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Finite systems of bosons and/or fermions described by the Hubbard model can be realized using ultracold

atoms confined in optical lattices. The ground states of these systems often exhibit a coexistence of compress-

ible superfluid and incompressible Mott insulating regimes. We analyze such systems by studying the out-of-

equilibrium dynamics following a weak sudden quench of the trapping potential. In particular, we show how

the temporal variance of the site occupations reveals the location of spatial boundaries between compressible

and incompressible regions. The feasibility of this approach is demonstrated for several models using numerical

simulations. We first consider integrable systems, hard-core bosons (spinless fermions) confined by a harmonic

potential, where space separated Mott and superfluid phases coexist. Then, we analyze a nonintegrable system,

a J-V -V ′ model with coexisting charge density wave and superfluid phases. We find that the temporal variance

of the site occupations is a more effective measure than other standard indicators of phase boundaries such as a

local compressibility. Finally, in order to make contact with experiments, we propose a consistent estimator for

such temporal variance. Our numerical experiments show that the phase boundary is correctly spotted using as

little as 30 measurements. Based on these results, we argue that analyzing temporal fluctuations is a valuable

experimental tool for exploring phase boundaries in trapped atom systems.

PACS numbers: 05.70.Ln, 37.10.Jk, 03.75.Kk

I. INTRODUCTION

The collective behavior of ultracold atoms in optical lat-

tices can be tuned by varying the depth of lattice potentials,

thus adjusting the ratio between the strength of the on-site in-

teraction U and the hopping parameter J . In this manner, a

quantum phase transition between a superfluid (shallow lat-

tice) and a Mott insulator (deep lattice) can be induced [1–3].

An important feature in those experiments is the presence of a

(to a good approximation) harmonic trap, which results in the

coexistence of superfluid and Mott domains for a wide range

of values of U/J [4–6]. Experiments with a few-site reso-

lution [7], as well as single-site resolution [8, 9], have been

able to resolve the site-occupation profiles and reveal the char-

acteristic “wedding cake” structure in which Mott plateaus

are flanked by superfluid domains. This phenomenology, for

sufficiently deep lattices, can be described within the Bose-

Hubbard model [10, 11].

While adiabatically slow variations of the lattice potential

can be used as a tuning knob for quantum phase transitions

in systems of trapped atoms, quenching that potential can

be utilized as a means of probing the dynamics. Using this

approach, in a recent experiment on quasi-one-dimensional

quantum gases in an optical lattice, it was demonstrated that

quasiparticle pairs transport correlations with a finite velocity

across the system, leading to an effective light cone for the

quantum dynamics [12]. Another possibility is to quench the

harmonic trap [13–15]. It has been recently shown theoreti-

cally that a statistical analysis of the temporal fluctuations in

weak quenches can be used to study phase transitions [16, 17].

In this paper, we adapt this fluctuation analysis to examine

boundaries between spatially coexisting phases in trapped sys-

tems after a quench of the trapping potential.

In optical lattice experiments in which U/J is not too large,

but larger than the critical value for the formation of Mott in-

sulating domains, it is challenging to accurately determine the

boundaries between insulating and superfluid regions. This

because the Mott insulator may exhibit sizable fluctuations of

the site occupancies so single shot measurements of the latter

in an insulating plateau may not look all that different from

those in the superfluid region close by. For the purpose of ac-

curately determining the boundaries between those domains,

several local compressibilities have been proposed in the liter-

ature [4, 5, 18, 19], including κi := ∂〈n̂i〉/∂µi [4], as well as

the site-occupation fluctuations ∆n2
i := 〈n̂2

i 〉−〈n̂i〉2 [18, 19],

where 〈•〉 stands for the quantum expectation value and µi is

the local chemical potential at site i.

Here we propose the use of an out-of-equilibrium quan-

tity, the temporal variance of the expectation values of site

occupancies, as a precise indicator of boundaries between do-

mains. Ni(t) = 〈n̂i(t)〉 is the expectation value of n̂i(t),
the site-occupation operator at site i and at time t (in the

Heisenberg picture). The temporal variance of this expecta-

tion value is given by ∆N 2
i := N 2

i − Ni
2
, where • denotes

the infinite-time average f = limT→∞ T−1
´ T

0
f(t)dt. Out-

of-equilibrium dynamics can be triggered by making a small,

sudden change in the confining potential or the lattice depth.

After such a change (referred to as a quench), the site occupa-

tion expectation values Ni(t) oscillate in time. Our numer-

ical analysis of the temporal variance of Ni(t), and of the

compressibility κi, shows that ∆N 2
i has several features that

make it attractive as an indicator of spatial phase boundaries.

