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We describe a collective state atomic clock (COSAC) with Ramsey fringes narrowed by a factor

of
√
N compared to a conventional clock – N being the number of non-interacting atoms – without

violating the uncertainty relation. This narrowing is explained as being due to interferences among
the collective states, representing an effective

√
N fold increase in the clock frequency, without

entanglement. We discuss the experimental inhomogeneities that affect the signal and show that
experimental parameters can be adjusted to produce a near ideal signal. The detection process
collects fluorescence through stimulated Raman scattering of Stokes photons, which emits photons
predominantly in the direction of the probe beam for a high enough optical density. By using a
null measurement scheme, in which detection of zero photons corresponds to the system being in a
single collective state, we detect the population in a collective state of interest. The quantum and
classical noise of the ideal COSAC is still limited by the standard quantum limit and performs only
as well as the conventional clock. However, when detection efficiency and collection efficiency are
taken into account, the detection scheme of the COSAC increases the quantum efficiency of detection
significantly in comparison to a typical conventional clock employing fluorescence detection, yielding
a net improvement in stability by as much as a factor of 10.

PACS numbers: 06.30.Ft, 32.80.Qk

I. INTRODUCTION

It is well known that the width of the fringes, observed
as a function of the detuning, in a pulsed excitation of an
atomic transition, is limited by the inverse of the inter-
action time. This effect is routinely observed in systems
such as microwave or Raman atomic clocks [1–5]. It is
also well known that the effective interaction time can be
extended by employing Ramsey’s technique of separated
field excitations [6]. In that case, the transit time limited
linewidth is determined by the inverse of the time delay
between the two fields. The temporal profile of the field
envelope seen by the atoms is a pair of square pulses,
each with a duration T1, separated by T2. For a conven-
tional clock (CC), the Ramsey technique produces a sync
function with a width of ∼ T−1

1 , modulated by a sinusoid
with a fringe width of ∼ T−1

2 , all centered at the carrier
frequency.
The width of these fringes can be reduced by making

use of entanglement, as demonstrated by Wineland et al.
using trapped ions [7]. Consider, for example, a situation
where the use of entanglement allows one to couple the
ground state of three particles to a state where all three
particles are in the excited state, representing a collective
excitation. This corresponds to an effective increase in
the transition frequency by a factor of three. As such, the
detuning for a single atom gets tripled for this collective
excitation, so that the width of the Ramsey fringe gets
reduced by a factor of three. However, realizing such
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a scheme for a large number of particles is beyond the
capability of current technology.

Here, we describe a scheme that produces Ramsey
fringes that are narrower by a factor of more than 103

for parameters that are readily accessible, without mak-
ing use of entanglement. While the concept can be ap-
plied to other types of atomic clocks, as described later,
the specific experiment we propose is an optically off-
resonant Raman atomic clock using ensembles of N cold
atoms. The clock transition is detected by measuring one
of the collective states rather than measuring individual
atomic states. The fringes observed as a function of the
Raman (i.e. two photon) detuning is found to be ∼

√
N

times narrower than the transit time limited width that
would be seen by measuring individual atomic states, as
is the case with the CC. For the current state of the art
of trapped atoms, the value of N can easily exceed 106,
so that a reduction of fringe width by a factor of more
than 103 is feasible.

The reduction in the width of the fringe, especially
by such a large factor, strongly violates the conventional
transit time limit of spectroscopic resolution. However,
we show, via a detailed analysis of the standard quan-
tum limit and the Heisenberg limit, that, indeed, this vi-
olation of the conventional transit-time limit is allowed,
and is within the constraint of the more fundamental
uncertainty principle of quantum mechanics. We also
show that under certain conditions, frequency fluctuation
of the COSAC can be significantly smaller, by as much
as a factor of 10, than that for a fluorescence detection
based conventional clock employing the same transition
and same atomic flux. The ultra-narrow resonances pro-
duced in this process may also open up the possibility
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of exploring novel ways of implementing spin-squeezing
techniques for further improvement in clock stability [8–
11].
The rest of the paper is organized as follows. In Section

II, we introduce a single three level atomic system and
how it propagates through a Ramsey fringe experiment.
In Section III, we derive the propagation of a collective
state through the same Ramsey fringe experiment, show-
ing mathematically the narrowing of the fringe by

√
N .

