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Motivated by the fundamental question of the fate of interacting bosons in flat bands, we consider
a two-dimensional Bose gas at zero temperature with an underlying quartic single-particle dispersion
in one spatial direction. This type of band structure can be realized using the NIST scheme of spin-
orbit coupling [Y.-J. Lin, K. Jiménez-Garcia, and I. B. Spielman, Nature 471, 83 (2011)], in the
regime where the lower band dispersion has the form εk ∼ k4x/4+k2y + . . ., or using the shaken lattice
scheme of Parker et al. [C. V. Parker, L.-C. Ha and C. Chin, Nature Physics 9, 769 (2013)]. We
numerically compare the ground state energies of the mean-field Bose-Einstein condensate (BEC)
and various trial wave-functions, where bosons avoid each other at short distances. We discover
that, at low densities, several types of strongly correlated states have an energy per particle (ε),

which scales with density (n) as ε ∼ n4/3, in contrast to ε ∼ n for the weakly interacting Bose gas.
These competing states include a Wigner crystal, quasi-condensates described in terms of properly
symmetrized fermionic states, and variational wave-functions of Jastrow type. We find that one
of the latter has the lowest energy among the states we consider. This Jastrow-type state has
a strongly reduced, but finite condensate fraction, and true off-diagonal long range order, which
suggests that the ground state of interacting bosons with quartic dispersion is a strongly-correlated
condensate reminiscent of superfluid Helium-4. Our results show that even for weakly-interacting
bosons in higher dimensions, one can explore the crossover from a weakly-coupled BEC to a strongly-
correlated condensate by simply tuning the single particle dispersion or density.

I. INTRODUCTION

One of the most remarkable advances in ultra-cold
atomic gases in the recent years has been the ability to
engineer at will, dispersions with single-particle degen-
eracies or almost completely flat bands. For example,
optical superlattices have been used to generate honey-
comb, Kagomé and Lieb lattice geometries [1, 2]. Lat-
tice shaking [3, 4] and Raman assisted tunneling in real
and spin space has been used to realize spin-orbit cou-
pling (SOC) [5, 6], synthetic vector potentials, and sub-
sequently topological bands [7, 8]. Attention has now
turned to studying the interplay between these non-
trivial single-particle band structures, spin and interac-
tions, which paves the way to accessing a rich variety
of phases such as skyrmion lattices [9], integer and frac-
tional Chern insulators [10, 11], Wigner crystals [12], and
other exotic states [13]. Here we present a variational
study of a low-density, 2D Bose gas at zero tempera-
ture in a dispersion which is quartic in one direction,
and which can be realized experimentally [4, 5].

An interesting example of non-trivial interplay be-
tween single-particle degeneracies and interactions is a
2D Rashba SOC gas. Here the low-energy dispersion
has an infinite ring degeneracy in momentum space, and
the the density of states has the form dn/dE ∼ E−1/2,
typical for 1D systems. At low densities, atoms sam-
ple the ring degeneracy and interesting physics emerges.
The consequences of this were first explored by Berg,
Rudner and Kivelson [12] in the context of Fermi gases.
They observed that while the kinetic energy delocalizes
the particles over the Rashba ring, atoms can minimize
the short range interaction energy by localizing in mo-

mentum space. This competition produces a plethora of
possible symmetry broken ground-state phases ranging
from Wigner crystals to ferromagnetic nematic states.

Even more interesting and perhaps less understood is
the fate of bosons in single-particle degeneracies. On the
one hand, by developing fermionic correlations, bosons
can completely avoid (spinless case) or suppress (spin-
ful case) short-range repulsive interactions, but such a
state is spread out in momentum space. The kinetic en-
ergy cost associated with this spreading is parametrically
lower in flat bands, and one can expect a regime of densi-
ties where fermionized wave functions have lower energy
than a mean-field condensate. The key theoretical chal-
lenge in addressing this question is that single particle
degeneracies enhance fluctuation effects, rendering mean-
field theory invalid, and Quantum Monte Carlo usually
suffers from a sign problem, and can only study small
system sizes. Progress has to be made either by guess-
ing trial wave-functions or using field theoretical meth-
ods which capture the low energy dynamics. For Rashba
SOC [14] and moat bands, Sedrakyan et al. [15, 16] have
proposed a composite-fermion description, which spon-
taneously breaks time reversal and parity symmetry and
has lower energy than the weak-coupling BEC. Spinless
bosons in quartic bands of the form εk ∼ k4, were studied
recently using field theoretic techniques by the authors of
Refs. [17, 18], who proposed that condensation is strongly
suppressed in favor of a liquid with algebraically decaying
spatial correlations.

Motivated by experiments, we address the question of
fermionization versus Bose condensation in a 2D Bose gas
in the NIST SOC [5] or Chicago shaken lattice scheme
[4], where the dispersion can be tuned to take the form
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εk ∼ k4x/4 + k2y + .... We compare the energy of the
mean-field Bose condensate to several trial many-body
states, summarized in Table I: (i) a Wigner crystal (ii)
the absolute value and the square of the Fermi-sea wave-
function (iii) the absolute value and the absolute value
squared of the ν = 1 Laughlin state (proposed by the
authors of Refs. [15, 16]) and (iv) the Jastrow ansatz [19].
While all the wave-functions (i)-(iv) have an energy per
particle which scales as ε ∼ n4/3 in the low-density limit
(to be precisely defined below), and are thus energetically
favorable over the mean-field condensate (ε ∼ n), we find
that the trial wave-function with the lowest energy is of
Jastrow type, and has finite condensate fraction and true
long-range order.