Specifically, when compared to κi, (i) the temporal variance

shows a stronger divergence with system size at the boundary

between domains, i.e., ∆N 2
i ∝ Lα with an exponent α which

is larger than that for κi (L is the linear system size); and

(ii) ∆N 2
i detects finer details in the occupation profile, which

are not resolved by κi. The scaling of these quantities with

system size is motivated by analytical results obtained for ho-

mogeneous systems. The scaling analysis also emphasizes the
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point that beyond a certain system size, the temporal variance

is strictly larger than the local compressibility.

Furthermore, we discuss an experimentally feasible way to

study temporal fluctuations, based on a small number of tem-

poral sampling points. We also show that a detailed analysis

of the full temporal distribution PNi
of Ni reveals that deep

in the incompressible region, PNi
is a single peaked, approx-

imately Gaussian, narrow distribution, whereas in the bound-

aries with the superfluid part PNi
is a double-peaked function

indicating bistability and absence of equilibration. We should

stress that, in this work, by small quenches we mean that the

system after the quench needs to be sufficiently close to the

initial equilibrium state, so that time fluctuations of site occu-

pancies are not exponentially small as one would expect them

to be in global quenches in generic systems [20].

The exposition is organized as follows. In Sec. II, we re-

capitulate results for homogeneous systems and present an

overview of the temporal variance ∆N 2
i and of the compress-

ibility κi. In Sec. III, we apply the proposed technique for

identifying phase boundaries to (integrable) hard-core boson

systems. We also investigate scaling properties of the vari-

ance, as those systems allow us to obtain exact results for very

large lattice sizes. We extend this analysis to a (nonintegrable)

J-V -V ′ system in Sec. IV, and comment on the experimental

viability of this approach in Sec. V. Finally, we present our

conclusions in Sec. VI.

II. QUENCHES AND OBSERVABLES

Temporal fluctuations following a quantum quench have

been studied extensively in the context of homogeneous sys-

tems [21]. Since some of these results form the motivation

for our analysis of inhomogeneous systems, we briefly re-

view relevant prior work. We consider systems initialized

in the ground state of a Hamiltonian Ĥ0 =
∑

nEn|n〉〈n|.
The quantum quench is then performed by suddenly chang-

ing the Hamiltonian to Ĥ = Ĥ0 + δλ B̂. For definiteness,

we assume that the perturbation B̂ is local and extensive,

i.e., B̂ =
∑

i B̂i with

∥

∥

∥
B̂i

∥

∥

∥
= O(L0) in the system size L,

where i denotes sites in a lattice. At time t after the quench,

the system’s state is given by |ψ(t)〉 = exp(−itĤ)|ψ(0)〉
(setting ~ = 1). For quenches with δλ = O(L0) and a

generic observable Â, the expectation value A(t) = 〈Â(t)〉 =

〈ψ(t)|Â|ψ(t)〉 oscillates around an average value with fluc-

tuations ∆A2 = 〈Â(t)〉2 − 〈Â(t)〉
2

that are exponentially

small in the system volume [22] (see, e.g., Ref. [23]). In

other words, ∆A2 = O(e−αV ), where α is a positive con-

stant. However, if the quench amplitude δλ is comparatively

small [i.e., δλ ∼ O(L−q) for some exponent q > 0 to be spec-

ified], the original state is not completely destroyed during the

post quench time evolution. As a result, such quench exper-

iments can be used to obtain information on the pre-quench

state of the system.

As shown in Ref. [16], the temporal variance for such small

quenches is of order δλ2, and is given by

∆BA
2 = 2δλ2

∑

n>0

|Zn|
2 +O

(

δλ3
)

, (1)

with Zn := A0,nBn,0/ (En − E0) and the notation An,m =

〈n|Â|m〉. The subscript B in ∆BA2 indicates that the vari-

ance is computed for time evolution following a quench δλ B̂.

A simple condition for neglecting the cubic term in Eq. (1) can

be written as δλ2χF ≪ 1, where χF is the fidelity suscepti-

bility [24]. Using the scaling law in Ref. [25], one obtains the

condition δλ ≪ min{L−d/2, L−1/ν}, where ν is the correla-

tion length critical exponent.

Equation (1) shows an intriguing similarity to the zero tem-

perature equilibrium isothermal susceptibility χAB defined by

〈ψ (δλ) |Â|ψ (δλ)〉 = 〈ψ (0) |Â|ψ (0)〉 − δλχAB +O
(

δλ2
)

,

where |ψ (δλ)〉 is the ground state of Ĥ = Ĥ0+δλ B̂. Indeed,

we have

χAB = 2
∑

n>0

ReZn. (2)

Moreover, using Eq. (1), we see that, to second order in δλ,

we have ∆BA2 = ∆AB2, where we define B(t) := 〈B̂(t)〉 =

〈ψ(t)|B̂|ψ(t)〉. The same duality holds for the susceptibility,

i.e., χAB = χBA for Hermitian operators Â, B̂.