In the subsections, the effects of velocity distribution,
field inhomogeneity, spontaneous emission, and fluctua-
tion in the number of atoms are discussed. We show that
while these effects tend to degrade the signal, these limi-
tations can be circumvented with proper choice of experi-
mental parameters. In Section IV, we lay out the scheme
for realizing the COSAC experimentally. The detection
scheme is fundamentally different from that of the CC
since only a single collective state is detected. Because
the atoms are in a superposition of collective states at
the end of the Ramsey fringe experiment, and the CC
detects signal from one level of the (reduced) two level
system, such detection scheme collects signal from most
of the collective states. In contrast, the heterodyne detec-
tion scheme employed for the COSAC ensures that only
a single collective state is detected. In Section V, the per-
formance of the COSAC is compared to that of the CC
by analyzing quantum and classical noise, detector effi-
ciency, and collection efficiency. In Section VI, we present
the physical interpretation for why the linewidth narrows
for a COSAC. We ensure, by proper interpretation of
the frequency uncertainty and observation time, that the
fundamental quantum limit is not violated. Lastly, in
Section VII, we conclude with a summary of the paper.

II. THREE LEVEL ATOMIC SYSTEM IN

RAMSEY FRINGE EXPERIMENT

The optically off-resonant Raman atomic clock em-
ploys three hyperfine energy levels in a Λ scheme de-
picted in Fig. 1 (a). The ground states |1〉 and |2〉 of
this atom interact with an excited state |3〉 via two co-
herent electromagnetic light fields of frequencies ω1 and
ω2, respectively, detuned from resonance by δ1 and δ2,
respectively. The Hamiltonian after the dipole approxi-
mation, rotating wave approximation, and rotating wave
transformation can be expressed as [12]:

H =
~

2
[(δσ11 − δσ22 − 2∆σ33)− (Ω1σ13 +Ω2σ23 + h.c.)]

(1)
where σµν = |µ〉〈ν|, δ ≡ δ1 − δ2 is the two photon detun-
ing, ∆ ≡ (δ1 + δ2)/2 is the average detuning, and Ω1,2

are the Rabi frequencies. Here, we have also assumed a
phase transformation applied to the Hamiltonian so that
Ω1,2 are real. We assume next that ∆ ≫ Γ,Ω1, and Ω2

(where Γ is the decay rate of state |3〉) so that the effect
of Γ can be neglected, and state |3〉 can be eliminated
adiabatically [13, 14] (in Section III, we will consider

the residual effect of spontaneous emission). Under these
conditions, the Hamiltonian of the reduced two level sys-
tem can be expressed as Hred = (~δ/2)σz − (~Ω/2)σx,
where Ω ≡ Ω1Ω2/2∆ is the Raman Rabi frequency, and
σz and σx are Pauli matrices defined as σz = (σ11 − σ22)
and σx = (σ12 + σ21). The quantum state for this sys-
tem is given by |ψ(t′ + t)〉 = W δt

Ωt|ψ(t′)〉 where |ψ(t′)〉 =
c̃1(t

′)|1〉+ c̃2(t′)|2〉, and the propagation operator is given
by [15]

W δt
Ωt = eiδt/2

(

cosφ− i δ
Ω′

sinφ −i ΩΩ′
sinφ

−i Ω
Ω′

sinφ cosφ+ i δ
Ω′

sinφ

)

(2)

where φ = Ω′t/2, and Ω′ ≡
√
Ω2 + δ2 is the generalized

Rabi frequency.
When this system is excited by two pulses of duration

T1, separated in time by T2, we have Ω1(t) ∼ Ω2(t) =
Ω0[U(t)−U(t−T1)+U(t−(T1+T2))−U(t−(2T1+T2))]
where U(t) is the Heaviside step function. When δ ≪ Ω
and the width of the pulse is chosen to be ΩT1 = π/2,
each pulse acts on the system as a propagation oper-
ator W 0

π/2 = (I − iσx)/
√
2. While the system is be-

tween t = T1 and t = T1 + T2 where no interaction is
present, the propagation operator can be expressed as
W δT2

0 = σ11 + eiδT2σ22. After passing through the three
zones, the state of the atom that was originally in state
|1〉 is |ψ〉 =W 0

π/2W
δT2

0 W 0
π/2|1〉 = −ieiθ(sin θ|1〉+cos θ|2〉)

where θ = δT2/2 is the dephasing angle. The probability
of the atom being in state |2〉 is P2 ≡ |〈2|ψ〉|2 = (cos θ)2.