II. THE MODEL

We study a two-dimensional (pseudo)spin-1/2 Bose
system with spin-orbit coupling, which was experimen-
tally realized at NIST [5]:

Hsoc(k) =
~2k2

2m
+

~2kL
m

kxσz +
ΩR
2
σx, (1)

where kL is the Raman laser wave-vector, ΩR is the Ra-
man coupling strength, and σx,y,z are Pauli matrices.
The spectrum of the Hamiltonian has two bands, for
ΩR < 4ER, where ER = ~2k2L/2m is the laser recoil en-
ergy, the lower band has two degenerate minima, while
for ΩR ≥ 4ER it has a single minimum at k = 0 [5].
While the dispersion around each minimum is parabolic,
at ΩR = 4ER, the dispersion in the x-direction develops
a quartic structure. In the case of a Bose gas, this gives
rise to interesting behavior at low densities, which is the
main topic of the paper. From now on, we will be in-
terested only in the ΩR = 4ER case. We remark that
while the Rabi coupling term explicitly breaks physical
time-reversal symmetry, this Hamiltonian has an addi-
tional Z2 symmetry associated with the transformation
|kx, ↑〉 → |−kx, ↓〉.

Expressing energy in units of ER and momentum
(length) in units of ~kL (1/kL), the dimensionless single-
particle Hamiltonian reads:

Hk = k2 + 2kxσz + 2 (σx + 1) . (2)

We choose the energy offset such that the minimum of
the lower band is at zero energy.

We assume the interactions between particles are de-
scribed by a spin-independent contact potential (in units
of ER and 1/kL)

Vint(r1 − r2) = g δ(r1 − r2) 1σ1⊗σ2
, (3)

where g = 2mU0/~2 (U0 > 0 is the contact interaction

strength and in a quasi-2D regime U0 = 2
√

2π~2a/(maz),
where a is a 3D scattering length and az is the confine-
ment length in z direction [20]), 1σ1⊗σ2

is a unit operator

in the space of two spins, 1σ1⊗σ2
=
∑
s1,s2
|s1s2〉〈s1s2|,

where sj ∈ (↑, ↓). In reality, the interactions are typi-
cally spin-dependent, however our results are insensitive
to spin dependence. We emphasize that throughout, we
focus on the regime of weak interactions, but nonetheless
find interesting ground states by engineering the single-
particle dispersion.

The spectrum of Hk is ε± = k2 ± 2
√
k2x + 1 + 2 and

the lower-band energy can be expanded around k = 0 as
ε−(k) = k4x/4 + k2y + .... The lower-band eigenstates of
Hk are [

s↑(k)
s↓(k)

]
= Nk

[
kx −

√
1 + k2x

1

]
, (4)

where Nk =
[
1 + (kx −

√
1 + k2x)2

]−1/2
is the normal-

ization factor. Notice that at low densities (n � k2L,
in original units), particles occupy only the states close
to the minimum of the band, i.e. the width of the mo-
mentum distribution ∆kx → 0 as n → 0. In that case,
Eq. (4) reduces to [s↑(k) s↓(k)] = [−1 1]/

√
2, and spin

eigenstates become (approximately) momentum indepen-
dent. The gas then becomes effectively spinless, and is
described by the Hamiltonian:

Hk =
1

4
k4x + k2y, (5)

with Vint(r1 − r2) = g δ(r1 − r2). Such a Hamiltonian
can be directly realized using the shaking lattice scheme
of Parker et al. [4].

In the first part of this paper, we focus on the physics of
the effective Hamiltonian Eq. (5) above, and then show
that our conclusions remain unchanged even after the
inclusion of spin (corresponding to the NIST scheme [5]).

III. BOGOLIUBOV MEAN-FIELD THEORY

We start by considering the most conventional descrip-
tion of a 2D Bose gas at zero temperature, namely the
Bogoliubov mean-field description. The main assump-
tion in Bogoliubov’s approach is that the majority of
particles are condensed in k = 0 state, and others oc-
cupy k 6= 0 states in the vicinity. Repulsive interactions
deplete the condensate [21], and at the mean-field level,
the energy per particle is given by ε = gn/2, where n is
the density. The condensate depletion is readily found to
be [22]:

nex =
1

V

∑
k 6=0

1

2

(
εk + gn0√
ε2k + 2εkgn0

− 1

)
, (6)

where εk is a single-particle dispersion, nex is the density
of depleted particles, n0 is the condensate density, and g
is the interaction strength. The behavior of the integral
in (6) is usually a good indication of the fate of a BEC: for
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zero temperature, 2D and 3D systems with a parabolic
dispersion, the integral is convergent, fluctuations do not
destroy long-range order. In 1D, it diverges, signaling
the absence of true long-range order.

In our case, εk = k4x/4 + k2y, the integral is convergent:

nex = 3.854(gn0)3/4 (dimensionless variables). However,
the ratio of the number of excited and condensed particles

nex/n0 ∼ n
−1/4
0 (in a usual 2D parabolic case nex ∼ n0)

shows that the Bogoliubov approach breaks down at low
densities. This suggests that in the low-density limit, the
ground state is qualitatively different from a mean-field
condensate.

In the 3D case, εk = k4x/4 + k2y + k2z , the ratio of the
number of excited and condensed particles is nex/n0 ∼
n
1/4
0 . Therefore, in the low-density limit, the Bogoliubov

description is valid, and we expect a mean-field BEC to
provide a good description of the ground state.

IV. WIGNER CRYSTAL STATE

The first example of a strongly-correlated bosonic state
we consider is the Wigner crystal (WC), proposed by
Berg et al. [12], for the Rashba SOC case. The state is
constructed by dividing the volume (area) in an array of
identical rectangular boxes of size Lx, Ly, and putting
each particle in a different box. In contrast to a mean-
field BEC state, the interaction energy of WC is zero, as
particles completely avoid one another. This comes at the
cost of higher kinetic energy, as single-particle states are
localized in boxes, compared to a BEC, where occupied
states extend throughout the entire volume.