For systems with a non-zero spectral gap∆, one can further

relate susceptibilities to quantum fluctuations. One can show

that χAA ≤ (2/∆)∆A2, where ∆A2 = 〈Â2〉 − 〈Â〉2 is the

(zero-temperature) quantum fluctuation of Â.

Both, quantum fluctuations and generalized susceptibilities,

are commonly used indicators of critical behavior in homoge-

neous systems. Here, we advocate for temporal fluctuations

as a superior indicator. For homogeneous systems (and ex-

tensive observables) one can show that all these quantities are

extensive in gapped, non-critical, systems [16, 26]. Instead,

in the critical region (defined by ξ ≫ L) one can use scaling

hypothesis to predict that the behavior at criticality is [16]:

∆A2 ∼ L2d−2∆A (3)

χAB ∼ Lq, q = 2d+ ζ −∆A −∆B (4)

∆BA
2 ∼ L2q . (5)

Note that if the perturbation B̂ is relevant, one has d+ ζ −
∆B = 1/ν > 0 and the exponent q can be written as q =
d + 1/ν − ∆A. The above equations make it clear that the

strongest divergence is exhibited by the temporal fluctuations.

For simplicity, setting Â = B̂, the exponents satisfy 2d −
2∆A < q < 2q.

We verify Eqs. (4) and (5) for a tight binding model

of spinless fermions Ĥ0 =
∑L

i=1

[

−J(f̂ †
i f̂i+1 +H.c.)

]

at

half filling (and periodic boundary conditions) and observ-

able/perturbation given by Â = B̂ =
∑

j(−1)in̂i. We find

that the scaling of χAB and ∆BA
2 is in accordance with the

predictions of Eqs. (4) and (5) with q = 1 (see Fig. 1).

Before we discuss inhomogeneous systems, which are the

ones relevant in the context of ultracold atom experiments, we
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FIG. 1. (Color online) Verification of Eqs. (4) and (5), which predict

χAB ∝ L and ∆BA
2 ∝ L2 when q = 1. A best fit to algebraic

scaling gives ∆BA2 ∝ L2.0 and χAB ∝ L1.1. We consider a tight

binding model at half filling with both the observable and pertur-

bation set to Â = B̂ =
∑

i
(−1)in̂i. ∆BA2 and χAB are made

dimensionless by dividing by their values at L0 = 102, i.e., we plot

χ̃AB = χAB(L)/χAB(L0) and ∆BÃ
2 = ∆BÃ2(L)/∆BÃ2(L0).

would like to clarify how the local compressibility κi relates

to the observables introduced so far. Straightforwardly, we re-

alize that κi = χAA with Â = n̂i, whereas Ni(t) := 〈n̂i(t)〉
and its (temporal) variance ∆BN 2

i are the dynamical coun-

terparts. We focus on a small perturbation of the strength of

a trapping potential of the form B̂ = L−2
∑

i(i − i0)
2n̂i.

Here i0 is the location of the trap center, and the potential is

normalized by L2 to ensure extensivity of the Hamiltonian.

(In principle, other quenches are clearly possible in which the

system is perturbed by varying different parameters, e.g., the

lattice depth.) Advocating a local density approximation, one

can assume that a very large trapped system can be divided

into extensive regions, where each region can be considered

approximately homogeneous. In this case, the scaling predic-

tion for the temporal variance of the site occupations, is

∆BN 2
i

(δλ)2
∼

{

O(1) i in the gapped region

Lγ i in the critical region
,

with a new scaling exponent γ. According to Eqs. (3)–(5),

we expect this exponent γ to be larger than the corresponding

ones for the compressibility and site-occupation fluctuations.

III. HARD-CORE BOSON SYSTEMS

As a first example for the proposed analysis, let us explore

how to detect spatial boundaries between coexisting phases in

an integrable model, where we can perform numerical sim-

ulations for very large systems. This also allows us to per-

form a finite-size scaling analysis to compare the divergence

of the temporal fluctuations with that of the compressibility,

demonstrating that the temporal variance exhibits a stronger

divergence at the boundary between domains.

We examine a quantum system of hard-core bosons in one

dimension described by the Hamiltonian

Ĥ0 = −J
L−1
∑

i=1

(b̂†i b̂i+1 +H.c.) + λ

L
∑

i=1

gin̂i, (6)

which can be thought of as the limit U/J → ∞ of the

Bose-Hubbard model [27]. In Eq. (6), b̂†i (b̂i) is the cre-

ation (annihilation) operator of a hard-core boson at site i,

n̂i = b̂†i b̂i, and gi describes a harmonic confining potential,

with gi = L−2(i − L/2 + ǫ)2. The trap is shifted off-center

by a small amount ǫ to remove degeneracies in the energy lev-

els and gaps of the Hamiltonian [see the discussion of Eq. (7)].