III. COLLECTIVE STATE ATOMIC SYSTEM IN

RAMSEY FRINGE EXPERIMENT

The discussion can be generalized to N atoms that
are all excited by the same field. We assume that
there are no overlaps between the wavefunctions of the
atoms and there is no interaction among them [16].
The evolution of each atom under these assumptions
can be described individually, and the total quantum
state is simply the outer (tensor) product of individual
quantum states [17, 18]. However, the interaction can
also be described equivalently using a basis of collective
states [16, 17]. The Hilbert space of N two level atoms
is spanned by 2N states. Thus, when transformed to the
collective state basis, there are also 2N collective states.
For identical Rabi frequencies and resonant frequencies,
however, only the generalized symmetric states [17],
of which there are only (N + 1), are relevant, and the
rest of the (2N − N − 1) states become decoupled. The
case where inhomogeneity of the Rabi frequencies and
different Doppler shifts experienced by different atoms
are taken into account is presented at the end of this
section. We also note that if different atoms see different
phase factors from the excitation fields, these factors
can be absorbed into the definition of the generalized
symmetric states [17]. The simplified symmetric states,
known as the conventional Dicke states [16], represent
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Figure 1. (a) Three level atomic system (b) Population of
|EN 〉 at the end of Ramsey pulse sequence as function of δ.

the case where it is assumed that the mean separation
between the atoms is much less than the wavelength
corresponding to the two level transition (which, for
the co-propagating off resonant Raman excitation, is
∼ (k1 − k2)

−1). While this constraint is not necessary
for the concept proposed here [17], it is easier to
describe the process initially under this constraint.
The observables computed remain correct when this
constraint is not met. Some of these Dicke states are as
follows: |E0〉 ≡ |111...1〉, |E1〉 ≡ ∑

i=1 |11...2i...1〉/
√
N ,

|E2〉 ≡ ∑

i,j 6=i |11...2i...2j ...1〉/
√

NC2, |E3〉 ≡
∑

i,j,k |11...2i...2j ...2k...1〉/
√

NC3, and |EN 〉 ≡ |222...2〉
where NCn = N !/n!(N − n)!. For instance, |E2〉 is the
Dicke state with two atoms in |2〉 and the rest in |1〉.
Any two atoms can be in |2〉 with equal probability, with
NC2 = N(N − 1)/2 such possible combinations.

The Hamiltonian in the basis of the symmetric

collective states is H =
∑N

k=0[−k~δ|Ek〉〈Ek|] +
∑N−1

k=0 [(~Ωk+1|Ek〉〈Ek+1| + H.c.] where Ωk+1 =√
N − k

√
k + 1Ω is the Rabi frequency between col-

lective states [16, 17]. The states are separated by ~δ
in energy and couple at different rates. For instance,
Ω1 = ΩN =

√
NΩ, Ω2 = ΩN−1 =

√

2(N − 1)Ω, etc.
The middle states have the strongest coupling rate of
ΩN/2 = NΩ and the end states couple most weakly.

The final state of the system at the end of the second
π/2 pulse can be derived by using either the collective
state picture or, equivalently, the single atom picture.
For a large value of N , carrying out the calculation in
the collective states basis is numerically cumbersome and
analytically intractable. However, we can find the state
trivially by using the single atom picture and then deter-
mining the coefficients of the collective states by simple
projection, given the definition of the (N + 1) general-
ized symmetric collective states. As such, the final state

of the system is |ψ〉 =
∏N

i=1(W
0
π/2W

δT2

0 W 0
π/2)i|1〉i. In

the basis of the generalized symmetric collective states,
this becomes:

|ψ〉 = (−ieiθ)N
N
∑

k=0

√

NCk(sin θ)
N−k(cos θ)k|Ẽk〉 (3)

The population of the state |ẼN 〉 at the end of the sep-
arated field experiment is

PC
N ≡ |〈ẼN |ψ〉|2 = (cos θ)2N (4)

which is simply (P2)
N . This quantity, PC

N , represents
the probability of finding the whole system in the state
|EN 〉 whereas P2 represents the probability of finding
each atom in state |2〉. In a conventional experiment,
the population of atoms in state |2〉 is measured, for ex-
ample, by collecting fluorescence produced by coupling
|2〉 to an auxiliary state. The resulting signal is propor-
tional to P2, independent of the number of atoms. The
experiment that we propose, to be described shortly, pro-
duces a signal that is proportional to PC