To calculate the energy per particle of the WC state,
it suffices to solve for the ground state of a single particle
in a box. The calculation for the case of quartic disper-
sion is shown in Appendix A, and for Hamiltonian (5),
it gives Eg(Lx, Ly) = 1.285(π/Lx)4 + (π/Ly)2, where Lx
and Ly are the length and the width of the box. It is
clear that at low densities (small k), the kinetic energy
is “cheaper” in the x than in the y direction. This means
that we can lower the energy by deforming the box such
that it is shorter in x and longer in y direction, while
keeping the total volume of the box (V = LxLy), and
the density (n = 1/V ) fixed. We find the ratio Ly/Lx
which minimizes Eg(Lx, Ly) is Ly/Lx = 0.340 n−1/3 and

the ground-state energy per particle is Eg = 43.5 n4/3.
Indeed, for the spinless case, the WC has lower energy
than a mean-field BEC at low densities. By numerically
solving the corresponding spinful problem [Eq.(2)], we
have checked that the energy per particle is identical to
the spinless case in the large Lx limit.

The WC state obviously has lower energy than a mean-
field BEC at low densities, however it is a crystalline
state which breaks translational symmetry. While this
is expected to happen in low-density systems with long-
range interactions, contact interactions typically do not
favor formation of a crystal [23]. Therefore we expect a

strongly-correlated state which is translationally invari-
ant to have even lower energy than WC state.

We notice that here we considered only a particular
type of a WC (rectangular lattice) and that different
types of WC, e.g. triangular-lattice crystal, could have
lower energy. Still, we later show that the Jastrow-type
state has energy ε = 6.6 n4/3, which is smaller than our
WC state by a factor of 7, and we do not believe different
types of WC can achieve such low energies.

V. STRONGLY-CORRELATED GAS IN THE
LOWER BAND

A. Non-interacting Fermi gas

The Wigner crystal example motivates us to look for
other strongly correlated states, constructed out of low-
est band wave-functions. One natural way to build cor-
relations is to write down wave-functions where bosons
avoid one another at short distances. To see how this
lowers the energy, consider a non-interacting Fermi gas
in the single-particle dispersion of Eq. (5). The density of
states corresponding to (5) is dn/dE = (3/2)/(2π)3/2 ×
Γ(5/4)/Γ(7/4) E−1/4, where Γ(x) is the gamma function.
The energy per particle in the non-interacting Fermi gas
is then ε = 6.84 n4/3, which is indeed lower than a mean-
field BEC (ε = gn/2), and the Wigner crystal at low
densities.

It is well known that in a low-density 1D system with
contact interactions, when the contact interactions dom-
inate the kinetic energy, the Fermi gas has lower energy
than the mean-field BEC at the same density. This leads
to “fermionization” of bosons, and the formation of a
Tonks-Girardeau gas [24].

We now compute the ground state energy of several
appropriately symmetrized fermionic wave-functions. We
first consider the spinless case, and then generalize our
results to include spin.

B. Spinless system

1. “Fermionized” many-body states

The ground state of a non-interacting Fermi gas in the
Hamiltonian (5) has the following momentum distribu-

tion widths: ∆kx = (4EF)1/4 ∼ n1/3, ∆ky = E
1/2
F ∼

n2/3, where EF is the Fermi energy. This means that,
at low densities, the energy is minimized by broadening
the distribution in the direction where kinetic energy is
“cheap” (x direction) and squeezing it in the direction
where energy is expensive (y direction). The WC state
discussed above has the same property: ∆kx ∼ 1/Lx ∼
n1/3 and ∆ky ∼ 1/Ly ∼ n2/3.

To construct more general strongly-correlated bosonic
wave-functions for the spinless gas, we take a fermionic
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state with the property ∆kx ∼ n1/3, ∆ky ∼ n2/3 and
construct corresponding Bose wave-functions: for ex-
ample ψB = |ψF |, ψB = ψ2

F or ψB = |ψF |2. This
way we obtain a symmetric bosonic wave-function which
obeys ∆kx ∼ n1/3, ∆ky ∼ n2/3, and has kinetic energy

Ekin/N ∼ (∆kx)4/4 + (∆ky)2 ∼ n4/3, while the interac-
tion energy is identically zero by construction. (In gen-
eral, we can consider higher powers ψB = |ψF |n for n > 2
or ψ2n

F , for n > 1, but these have higher energy, as dis-
cussed below.)

The total energy is then simply given by

Ekin =

∫
dk nk εk, (7)

where εk = k4x/4 + k2y and nk is the momentum distribu-

tion, normalized so that
∫
dk nk = N . We compute the

momentum distribution, and calculate the energy using
Monte Carlo integration (see Appendix B for details).

But which fermionic wave-functions should we choose?
A natural choice is the ground state of a non-interacting
Fermi gas (ψF,0). ψF,0 is a real function of spatial coordi-
nates, and we construct two bosonic trial wave-functions:
ψB,abs = |ψF,0| and ψB,sq = (ψF,0)

2
.

In the case of the wave-function ψB,abs, the integral
(7) diverges. The reason is that the first derivative
of the wave-function is not continuous at points where
ψB,abs = 0, which leads to a ∼ |k|−5 decay of the mo-
mentum distribution for large |k|. By contrast, ψB,sq has
a continuous first derivative, and its momentum distribu-
tion vanishes for |kx| > 2kF,x, |ky| > 2kF,y (kF,x and kF,y
are Fermi momenta of ψF,0 in x and y direction). The

corresponding energy per particle is ε = 13.1 n4/3, which
is considerably lower than the WC energy.

A more exotic choice is the composite-fermion wave-
function considered in Ref. [15] in the context of a 2D
Bose gas with Rashba SOC:

ψB,cf = N
∏
i<j

|zi − zj | exp(−
∑
j

|zj |2/4), (8)

where zj = xj/ax + iyj/ay, xj and yj are particle co-
ordinates, ax and ay are length-scales in x and y direc-
tion, and N is the normalization factor. This state has
been shown to be a quasi-condensate with algebraically
decaying correlations [25, 26], but it does not break time-
reversal symmetry. In order to make wave-function have
∆kx ∼ n1/3, ∆ky ∼ n2/3, the lengths have to scale with

density as ax ∼ n−1/3, ay ∼ n−2/3. Once again, the
first derivative of ψB,cf is not continuous at points where
ψB,cf = 0, and this leads to ∼ |k|−6 algebraic decay of
the momentum distribution for large |k| rendering the
integral (7) divergent.