We initialize the system in a ground state |Ψ(0)〉 of a lattice

with L sites andN hard-core bosons. After performing a sud-

den quench on the trap potential, λ → λ + δλ at time t = 0,

the system evolves unitarily as |Ψ(t)〉 = exp(−iĤt)|Ψ(0)〉.

The post-quench Hamiltonian is given by Ĥ = Ĥ0 + δλ B̂.

The hard-core boson Hamiltonian (6) can be mapped onto a

Hamiltonian quadratic in fermion operators f̂ †
i and f̂i through

the Jordan-Wigner transformation [27]. From that transforma-

tion, it follows that the site occupations of hard-core bosons

and spinless fermions are identical. The fermionic Hamil-

tonian can be written as Ĥ =
∑

i,j f̂
†
iMi,j f̂j with Mi,j =

−J(δi,j+1+δi,j−1)+(λ+δλ)giδi,j . The noninteracting char-

acter of the latter system allows one to write temporal fluctua-

tions of site occupations (and in fact of any quadratic observ-

able in the fermions) in terms of one-particle quantities alone.

Consider the general observable X̂ =
∑

i,j f̂
†
i Γi,j f̂j . One can

show that 〈Ψ(t)|X̂ |Ψ(t)〉 = X (t) = tr(X̂e−itĤ′

ρ̂0e
itĤ′

) =
tr(Γe−itMReitM ) where R is the covariance matrix of the

initial state ρ̂0, i.e., Ri,j = tr(ρ̂0f̂
†
j f̂i) (note that the ini-

tial state does not necessarily need to be Gaussian). Let the

one-particle Hamiltonian M have the spectral representation

M =
∑

k Λk|k〉〈k| (|k〉 are one the particle eigenfunctions).

Defining Fk,q = 〈k|Γ|q〉〈q|R|k〉 where Γ, R are one-particle

operators, the temporal variance of X is then given by

∆X 2 =
∑

k,q

Fk,qFq,k −
∑

k

(Fk,k)
2. (7)

Note that Eq. (1) holds for sufficiently small δλ and re-

lies on the assumption of a non-degenerate many-body spec-

trum. Equation (7), on the other hand, relies on the assump-

tion of non-resonant conditions for the one-particle spectrum

[23, 28], which has been verified in our numerical calculations

(for ǫ 6= 0). To compute the variance of the site occupations,

we take X = Ni with Γ
(i)
x,y = δi,xδi,y .

Results of our numerical simulations are shown in Fig. 2,

where the site occupations are plotted along with the two

measures of local critical behavior we wish to compare here.

Clearly both quantities are able to distinguish the superfluid

regions from the insulating plateau at the trap center. The

local compressibility κi vanishes in the plateau (band insu-

lating) regions where the state is close to |1, 1, . . . , 1〉 (trap

center) and near the trap boundaries with state |0, 0, . . . , 0〉.
Also, κi is roughly constant in the superfluid region. In con-

trast, ∆N 2
i fluctuates strongly within the superfluid regime,

displaying sharp peaks delineating the insulating regime from

its surroundings. A closer look at the site occupation profiles

[Fig. 2(b)] reveals that, due to the finite size of the system

studied (which will also be the case in experiments), the site

occupations at the boundary between insulating and superfluid

domains change in a stepwise fashion. ∆N 2
i displays clear

signatures of the presence of such steps in the site occupation

profiles, while they are barely reflected in κi.
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FIG. 2. (Color online) (a) “Wedding cake” site occupation pro-

file of hard-core bosons in a one-dimensional harmonic trap de-

scribed by Eq. (6). The system consists of L = 500 sites and

N = 250. The Hamiltonian parameters are λ = 10, ǫ = 0.2,

δλ = L−2 (J = 1 throughout). The phase boundaries between

the Mott plateau located at the trap center and the adjacent super-

fluid regions can be detected by the conventional local compress-

ibility κi (red) and by the temporal variance of the site occupations

∆N 2

i (green) introduced in this work. (b) A closer look at the su-

perfluid region for the system shown in (a) reveals temporal variance

peaks at the interface between the superfluid and the Mott insula-

tor. (c) Finite-size scaling of the maximum temporal variance of the

site occupations and of the compressibility vs L for the Hamilto-

nian in Eq. (6). We find ∆N 2
max ∝ L0.83 and κmax ∝ L0.05.