N . When Eq. (4)
is plotted for various values of N (Fig. 1 (b)), it is ev-
ident that the linewidth of the fringe as a function of θ
decreases as N increases. The value of the linewidth,
defined as the full width half maximum (FWHM), is
given by Γ(N) = 2 arccos (2−1/2N ). The derivative of
[Γ(1)/Γ(N)]2 with respect to N , for large N , approaches
the value of 0.8899 + O(N−3/2), which we have verified
with a linear fit to [Γ(1)/Γ(N)]2. To a good approxi-

mation, Γ(N)/Γ(1) ≈ 1/
√
N . Noting that θ = δT2/2,

Γ(1) ≃ π/T2 is understood to be the transit time lim-

ited linewidth. Then Γ(N) = Γ(1)/
√
N = π/(T2

√
N) is

a violation of the transit time limit, which is discussed
in Section VI, along with the physical interpretation of
what occurs in the collective atomic clock system.

A. Effect of velocity distribution

A two level atomic system |ψ〉 interacts with light fields
and evolves as |ψ(t′ + t)〉 = W δt

Ωt|ψ(t′)〉. The two lev-
els in the proposed scheme are, for example, the hy-
perfine ground states of an alkali atom such as 85Rb.
After the π/2-dark-π/2 sequence, the system is in state

|ψ〉 = W δT2

π/2W
δT2

0 W δT2

π/2 |1〉. Unlike in Section II, we here

do not make the approximation that δ ≪ Ω. Then the
signal we expect to see for a single atom is proportional
to P2 = |〈2|ψ〉|2 = |〈2|W δT2

π/2W
δT2

0 W δT2

π/2 |1〉|2, and the col-

lective state signal is

Scol = ΠN
i=1|〈2|W δT2

π/2W
δT2

0 W δT2

π/2 |1〉|
2

= |〈2|W δT2

π/2W
δT2

0 W δT2

π/2 |1〉|
2N (5)

We assume that the density of atoms in the trap is fixed
at ρA = 109 mm−3, so that the width of the atomic en-
semble, which has a Gaussian spatial distribution, varies
with the number of atoms. With N = 2 × 106 atoms in
the trap, the size of the cigar-shaped ensemble is 1 mm
in length in the direction of the Raman beams, and ∼ 50
µm in diameter in the other two directions.
When an atom with velocity v interacts with a field

with frequency ω propagating in the direction of the
atom, the frequency of the field is shifted by δD =
vω/c. The Maxwell Boltzmann velocity distribution is
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ρMB(v, T ) =
√

ma/(2πkT )exp
−mav

2/(2kT ) where ma is
the atomic mass and T is the temperature. We assume
the temperature to be given by the Doppler cooling limit,
so that TMOT = ΓRb~/(2k) = 138 µK for 87Rb. The

average velocity is then vav ∼ 18.3 cm/s, with a corre-
sponding Doppler shift of δDav

= 4.18 Hz. Under these
conditions, the signal is

SDop = Π5vav

v′=−5vav
|〈2|W (δ+δD(v′))T2

π/2 W
(δ+δD(v′))T2

0 W
(δ+δD(v′))T2

π/2 |1〉|[2ρMB(v′,TMOT )] (6)
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Figure 2. Collective state signal at the end of the Ramsey
field experiment for various number of atoms, with parameters
Ω = 5·105 s−1 and T2 = 3·10−5 s. Plotted are the ideal signal
(dashed line), Scol, and the reduced signal (solid line), SDop,
where the effect of Doppler shift is taken into account.

where we take into account velocities that are up to five
times the vav. Plotted in Fig. 2 are the signals Scol

and SDop for various N values, with T2 = 3 · 10−5 s and
Ω = 5 · 106 s−1. The Doppler effect decreases the overall
signal while having virtually no effect on its width. It
decreases exponentially as N increases. However, for the
given choice of temperature and N = 2 ·106, the reduced
signal is SDop ∼ 0.9Scol. Of course, the signal can be
improved if the temperature is reduced below the Doppler
cooling limit.

B. Effect of field inhomogeneity

Consider next the effect of the inhomogeneity in the
laser field amplitude. We assume that the atomic en-
semble has a Gaussian spread with a width of ωA:

ρN (γ) = ρ0e
−(γ2/ω2

A). The width considered in this
section is in the direction perpendicular to the propa-
gation direction of the Raman beams, since the atoms
spread in the propagation direction of the beams see the
same fields. Each of the two laser fields that produce
the Raman-Rabi excitation is also assumed to have a
Gaussian profile with a width of ωL > ωA. Since the
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Figure 3. Collective state signal at the end of the Ramsey field
experiment for various Gaussian beam widths. N = 2 · 106

atoms; Ω = 5 · 105 s−1; T2 = 3 · 10−5 s. Plotted are the
ideal signal (dashed line), Scol, and the reduced signal (solid
line), SΩ, when the Gaussian nature of the beam is taken into
account. The plots are for various ratios of the widths of the
laser field to the atomic ensemble: ωL/ωA.