However, the square of ψB,cf wave-function:

ψsq
B,cf = (ψB,cf)

2
= N ′

∏
i<j

|zi − zj |2e−
∑

j |zj |
2/2 (9)

is free from these problems. It is analytic and has an
exponentially decaying momentum distribution for large

|k|. Subsequently, the integral (7) is convergent. We find
that the choice of length scales which minimizes the total
energy per particle is ax = 0.55 n−1/3, ay = 0.29 n−2/3,

and the energy is ε = 9.2 n4/3, which is the lowest energy
of all the wave-functions considered so far. This state has
zero condensate fraction, and is therefore not a true Bose
condensate. However it has algebraically decaying corre-

lations ρ(r, r′) = ρ(|r − r′|) = 〈ψ̂†(r)ψ̂(r′)〉 ∼ 1/|r − r′|
as |r − r′| → ∞, and is thus a quasi-condensate [25, 26].
We reproduced this result using our Monte Carlo ap-
proach (see Fig. 1). While it is certainly possible to con-

FIG. 1: We show the corelation function ρ(r) for two different
states: (a) composite-fermion state ψsq

B,cf (red dash-dotted

line) and (b) Jastrow wave-function ψJ (black line). Here we
set y = 0 and concentrate at the dependence on x. ψsq

B,cf

wave-function has algebraically decaying correlations, i.e. it
has a quasi-long range order, while ψJ has a true long range
order (see text for details).

sider even higher powers of ψB,cf , these wave-functions
have higher energy as the increasing exponents broaden
the momentum distribution of the state.

Note that even though we casually refer to the states
ψB,abs, ψB,sq, ψB,cf , ψ

sq
B,cf , etc. as “fermionized,” the

issue of fermionization is a subtle one. Strictly speak-
ing, our ability to express a bosonic ground state wave-
function in terms of properly symmetrized fermionic
wave-functions does not necessarily imply that low-
energy excitations of this state have fermionic statistics.
To elucidate the nature of a bosonic state in two dimen-
sions written in terms of fermionic fields (which can al-
ways be done even for trivial ground states), one has to
consider a gauge theory, e.g., either arising from a par-
ton construction or Chern-Simons flux attachment (such
as implemented by Sedrakyan et al. [15] for the bosonic
Rashba model). On the other hand, there usually exists
no simple way to write the corresponding many-body
wave-function, which would faithfully describe gauge
fluctuations, and those may have important and quali-
tative effects on conclusions of a näıve mean-field theory.
For example, the many-body wave-function ψB,cf is a
natural mean-field description of a “fermionized” state,
where fermions, obtained from original bosons via Chern-
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Simons flux attachment, form the integer ν = 1 quantum
Hall state. As discussed above, the symmetrized bosonic
wave-function, ψB,cf , does not have a long-range order
and hence appears to describe a strongly-correlated liquid
state with algebraic correlations or equivalently a quasi-
condensate. However, the (more general) Chern-Simons
gauge-theory of the “fermionized” state yields a differ-
ent conclusion [27]: integrating out fermions produces
another Chern-Simons term, which exactly cancels the
term associated with statistical transmutation, and what
is left is a gapless (Maxwell) theory. It corresponds to
a Goldstone mode and indicates broken symmetry, or in
other words a true condensate with long-range order. In
fact, the state proposed by Sedrakyan et al. [15] belongs
to this category and is a strongly-correlated BEC, rather
than an exotic Bose liquid.

All in all, the field-theoretical approach based on true
fermionization of bosonic fields and the variational ap-
proach involving “fermionized” wave-functions are not
equivalent. The former provides more insight into the
nature of excitations, but does not easily allow for a quan-
titative analysis. On the contrary, the latter can be used
for explicit calculations of energy and other observables,
but it does not easily elucidate the nature of low-energy
excitations. One strategy here is to start with the varia-
tional approach and explore field-theoretical description,
if any, of a “fermionized” mean-field state, if such indeed
comes out as the lowest-energy trial state for a given
Hamiltonian. This however does not seem to happen in
our case, as discussed below.

2. Jastrow Ansatz for a strongly-correlated BEC – the
winner

One advantage of using “fermionized” wave-functions
to approximately describe a ground state of interacting
bosons is that they immediately minimize the interaction
energy for any contact interaction (for spinless bosons),
by the virtue of the simple fact that two fermions can
not occur in the same point. However, there exist in-
finitely many wave-functions that accomplish the same,
without relying on any fermionic analogy. Related con-
structions have been discussed in the literature, notably
in the context of strongly-correlated BEC in Helium-4.
Inspired by these previous studies, we now consider a
Jastrow ansatz [28] of the following form:

ψJ = N ′′
N∏
i<j

φ(ri − rj), (10)

φ(r) = 1− e−(x2/b2x+y
2/b2y),

where N ′′ is the normalization, and bx, by are parameters
describing correlation length-scale in x and y direction.
The density, n = N/V is another important parameter
of wave-function (10). Jastrow-type wave-functions are

generally very good at capturing the behavior of Bose
gases ranging from small to large scattering lengths, i.e.
from a weakly interacting to unitary regime [19]. A key
difference here is that while usually, the Jastrow form is
used to capture the short distance structure of the two-
body wave-function on length scales comparable to the
true atomic potential, here we work in a regime where bx
and by are on the order of the inter particle spacing, thus
much larger than the scattering length. Our ansatz is
therefore phenomenological in nature, and does not stem
from a microscopic calculation of the two-body problem.