Both quantities in this plot are made dimensionless by dividing by

their values at L0 = 50, i.e., κ̃max = κmax(L)/κmax(L0) and

∆Ñ 2
max = ∆N 2

max(L)/∆N 2
max(L0). (d) Dependence of the nor-

malized temporal variance (∆N 2

i /δλ
2) on the quench amplitude δλ

for the Hamiltonian in Eq. (6) with all other parameters as in (a).

More importantly, a finite-size scaling analysis reveals that

the maxima of ∆N 2
i diverge much more rapidly with system

size than the maxima of κi . We first verified that the size ℓ of

the intermediate region between the two band insulator states

scales as ℓ ∼ L/c with c ≈ 4. A fit to numerical data [see

Fig. 2(d)] reveals power-law dependencies on system size L
(or equivalently, on ℓ)

∆N 2
max ∝ L0.83 (8)

κmax ∝ L0.05 (9)

The scaling seen in Fig. 2(d) makes apparent that, beyond
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FIG. 3. (Color online) (a) Unit cell averaged site occupancy in

the presence of a staggered potential Eq. (10). This is a system

with L = 500, N = 150, and parameters λ = 10, ǫ = 0.2,

δλ = 1/L2, V0 = 1.5. (b) A closer look at the superfluid re-

gion for the system shown in (a) reveals temporal variance peaks

at the interface between the superfluid and the Mott insulator. (c)

Finite-size scaling of the maximum temporal variance of the site

occupations and of the compressibility vs L for the Hamiltonian

Eq. (10). We find ∆N 2
max ∝ L0.80 and κmax ∝ L0.14. Both quan-

tities in this plot are made dimensionless by dividing by their val-

ues at L0 = 50, i.e., κ̃max = κmax(L)/κmax(L0) and ∆Ñ 2
max =

∆N 2
max(L)/∆N 2

max(L0).

some system size (that will depend on the Hamiltonian pa-

rameters), the signal given by ∆N 2
i will exceed that of κi.

This means that the boundaries between domains can be de-

termined with higher confidence using the temporal measure,

provided the systems are not too small.

In general, insulating states realized in experiments exhibit

nonzero quantum fluctuations of the site occupancies. This

is to be contrasted to the quantum fluctuations of the site oc-

cupancies in the band insulating phases of Hamiltonian (6),

which are always zero. In order to address what happens in

the presence of nonzero quantum fluctuations of the site oc-

cupancies, while still retaining the advantages of dealing with

models mappable to noninteracting ones, we add a staggered

potential to Eq. (6) and consider

Ĥ0 = −J
L−1
∑

i=1

(b̂†i b̂i+1 +H.c.) +

L
∑

i=1

[λgin̂i + V0(−1)in̂i].

(10)

The properties of systems which such a Hamiltonian have

been previously studied for spinless fermions [29] and hard-

core bosons [30]. The ground state displays site-occupation

fluctuations within the insulating phase with average site oc-

cupancy of 1/2. Those fluctuations vanish as V0 → ∞,

in which case the insulator becomes a product state of the

form |0, 1, 0, . . . , 1, 0〉. Accordingly, we plot all quantities
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in Fig. 3(a) averaged over (two site) unit cells. As seen in

Fig. 3(a), for this model and the parameters chosen, the insu-

lating plateau in the center of the trap is larger relative to the

size of the superfluid domains than the one in the absence of

the staggered potential. Nonetheless, the superfluid domains

are clearly identifiable using ∆N 2
i and κi (notice that κi is

nonzero also in the insulating domain). Studying the finite-

size scaling of the maximum of both quantities, we find the

temporal variance and compressibility scaling to be,

∆N 2
max ∝ L0.80 (11)

κmax ∝ L0.14 (12)

[see Fig. 3(c)], respectively. Therefore the same conclusions

hold regarding better detectability of spatial phase boundaries

using ∆N 2
i for sufficiently large system sizes. Interestingly,

we have found that the systems sizes for which ∆N 2
i starts

to give a stronger signal than κi are larger in the presence

than in the absence of the staggered potential. This results

from having nonzero charge fluctuations in the insulator in

the center of the trap.

The dependence of the normalized temporal variance

(∆N 2
i /δλ

2) on the quench amplitude δλ is depicted in

Fig. 2(c) for the Hamiltonian in Eq. (6). As expected, the

normalized temporal variance decays for increasing δλ, fol-

lowing a linear regime (∆N 2
i ∝ δλ2) for small quenches

(δλ < 1/L2).

