we have explored theoreti-
cally and experimentally the effects of three differ-
ent system parameters (bin size, spot size, and NP
concentration) on the wavefront-sample coupling’s
translational and rotational stability for an opti-
mized reflection system. We find that the simula-
tions – using a model developed from the random
phase Gaussian beam model [27] and Vellekoop’s
random unitary matrix model [40] – are within qual-
itative agreement with experimental results. The re-
sults of experiment and simulation are summarized
below.
When changing bin sizes it is found that larger

bins provide more translational stability in both the
transverse and z directions. This improvement is
due to the fractional translation change being in-
versely proportional to the bin size, which means
that larger bins result in the on sample wavefront
changing less during translation than for smaller
bins. While the bin size affects the translational
stability it does not affect the wavefront-sample cou-
pling’s rotational stability. This is expected as: 1)
the equations describing the effect of sample rota-
tion (Equations 20–23) are independent of the bin
size and 2) for small angles the bin size is invariant
under rotation.
The next system parameter varied, the on sample

spot size, is found to influence both the transverse
translation and rotational stability of the wavefront-
sample coupling, but not the stability of translation
along the optical axis. As the spot size is increased
the transverse translational stability is found to in-
crease, while the rotational stability decreases. The
benefit of larger spot sizes on the transverse stabil-
ity is due to the fractional wavefront change (during
transverse translation) being inversely proportional
to the spot size. As the spot size increases the ef-
fect of translating in the transverse direction has a

smaller effect on the wavefront seen by the sample.
However, in the case of rotation, the increased spot
size results in larger wavefront changes due to Equa-
tion 24’s dependence on the spot size. Finally, the
lack of an effect on translation along the optical axis
from changing the spot size is due to the z transla-
tional stability depending on the fractional bin size,
and not the absolute bin size. While the absolute bin
size changes with spot size, the fractional bin size is
unchanged, thus explaining the observed effect.

The last system parameter varied, the sam-
ple’s NP concentration, is found to increase the
wavefront-sample’s coupling stability to transverse
translation and rotation when increased, while also
decreasing the stability to translations along the op-
tical axis. These results are due to higher concen-
tration samples having more surface uniformity and
smaller scattering volumes.

The sum total of these results suggest that in prac-
tice a balance needs to be struck in order to obtain
the best possible positional stability. This obser-
vation is due to both spot size and sample NP con-
centration being found to produce conflicting results
(e.g. smaller spot sizes increase rotational stabil-
ity while decreasing transverse stability). Addition-
ally, changing these parameters for stability needs
to be weighed against their effects on the maximum
possible enhancement, described in Ref. [27]. For
instance, larger bin sizes are more positionally sta-
ble but produce smaller enhancements. Therefore
in some applications it may be more important to
sacrifice stability for larger enhancements.
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