As with the previously considered trial states, the Jas-
trow wave-function has the property that its interaction
energy is zero. By choosing bx ∼ n−1/3, by ∼ n−2/3 we
can “squeeze” the system in the x and “stretch” it in the
y direction, so that ε ∼ n4/3. We find the optimal param-
eter values are bx = 0.66 n−1/3, by = 0.29 n−2/3, and the

energy is ε = 6.6 n4/3. The Jastrow wave-function there-
fore has even lower energy than the composite-fermion
wave-function ψsq

B,cf . In Fig. 1, we plot the single-particle

density matrix ρ(r, r′) as a function of |r − r′| corre-
sponding to ψsq

B,cf and the Jastrow wave-function found
above. Indeed the Jastrow form has true long range or-
der, and describes a Bose-condensate with condensate
fraction n0/n = 0.74.

We therefore conclude that for the spinless Hamilto-
nian [Eq.(5)], although bosons can lower their energy by
developing short range correlations, the correlations are
not strong enough to completely destroy BEC at zero
temperature.

The ansatz wave-functions that we considered all have
the property that ψ = 0 when ri = rj which means
Eint = 0. While this should be true in the n → 0
limit, at finite densities we expect the interaction en-
ergy not to be strictly zero. In Appendix B, we estimate
that for small densities Eint/N ∼ n5/3/g, which means
that Eint/Ekin ∼ n1/3. Therefore, as in the Lieb-Liniger
gas [29], at low densities Eint � Ekin.

C. Spinful system

We now turn our attention to the spinful Hamilto-
nian (1) which corresponds to the NIST SOC scheme,
and ask whether our conclusions remain valid in this case.

We start by writing the spinful state |ψB,s〉 as:

|ψB,s〉 =
∑

k1...kN

fB(k1, ...,kN )|k1...kN 〉s, (11)

where

fB(k1, ...,kN ) =
1

V N

∫
dr1...drN ψB(r1, ..., rN )

× e−i(k1·r1+...+kN ·rN ),

(12)

is the Fourier transform of the spinless wave-functions
ψB considered above. Here |k1...kN 〉s = |k1〉s ⊗ ... ⊗
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|kN 〉s, where |k〉s is a lower-band eigenstate of (1). We
therefore construct a spinful state exclusively from lower-
band eigenstates. A similar construction was applied in
Ref. [15].

At low densities, the lower-band spectrum of the spin-
ful Hamiltonian is the same as the spinless dispersion (5).
Since, by construction, the spinful state [Eq.(11)] has the
same momentum distribution as the corresponding spin-
less state, their kinetic energy is the same (see Appendix
D).

However, the more complicated question is: what is
the interaction energy of the spinful state? Since we ex-
plicily construct the spinful many-body state only from
the lower-band single-particle states, it is impossible to
satisfy ψ(...., ri = rj , ...) = 0, ∀(i, j), for all the differ-
ent spin components ψσ1,...,σN

(r1, ..., rN ) [σj ∈ (↑, ↓)].
Therefore, unlike in the spinless wave-functions consid-
ered previously, the interaction energy will be finite. Still,
in the low-density limit, we expect the zero overlap con-
dition (ψ = 0 when ri = rj) to be almost satisfied, since
the system is almost completely polarized. We thus ex-
pect the spinful state to have a very low interaction en-
ergy.

The interaction Hamiltonian (3) is diagonal in real
space, and to calculate the interaction energy it is use-
ful to find a real-space representation of |ψB,s〉. Unfor-
tunately, the real-space representation is quite cumber-
some: there are 2N spin components (although only N+1
of them are independent due to the symmetric nature of
fB), and expressions are difficult to obtain:

ψσ1,...,σN
(r1, ..., rN ) =

∑
k1,...,kN

fB(k1, ...,kN )

× sσ1(k1)...sσN
(kN )ei(k1·r1+...+kN ·rN ),

(13)

where sσj
(k) are given in (4).

In Appendix E we present the method to estimate the
interaction energy, and we show that for wave-functions
ψB,sq, ψsq

B,cf , and the Jastrow wave-function the energy is

Eint/N ∼ n7/3 at low densities. Therefore, Eint/Ekin →
0 when n→ 0 and Etot/N = (Ekin +Eint)/N → 6.6 n4/3

for the Jastrow state.

It is important to assess the validity of constructing
the spinful state only from lower-band eigenstates: we
have already shown that the ground state energy cannot
be greater than ε ∼ n4/3. If there was a finite fraction u
of particles occupying the higher band as n→ 0, then the
energy would be E/N ∼ u∆, where ∆ is the gap between
the two bands. However, this clearly contradicts the fact
that E/N . n4/3. Therefore, u → 0 as n → 0 and the
n → 0 ground state will only contain states from the
lower band.

Wave-function ε Section

Mean-field BEC gn/2 III

Wigner crystal 43.5 n4/3 IV

Absolute value of Fermi-sea w.f. ∞ V B 1

Fermi-sea w.f. squared 13.1 n4/3 V B 1

Composite-fermion w.f. ∞ V B 1

Composite-fermion w.f. squared 9.2 n4/3 V B 1

Jastrow state 6.6 n4/3 V B 2

TABLE I: Energy per particle (ε) of different states in the
low-density limit (n and g are dimensionless density and in-
teraction strength, respectively). Of all the wave-functions
(w.f.) we consider, the Jastrow state has the lowest energy.
Two wave-functions (absolute value of Fermi-sea w.f. and
composite-fermion w.f.) have diverging expectation value of
k4x (see text for details).

VI. DISCUSSION AND EXPERIMENTAL
RELEVANCE

In this paper, we considered a system of interacting
bosons with a quartic single-particle dispersion. It was
shown that the low-density limit of the model hosts a
strongly-correlated ground state, where the mean-field
Bogoliubov state can be easily ruled out as being para-
metrically higher in energy than the strongly-correlated
states, where bosons develop local correlations and avoid
each other.