IV. NONINTEGRABLE SYSTEMS

In order to show that the proposed approach works beyond

integrable Hamiltonians such as the ones analyzed in the pre-

vious section, here we consider a nonintegrable model. We

should stress that the exponential increase of the Hilbert space

with system size severely restricts the system sizes that can

be studied numerically. We focus on a system consisting of

hard-core bosons with nearest and next-nearest interactions (a

J-V -V ′ model) in the presence of a harmonic trap, described

by the Hamiltonian

Ĥ =

L−1
∑

i=1

[

−J(b̂†i b̂i+1 +H.c.) + V

(

n̂i −
1

2

)(

n̂i+1 −
1

2

)

+V ′

(

n̂i −
1

2

)(

n̂i+2 −
1

2

)]

+ λ

L
∑

i=1

i2n̂i. (13)

Note that, in order to maximize the size of insulating and su-

perfluid domains, in Eq. (13) we only consider one half of

what would be the harmonic trap in an experiment.

In the absence of a trap, the phase diagram of Hamilto-

nian (13) has been studied using the density matrix renor-

malization group technique [31]. The competition between

nearest-neighbor and next-nearest-neighbor interactions gen-

erates four phases: two charge-density-wave insulator phases,

a superfluid (Luttinger-liquid) phase, and a bond-ordered

phase. In the presence of a trap, and for a suitable choice of the

parameters, the same four phases can be observed. We focus

our analysis on a parameter regime where the system exhibits

a charge density wave of type one (CDW-I) in the center of

the trap, which is surrounded by a superfluid phase. The site

occupations in the CDW-I phase are similar to those in the

presence of the superlattice potential analyzed in the previous

section, when the average site occupation per unit cell is 1/2

(see Fig. 4). In contrast to the superlattice case, the CDW-

I phase here is not due to the presence of a translationally

symmetry breaking term but is stabilized by the presence of

interactions. There are two other phases that have larger unit

cells, consisting of 4 sites for CDW-II and 3 sites for bond-

order. The CDW-I phase is the best suited for our purposes

because we are able to observe several unit cells that exhibit

its expected properties.

In Fig. 4(a), we show results for a site-occupation profile

exhibiting a CDW-I plateau surrounded by a small superfluid

domain. In the same figure one can see that, at the edge of the

CDW-I plateau, the local compressibility κi exhibits a much

weaker signal than the temporal fluctuations ∆N 2
i . (Note that

we used multiplicative factors to enhance κi and reduce ∆N 2
i

so that both measures can appear on the same scale). Also,

notice that κi does not vanish in the CDW-I plateau, which ex-

hibits nonzero site occupation fluctuations. Since calculations

for larger systems are prohibitively large, a finite-size scaling

analysis of the observables is not possible here. Nonetheless,

from Fig. 4(a), it is evident that the temporal variance is a bet-

ter indicator of the interface between domains than the local

compressibility. In fact, compared to the integrable systems

considered in the preceding section, the advantage of using

∆N 2
i over κi to identify interfaces between domains is en-

hanced, especially taking into account the small system sizes

considered here.

In Fig. 4(b), we plot ∆N 2
i /δλ

2 vs δλ. Similarly to the

results in the previous section, we notice a decrease in the

peak height with increasing δλ, following a linear regime

(∆N 2
i ∝ δλ2) at small δλ. For δλ & 0.2, a qualitatively

different behavior sets in. This is because the CDW-I domain

is destroyed by the final trap and an n = 1 Mott insulating do-

main appears at the potential minimum of the trap. The latter

domain gives rise to a large temporal variance of the site occu-

pations at its end, which is located in sites that were formerly

in the CDW-I regime.

We now go beyond the second moment analysis presented

so far and examine the full probability distribution Pi(x) of

the random variable Ni(t) equipped with the time average

measure •. Based on the results for homogeneous systems

[16, 17], we expectPi(x) to be a single peaked, approximately

Gaussian, narrow distribution for sites i deep in the (gapped)

insulating regime. On the contrary, Pi(x) is predicted to be a

double peaked distribution with a relatively large variance for

(critical) interface sites i. In a limiting, somewhat simplified

case, Pi(x) can be approximated by a two parameter distribu-

tion Pi(x) = 1/

(

π
√

2∆N 2
i − (x −Ni)2

)

[17].

In Fig. 5(a), we show the distribution Pi(x) for sites near

the interface separating the insulating and superfluid regions.