Raman-Rabi frequency is proportional to the product of
the Rabi frequencies for each of these lasers, it follows
that the Raman-Rabi frequency is also a Gaussian with

a width of ωL: Ω(γ) = Ω0e
−(γ2/ω2

L). The peak value
of Ω (i.e., Ω0) is chosen so that the atoms at the center
(r = 0) experience a perfect π/2-pulse for an interaction
time of T1. Ignoring the effect of the Doppler spread in
the velocity, the COSAC signal is then given by

SΩ = Πwrb

r=−wrb
|〈2|W δT2

Ω′(r)T1
W δT2

0 W δT2

Ω′(r)T1
|1〉|2ρN (r) (7)

The signals for various ratios of wL/wA are plotted in Fig.
3 for N = 2 · 106 and density of ρA = 109 mm−3. The
signal affected by the inhomogeneous fields can reach the
peak value of the ideal signal when ωL/ωA = 50. Since
wA = 50µm in our system, wL = 2.5 mm for the Raman
beams is sufficiently large enough to achieve this goal.

C. Effect of spontaneous emission

In the analysis of the COSAC, we have used a model in
which the intermediate state is adiabatically eliminated.
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However, the actual population of this state is approxi-
mately Ω2

1/∆
2 with Ω1 ∼ Ω2. In the time that it takes

for a π = Ω/T1 ≃ Ω2
1/(2∆T1) pulse (or two π/2 pulses) to

occur, we can estimate that the number of spontaneous
emissions that occur per atom is (Ω2

1/∆
2)ΓT1 ≃ 2πΓ/∆.

For ∆ = 200Γ, this, number is about 3 × 10−2, and in-
creases by a factor of N for an ensemble of N atoms.
(Note that there is no enhancement of the rate of spon-
taneous emission due to superradiant effects, since we
are considering a dilute ensemble). As a result, the sig-
nal for both the CC and the COSAC would deviate from
the ideal one. The actual effect of spontaneous emission
on the CC can be taken into account by using the den-
sity matrix equation for a three level system. However,
in this case, it is not possible to ascribe a well defined
quantum state for each atom. This, in turn, makes it im-
possible to figure out the response of the COSAC, since
our analysis for the COSAC is based on using the direct
product of the quantum state of each atom. For a large
value of N , it is virtually impossible to develop a man-
ageable density matrix description of the system directly
in terms of the collective states. However, it should be
possible to evaluate the results of such a density matrix
based model for a small value of N (< 10, for example).
In the near future, we will carry out such a calculation
and report the findings.
For the general case of large N , one must rely on an

experiment (which, in this context, can be viewed as an
analog computer for simulating this problem) to deter-
mine the degree of degradation expected from residual
spontaneous emission. It should be noted that the dele-
terious effect of spontaneous emission, for both the CC
and the COSAC, can be suppressed to a large degree
by simply increasing the optical detuning while also in-
creasing the laser power. This is the approach used, for
example, in reducing the effect of radiation loss of atoms
in a far off resonant trap (FORT).

D. Effect of fluctuation in number of atoms

For both the CC and the COSAC, the signal is col-
lected multiple times and averaged to increase the signal
to noise ratio (SNR). However, the number of atoms can
fluctuate from shot to shot. When N fluctuates by ∆N ,
the signal in the CC changes by the same amount while
the linewidth does not change. It is easy to see this from
the classical signal, SCC = N cos2 θ. Changing N by ∆N
will change the signal, but the FWHM, which occurs at
SCC = N/2, will not change, A more thorough approach
for expressing the classical and quantum noise of the CC
and the COSAC is covered in Section V-A. In this sec-
tion, we focus on how the fluctuation in the number of
atoms from shot to shot affects the signal of the COSAC.
Fig. 4 (left) is the plot of a collective signal with

N = 2 · 106. The dashed red lines represent the case
in which ∆N/N = 0.01. Increasing the number of
atoms by ∆N decreases the linewidth, and decreasing
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Figure 4. (left) Collective state signal (solid line) at the end
of the Ramsey field experiment for N = 2 · 106 atoms; Ω =
5 · 106 s−1 ; T = 3 · 10−5 s. The dashed curves show the
signal for N + ∆N (narrower) and N − ∆N (wider), where
∆N/N = 0.01. (right) Plot of ∆Γ/Γ as a function of ∆N/N .