Among the many trial states we considered, a long-
range-ordered condensate described by the Jastrow wave-
function [Eq.(10)] was found to have the lowest energy
per particle of ε = 6.6 n4/3 (compared to ε = gn/2 for
a mean-field BEC). This is in agreement with Ref. [17]
where it was argued that the ground state of system (5)
has long-range order. The condensate fraction was found
to be N0/N = 0.74. i.e, it is a strongly-correlated BEC
with significant depletion of the condensate due to the in-
terplay between interactions and the unusual band struc-
ture.

Importantly, the mean-field BEC and the Jastrow BEC
break the same symmetry, therefore, we expect that the
system continuously evolves from a weakly to a strongly-
correlated BEC state from high to low-densities, with-
out any phase transitions in between (a similar weak-
to-strong-coupling cross-over can be tuned by evolving
the single-particle dispersion from the usual quadratic to
quartic).

Note however that in the absence of a systematic pro-
cedure to explore many-body ground states of strongly-
correlated systems, our variational-approach results are
strongly suggestive, but not conclusive. Eventually, it is
experiment that would fully elucidate the nature of the
ground state, and to realize our model is at the experi-
mentalists’ fingertips.

The strongly-correlated condensate we predict can be
detected experimentally using a number of probes. For
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example, the suppressed condensate fraction is measur-
able in time-of-flight [30]. Another signature of strong
correlations is the ratio of interaction and kinetic energy
which is very small at low densities. This could be ac-
cessed via quantum quench experiments, i.e. the inter-
action parameter g could be suddenly changed and the
effect on the total energy of the gas could be measured.
Strong local correlations can also be measured in situ
by observing the anti-bunching of bosonic atoms [31].
Finally, several groups [32, 33] have directly measured
ρ(r, r′). This would give information about the conden-
sate fraction, and the type of order present in the gas.

We can estimate the density below which strong cor-
relations become energetically favourable by equating
mean-field-BEC and Jastrow-state energies (see Table I).
In the case of 87Rb with a z-direction confinement fre-
quency ωz = 2π × 4000 Hz, this gives n ≈ 10−6 k2L ≈
6× 107 m−2 (kL = 2π/λ, where λ ≈ 800 nm [34]), which
is much lower than typical densities in cold-atom exper-
iments studying 2D systems (n ∼ 1013 m−2 [35]). How-
ever, using Feshbach resonances to increase g, it is pos-
sible to make strong correlations favourable at consider-
ably higher densities, up to n ≈ 0.004 k2L ≈ 2×1011 m−2,
which could be achieved experimentally. At densities
higher than this the dispersion in x-direction cannot be
approximated by a quartic term anymore, and higher-
order terms have to be included.
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Appendix A: Box-potential ground state in a system
with quartic dispersion

Here we show how to find a spectrum of a particle in
box potential with Hamiltonian H4 = k4x = ∂4x. While
H4 is similar to the usual quadratic dispersion in a sense
that both are diagonal in momentum space, there is one
fundamental difference: in a system with H4, not only
the wave-function, but also its first derivative has to be
continuous for the wave-function to have finite energy
expectation value.

If we choose a box of length L and −L/2 < x < L/2,

then the boundary conditions are ψ(−L/2) = ψ(L/2) =
0 and ∂xψ(−L/2) = ∂xψ(L/2) = 0. Solutions of the
equation ∂4xψ = Eψ are exp(kx), exp(−kx), exp(ikx)
and exp(−ikx), where k = E1/4. Since H4 is symmetric
under inversion (x→ −x), we expect a symmetric ground
state:

ψ0(x) = a1
(
ekx + e−kx

)
+ a2 cos(kx), (A1)

where a1, a2 are coefficients that have to be deter-
mined. Boundary conditions then require tan(kL/2) =
− tanh(kL/2), which can be solved graphically: in the
ground state kL = 4.730 and E0 = 5.140 (π/L)4. The
ratio of coefficients is a2/a1 = 15.06.

Appendix B: Monte-Carlo calculations

Here we describe Monte-Carlo methods we used to cal-
culate the kinetic energy of various trial wave-functions.
We were primarily interested in finding the expectation
value of Hamiltonian (5) and for analytic wave-functions
this can be done in two ways. As in standard Variational
Monte Carlo techniques, the first step is to sample the
“local energy”, Eloc = (Ĥψ)/ψ [36]:

Ekin =

∫
ψ∗ĤψdR∫
|ψ|2dR

=

∫
|ψ|2 Ĥψψ dR∫
|ψ|2dR

,

(B1)

where Ĥ =
∑
j ∂

4
xj
/4 − ∂2yj , and dR = dr1dr2 · · · drN .

We then use a Metropolis algorithm to sample the
local energy with probability distribution P (R) =
|ψ(R)|2/

∫
|ψ(R′)|2dR′.

In the case of non-analytic wave-functions like ψB,abs
and ψB,cf the expectation value of ∂4xj

cannot be calcu-
lated this way because a finite energy is associated with
points which have discontinuous derivatives of ψ. The
correct method in that case is to first calculate the mo-
mentum distribution of the state, and then compute the
expectation value of εk = k4x/4 + k2y. We calculate the
momentum distribution n(k) using:

n(k) = N

∫
dr2 · · · drN |f(k, r2, ..., rN )|2, (B2)

f(k, r2, ..., rN ) =
1

2π

∫
dr1e

−ik·r1ψ(r1, ..., rN ),

where we chose the following normalization:∫
|ψ(R)|2dR = 1 and

∫
n(k)dk = N . This can be

written in the form suitable for Metropolis importance
sampling:

n(k) = N

∫
dR|ψ(R)|2|fN (k, r2, ..., rN )|2, (B3)
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fN (k, r2, ..., rN ) =
1

2π

∫
dr1e

−ik·r1ψN (r1, ..., rN ),

ψN (r1, ..., rN ) =
ψ(r1, ..., rN )√∫

dr′|ψ(r′, r2, ..., rN )|2
.

For analytic wave-functions, both methods produce the
same result.