For sites i deep in the insulating region [Fig. 5(b)], the site oc-

cupations fluctuate about one unique central value, resulting
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FIG. 4. (Color online) (a) Spatial profile of the temporal variance

of the site occupations ∆N 2

i and of the local compressibility κi for

the model in Eq. (13). We initialize the system with 19 sites and

5 particles in the ground state with parameters J = 1, V = 8.0,

V ′ = 0.5 and λ = 0.1225. The quench is performed by changing the

trap potential from λ to λ + δλ with δλ = 0.0061. (b) Dependence

of the variance on the quench amplitude δλ.

in a singly-peaked distribution function. This signifies mea-

sure concentration, indicating local equilibration in the finite

system considered here [Fig. 5(c)]. In contrast, as one moves

closer to the interface [Fig. 5(d)], the expectation values of

observables can be approximated as [17]

A(t) ≃ A(t)+A1 cos[(E1−E0)t]+A2 cos[(E2−E0)t]+. . .
(14)

with the remaining terms being negligible (the constants A1,2

depend on the initial state, evolution Hamiltonian and first ex-

cited states, see [17] for details). The probability distribution

then develops peaks at A(t) ± ||A1| − |A2|| and a relatively

large variance [17]. This bistability indicates a lack of mea-

sure concentration and a breakdown of local equilibration [see

Fig. 5(e)].

V. MEASURING TEMPORAL VARIANCES

So far we assumed that the expectation value A(tj) =
〈A(tj)〉 could be determined exactly for various times tj . In

this section, we take a deeper look at the issue of estimating

the temporal variance ∆A2 using measurement data, keeping

in mind ultracold atom experiments. In these experiments,

one typically obtains information about site occupations by

taking a “snapshot” of the system [8, 9] at a given time tj af-

ter the quench. In that case, the observable of interest is the

on-site occupation number. We keep our discussion general

so that it can be applied to any observable. The expectation

value A(tj) = 〈A(tj)〉 can be estimated by performing NS

measurements of A after the same amount of time tj after
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FIG. 5. (Color online) (a) Distributions of the site occupations Ni(t)
at sites near the interface between the CDW-I and the superfluid

phase. (b) and (d) Distribution function of the site occupation at

a site deep in the CDW-I regime (site i = 1) and at a site at the

edge of the CDW-I domain (site i = 10), respectively. (c) and (e)

Time dependence of Ni(t) corresponding to (b) and (d), respectively.

These results are obtained from simulations with the same Hamilto-

nian and system parameters as in Fig. 4. Each Ni(t) is sampled at

N = 4 × 104 random times uniformly distributed in [0, T ] with

T = 40~/J .

the quench. When A is compactly supported [for Fermions

n̂i(tj) is actually Bernoulli distributed] the error in estimat-

ing A(tj) decreases exponentially with NS as a consequence

of the Chernoff bound. One strategy to estimate the tempo-

ral variance would be to take NS sufficiently large such that

A(tj) can be obtained with the desired precision. One then

needs to repeat the above procedure at NT different times

{t1, t2, . . . , tNT
} where ti ∈ [0, T ] to estimate the temporal

variance[32]. As a result, a total of NSNT measurement are

required (in principleNs may depend on j, but we do not con-

sider this generalization here). However this may not be the

best strategy to obtain the temporal variance ∆A2. In practice

one wants to minimize the total number of measurements.

In order to design better strategies, we look deeper into the

measurement problem in our out-of-equilibrium setting. We

recall it here for clarity: the system is prepared,NSNT times,

in the same initial state ρ0 at time t = 0 and allowed to evolve

unitarily thereafter with the same Hamiltonian parameters.

Let us denote with Ap(tj) the result of the p-th measurement

of A performed at time tj , p = 1, . . . , NS , j = 1, . . . , NT

(i.e., one of the eigenvalues of A). The random variables
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Ap(tj) at different times are independent but not identically

distributed (as opposed to measurements performed in equi-

librium, in which case they are identically distributed).

In the language of statistics, what we would like to build

is a consistent estimator of the temporal variance ∆A2. A

consistent estimator is a method to obtain a given quantity

with the property that, as the number of data point increases,

the estimator converges to the actual parameter we are trying

to estimate (see e.g. Ref. [33]). In our case the data points are

the random variables Ap(tj). The quantum expectation value

A(tj) = 〈A(tj)〉 is estimated using NS measurements by

ej =
1

NS

NS
∑

p=1

Ap(tj),

which converges to A(tj) in the large NS limit. We now de-

fine the following estimator v for the the temporal variance of

A:

v =
1

NT

NT
∑

j=1

(ej − µ)2 with µ =
1

NT

NT
∑

j=1

ej . (15)

Using E[•] to denote expectation value over all the NSNT

independent measurements, we find,

E[v] =
1

NTNS







(NS − 1)
∑

j

〈A(tj)〉
2 +

∑

j

〈A2(tj)〉







−
1

N2
T

∑

j 6=k

〈A(tj)〉〈A(tk)〉

−
1

N2
TNS







(NS − 1)
∑

j

〈A(tj)〉
2 +

∑

j

〈A2(tj)〉







.