The wave-functions we considered all have the property
of being very anisotropic, i.e. they are given in terms of
length-scales ax, ay where ax � ay. The best way to do
calclations is then to rescale the coordinates so that in the
new units ax ∼ ay ∼ 1. For example, in the case of ψsq

B,cf

we first calculate expectation values α4 = 〈k4x〉 and α2 =
〈k2y〉 for the wave-function with ax = ay = 1 (rescaled
wave-function). The expectation values corresponding
to the wave-function in the original units are then simply
α4/a

4
x and α2/a

2
y, respectively. In the end, we minimize

E(ax, ay) = 〈k4x〉/4 + 〈k2y〉 = α4/(4a
4
x) + α2/a

2
y, while

keeping the density n = 1/(2πaxay) constant.
In the case of wave-functions where we can apply peri-

odic boundary condition (ψB,abs, ψB,sq, and ψJ) we did
calculations with N = 400 particles. However, in the case
of composite-fermion wave-functions (ψB,cf and ψsq

B,cf) we
did calculations with N = 1600 particles. There the den-
sity of a wave-function with finite number of particles has
a form of a droplet with radius R =

√
2(N − 1) (when

ax = ay = 1) and the presence of the boundary increases
the value of finite-size correction. Larger system sizes
were therefore necessary.

Appendix C: Estimating the interaction energy of a
spinless gas at small, but finite densities

In order to estimate the interaction energy at small
densities, we can make a simple order-of-magnitude cal-
culation: we choose some coordinates λ = (r3, ..., rN )
and we keep them fixed (see Appendix E for more
details). Now we can write the wave-function as
ψ(r1, r2;λ), and we can define parameter C as a mea-
sure of a r1 = r2 wave-function amplitude:

C = V

∫
dr|ψ(r, r)|∫

dr1dr2|ψ(r1, r2)|
, (C1)

where V is the volume. We first estimate the kinetic
energy: Ekin(C) ∼ n4/3(1 − C). The reasoning is that
for C = 0, Ekin ∼ n4/3. When C = 1, the gas is not
correlated and Ekin ≈ 0. Moreover, Ekin should not have
an extremum around C = 0, and therefore should be
linear in C in that region.

The interaction energy is Eint ∼ N2g
∫
dr|ψ(r, r)|2 ∼

gnC2. We minimize Ekin+Eint with respect to C and the
optimal C is C ∼ n1/3/g, and Eint ∼ n5/3/g. This means
Eint/Ekin ∼ n1/3, that is the kinetic energy is a dominant
part at low denities. The same reasoning gives the correct
density scaling of Eint in the low-density regime of a 1D
Lieb-Liniger gas.

Appendix D: Kinetic energy of a many-body
wave-function

Here we show that spinful wave-function constructed in
Eq.(11) has the same kinetic energy as the corresponding
spinless wave-function.

We consider the following state:

|ψ〉 =
∑

k1...kN

fB(k1, ...,kN )|k1...kN 〉, (D1)

where fB is normalized:
∑

k1,...,kN
|fB |2 = 1, and

|k1...kN 〉 = |k1〉 ⊗ ... ⊗ |kN 〉 is an orthonormal
momentum-eigenstate basis. Here state |k〉 can describe
either a spinless or spinful [Eq.(4)] single-particle mo-
mentum eigenstate. The state |k1...kN 〉 is an eigen-
state of kinetic energy operator with energy εk1...kN

=
εk1 + ...+ εkN

. Therefore

Ekin =
∑

k1...kN

εk1...kN
|fB(k1, ...,kN )|2

=
∑

k1...kN

(εk1
+ ...+ εkN

) |fB(k1, ...,kN )|2

=
∑
k1

εk1

∑
k2...kN

|fB(k1, ...,kN )|2 + · · ·

=
∑
k

εknk,

(D2)

where we assumed fB is symmetric with respect to par-
ticle exchange and nk is the single-particle momentum
distribution:

nk = N
∑

k2...kN

|fB(k,k2, ...,kN )|2. (D3)

It is clear that kinetic energy does not depend on whether
|ψ〉 [Eq.(D1)] describes a spinless or spinful state, as long
their momentum representation fB and dispersion εk are
the same.

Appendix E: Estimating spinful state interaction
energy

The spinful state is defined as

|ψB,s〉 =
∑

k1...kN

fB(k1, ...,kN )|k1...kN 〉s, (E1)

where |k1...kN 〉s = |k1〉s⊗ ...⊗|kN 〉s and |k〉s is a lower-
band single-particle state.

The real-space representation of |k1...kN 〉s is

〈r1...rN ; ↑↑ ... ↑|k1...kN 〉s
〈r1...rN ; ↑↑ ... ↓|k1...kN 〉s

.

.

.

〈r1...rN ; ↓↓ ... ↑|k1...kN 〉s
〈r1...rN ; ↓↓ ... ↓|k1...kN 〉s


=



s↑(k1)s↑(k2)...s↑(kN )

s↑(k1)s↑(k2)...s↓(kN )

.

.

.

s↓(k1)s↓(k2)...s↑(kN )

s↓(k1)s↓(k2)...s↓(kN )
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×ei(k1·r1+...+kN ·rN ), (E2)

where s↑(k), s↓(k) are given in eq.(4). The real-space
representation of the spinful wave-function is then

ψ↑↑···↑(r1, · · · , rN )

ψ↑↑···↓(r1, · · · , rN )

.

.

.

ψ↓↓···↑(r1, · · · , rN )

ψ↓↓···↓(r1, · · · , rN )


=

∑
k1...kN

fB(k1, ...,kN )

×



s↑(k1)s↑(k2)...s↑(kN )

s↑(k1)s↑(k2)...s↓(kN )

.

.

.

s↓(k1)s↓(k2)...s↑(kN )

s↓(k1)s↓(k2)...s↓(kN )


ei(k1·r1+...+kN ·rN ). (E3)

We are interested in the low-density regime and there
|k| � 1. We can then expand spin coefficients as:

s↑(k) = − 1√
2

(
1− kx

2
− k2x

8
+O(k3x)

)
,

s↓(k) =
1√
2

(
1 +

kx
2
− k2x

8
+O(k3x)

) (E4)

Also, we can replace kx with −i∂x. For example, the
ψ↓···↓ component is then:

ψ↓···↓ =

(
1√
2

)N (
1− i∂x1

2
+
∂2x1

8
+ ...