We still have to specify how to choose the NT times. If

we pick the times randomly with uniform distribution in [0, T ]
and denote withT[•] the corresponding time average operation

(i.e., T averages uniformly over all NT independent times tj),

we obtain

T[E[v]] =

[

NS − 1

NS
(〈A(t)〉2)T −

NT − 1

NT
〈A〉T

2
]

+
1

NSNT

[

(NT − 1)〈A(t)2〉T − (NS − 1)(〈A(t)〉2)T
]

,

where we indicated f(t)T = T−1
´ T

0 f(t)dt. We see that in

the limit NS , NT → ∞, the expectation value of this estima-

tor tends to the exact variance (A2)T −
(

AT
)2

=: ∆A2
T .

This means that v is an asymptotically unbiased estimator,

i.e., when the number of measurement increases the estima-

tor converges to the exact temporal variance. Furthermore,

we have numerically checked that v is also a consistent es-

timator, meaning that the error on v, encoded in var[v] =
T[E[v2]]− T[E[v]]2, tends to zero as the number of measure-

ments increases. In Fig. 6(b), we show that var[v] ∼ N−1
T .

We now show the feasibility of this approach for distin-

guishing different domains in trapped systems. We perform
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FIG. 6. (Color online) Estimating the temporal variance. (a) An

example of the temporal variance estimator v at each site for NS = 3
and NT = 10. All parameters are the same as for Fig. 4. We compute

v independently for each of the L = 19 sites of the system. (b)

Scaling of the variance of the estimator v at the site i = 10 with

NT , for different values of NS . The fit shows var(si) ∼ N−0.97

T

for the NS values considered, in accordance with our prediction that

v is a consistent estimator. (c) Results of a numerical experiment to

compute pM , the probability that {vi} and the exact variance have

maxima at the same sites (i = 9, 10). 104 samples of {vi} were

used to compute these probabilities.

numerical experiments on the Hamiltonian in Eq. (13). Ac-

cording to our general recipe, we perform a small quench of

the trapping potential and measure the occupation number at

each site during the following time evolution. In this case, the

observable is the site occupation A = b̂†i b̂i and we use vi to

denote the corresponding temporal variance estimated accord-

ing to Eq. (15) for i = 1, . . . , L. As mentioned earlier,Ap(tj)
is the result of the p-th measurement of A at time tj . In our

numerical experiments, this is obtained by randomly generat-

ing one of the eigenvalues of A (0 or 1 for A = b̂†i b̂i) with

probabilities given by the Born rule.

In figure 6(a), we show a typical realization of vi obtained

taking NT = 10 and NS = 3, for a total of 30 measure-

ments. One can compare Fig. 6 with Fig. 4(a), where the ex-

act variance is plotted for the same parameters. Clearly, the

maxima at sites 9, 10 in Fig. 6(a) predicts a transition region

in agreement with that in Fig. 4(a). Still, we are primarily

interested in the efficacy of vi in locating the boundary be-

tween coexisting phases. In other words, we are interested

in knowing whether the position of the maxima of vi coin-

cides with that of the exact variance [sites 9 and 10 as seen

in in Figs. 4 and 6(a)]. To this end, we compute the proba-

bility pM (NT ) = Prob(argmaxi{vi} ∈ {9, 10}) as a func-

tion of the number of measurements NT . pM (NT ) is plotted

in Fig. 6(c) as a function of NT for different Ns. We ob-

serve that the estimator defined in Eq. (15) allows us to locate
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the boundary with a 90% accuracy, using a total of around 40

measurements. These findings suggest that temporal fluctu-

ations can be used to efficiently locate critical boundaries in

experiments.

VI. CONCLUSIONS

We have studied various trapped systems whose ground

states exhibit coexistence of insulating and superfluid do-

mains, as relevant to ultracold atom experiments in optical

lattices. An analysis of the time evolution of the site occu-

pations Ni, following a small quench of the trapping poten-

tial, allowed us to show that the temporal variance of Ni can

be used as an accurate tool to locate boundaries between do-

mains. We found that the temporal variance of Ni at those

boundaries exhibits a power law scaling with system size with

an exponent that is greater than the one of a previously pro-

posed local compressibility.

Furthermore, we performed a binning analysis to explic-

itly study the temporal probability distribution of site occu-

pancies. Such a temporal distribution gives the probability of

observing a given value of the site occupation in a large obser-

vation time-window [0, T ]. We observed that the distributions

are sharply peaked and approximately Gaussian for sites that

are deep in the insulating phase, while sites at the interface

display a bimodal distribution, i.e., are characterized by a lack

of measure concentration. We further analyzed the feasibility

of our approach from an experimental point of view. We found

that since we are interested in general features of the temporal

variance profile (presence of peaks at phase interfaces), rather

than the exact statistics of Ni, sample variances obtained us-

ing small number of measurements (around 40 for a system

with 19 sites and 5 particles) are sufficient for locating phase

boundaries with high probability.
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