)
× · · · ×

(
1− i∂xN

2
+
∂2xN

8
+ ...

)
ψB(r1, · · · , rN ),

(E5)

since by definition of fB (Eq.(12)):

ψB(r1, · · · , rN ) =
∑

k1···kN

fB(k1, · · · ,kN )

× ei(k1·r1+···+kN ·rN ).

(E6)

The strategy for calculating the interacting energy
is: (a) we concentrate on expectation value of V12 =
gδ(r1 − r2) (the total interaction energy will then be
N(N − 1)/2 times that value). (b) We first calculate
the contribution to interaction energy coming from ψ↓···↓
component. (c) We show that all other spin components
give approximately the same contribution.

Estimating ψ↓···↓ contribution.— The idea is to choose
some random values for coordinates r3, · · · , rN and keep
them fixed [we define λ = (r3, · · · , rN )]. This way we

get a two-body wave-function from which it is easy to
calculate 〈V12〉. Later we show that almost any choice of
λ gives the same value of 〈V12〉.

We start by defining

Φ(r1, r2;λ) = N (λ)

(
1− i∂x1

2
+
∂2x1

8
+ ...

)
×
(

1− i∂x2

2
+
∂2x2

8
+ ...

)
χ(r1, r2;λ),

(E7)

where

χ(r1, r2;λ) =

(
1− i∂x3

2
+
∂2x3

8
+ · · ·

)
× · · · ×

(
1− i∂xN

2
+
∂2xN

8
+ · · ·

)
ψB ,

(E8)

and N (λ) is such that∫
dr1dr2 |Φ(r1, r2;λ)|2 = 1. (E9)

We notice that Φ(r1, r2;λ) is simply ψ↓···↓ with a differ-
ent normalization [see Eq.(E5)].

If ψB is analytical, we can Taylor-expand around r1−
r2 = 0:

ψB =
1

2
axx (x1 − x2)

2
+

1

2
ayy (y1 − y2)

2

+ axy (x1 − x2) (y1 − y2) + · · · ,
(E10)

where we assume ψB = 0 when r1 − r2 = 0 and aij =
aij(rcm,λ), where rcm = r1 + r2. χ retains the same
structure, but with different coefficients:

χ =
1

2
bxx (x1 − x2)

2
+

1

2
byy (y1 − y2)

2

+ bxy (x1 − x2) (y1 − y2) + · · · ,
(E11)

However, once we act on χ with s↓(−i∂x1)s↓(−i∂x2),
function Φ will have non-zero value for r1 = r2 which
will give rise to finite interaction energy.

Let us make the change of variables: xr = x1 − x2,
xcm = x1 + x2. Then:

Φ|r1=r2
≈
(

1− i∂x1

2
+
∂2x1

8

)
×
(

1− i∂x2

2
+
∂2x2

8

)
χ(r1, r2;λ)|r1=r2

=

[
1− i

2
(∂xr

+ ∂xcm
) +

1

8
(∂xr

+ ∂xcm
)2
]

×
[
1− i

2
(−∂xr + ∂xcm) +

1

8
(−∂xr + ∂xcm)2

]
× χ(r1, r2;λ)|r1=r2

=

(
1 +

1

2
∂2xr

+ · · ·
)
χ(r1, r2;λ)|r1=r2

=
bxx
2
,
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We can estimate bxx ∼ (∆kx)2 ¯|Φ|, where ∆kx is the mo-
mentum width in x direction and ¯|Φ| is the average mag-
nitude of Φ:

¯|Φ|2 =
1

V 2

∫
dr1dr2 |Φ|2 =

1

V 2
, (E12)

where V is the volume. The interaction energy corre-
sponding to Φ is then

E12(Φ) =

∫
dr1dr2 gδ(r1 − r2)|Φ(r1, r2)|2

∼ V g(∆kx)4 ¯|Φ|2 ∼ g

V
(∆kx)4

(E13)

It is clear that a different choice of λ would give the same
estimate. The same is true for different spin components
ψσ1,...,σN

. Therefore, when we average over all λ and
{σ1, ..., σN}:

Ē12 =
∑

σ1,...,σN

∫
dλ pσ1,...,σN

(λ)E12[Φσ1,...σN
(λ)],

pσ1,...,σN
(λ) =

∫
dr1dr2|ψσ1,...,σN

(r1, r2,λ)|2,

(E14)

the energy is again Ē12 ∼ g
V (∆kx)4. The total energy

is then Eint ∼ N(N − 1)/2 × Ē12 ∼ Ngn(∆kx)4 (since
there are N(N−1)/2 interacting pairs), that is Eint/N ∼
gn(∆kx)4. The states that we considered (ψB,sq, ψsq

B,cf ,

and ψJ) have ∆kx ∼ n1/3 which leads to Eint/N ∼ gn7/3.

The method described here works only if derivatives of
ψB are defined at points where ri = rj . This is, for exam-
ple, not the case with ψB,abs or ψB,cf . However, in those
cases it is still possible to estimate the interaction energy:
we again concentrate on a two-body wave-function, that
is, we fix λ = (r3, · · · , rN ) and we look what happens
with ψ↓···↓(r1, r2;λ). Then we can estimate the value of
ψ(r1 = r2) by looking into its Fourier transform.

The general conclusion is that Eint/N ∼ gn(∆kx)2m,
where m = 1 if the first derivative of ψ with respect to
relative distance rij = ri − rj does not approach zero as
rij → 0, m = 2 if the first derivative approaches zero,
but the second derivative does not as rij → 0, etc. For
example, wave-functions ψB,abs or ψB,cf therefore have
Eint/N ∼ gn(∆kx)2.
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