the number of atoms by ∆N increases the linewidth.
However, the peak of the signal remains at unity. This
is in contrast to the results from velocity distribution
and field inhomogeneity. We calculate the change in the
COSAC linewidth by noting that its FWHM is approxi-
mately Γ(N) = Γ(1)/

√
N . The width of the uncertainty

in Γ(N), as a result of fluctuation in N , is ∆Γ(N) =
Γ(1)/

√
N −∆N−Γ(1)/

√
N +∆N , so that the fractional

fluctuation is ∆Γ(N)/Γ(N) = (1 − ∆N/N)−1/2 − (1 +
∆N/N)−1/2 = ∆N/N + 0.625(∆N/N)3 + O[(∆N/N)7].
For small ∆N/N , the fractional change in FWHM is
∆Γ(N)/Γ(N) ≃ ∆N/N to a good approximation. Fig. 4
(right) shows this correspondence for N = 2 · 106. How-
ever, the plot is equivalent for any N , since the fractional
change in FWHM is only dependent on ∆N/N .

IV. EXPERIMENT AND DETECTION SCHEME

FOR REALIZING A COSAC

Before proceeding further, we describe the experi-
mental approach that can be used to measure PC

N , as
summarized in Fig. 5. For concreteness, and with-
out loss of generality, we consider 87Rb as the atomic
species. By making use of the necessary D2 line transi-
tions, we start by trapping atoms in a magneto-optical
trap (MOT), and transferring them into a more localized
dipole trap, cooled down to the Doppler cooling limit
of TD = ~Γ/(2kB) = 138 µK [19–22]. After captur-
ing about 2 · 106 atoms in a cigar shaped cloud with
a diameter of ∼ wA = 50µm and length of 1 mm,
the atoms are released and optically pumped into the
|F = 1〉 state by applying a beam that is resonant with
52S1/2, |F = 2〉 → 52P3/2, |F ′ = 2〉 transition of rubid-
ium D2 line. Furthermore, a π polarized beam that is
resonant with 52S1/2, |F = 1〉 → 52P1/2, |F ′ = 1〉 tran-
sition of rubidium D1 line is applied, as depicted in Fig.
6. Because the |F = 1, mF = 0〉 → |F ′ = 1, mF ′ = 0〉
transition is forbidden for the D1 line, the atoms will
finally be pumped into |F = 1, mF = 0〉 level. It is



6

FS

0

ω1, ω2

AOM

ω2

ω1

F=1, m   =0 
F=2, m   =0

ω1 ω2

52P1/2

F
F

Trapped atoms
Laser

ω1

Zone 1

ω1, ω2Zone 2

Zone 3

90º

LPF

Signal

Trials

F=1, m   =0 
F=2, m   =0

ω1 ω2

52P1/2

F
F

F=1, m   =0 
F=2, m   =0

ω1

52P1/2

F
F

Interaction zones

Zone 1 (p/2 pulse)

Zone 2 (p/2 pulse)

Zone 3 (probe)

Figure 5. Ramsey fringe experiment for an ensemble of Λ
type atoms for the detection of collective state |EN〉. Atoms
are released from the trap, and the experiment is performed
while they are free falling inside the vacuum chamber. They
interact with two π/2 Ramsey pulses, which are separated in
time by T2, and are probed by a probe. The probe induces
a unidirectional Raman transition in the atoms while pro-
ducing Stokes photons in the direction of the detector, given
high enough optical density. The combined signal from the
probe and emitted Stokes photons are multiplied with the fre-
quency produced by the FS in such a way that the resulting
signal will be proportional to the number of Stokes photons
detected. Determining the threshold of the zero emission sig-
nal, and counting how many trials result in zero emission, the
histogram can be built to produce signal in Fig. 1(b).

F=1

52P1/2

52S1/2

F’=1 
Fm   =0 Fm   =-1 Fm   =1 

Fm   =0 Fm   =-1 Fm   =1 

p p

Figure 6. Initialization of the system involves first optically
pumping the atoms into |F = 1〉 state by applying a laser
field that is resonant with 52S1/2, |F = 2〉 → 52P3/2, |F ′ =
2〉 transition. Afterwards, as is depicted here, a π polarized
beam that is resonant with 52S1/2, |F = 1〉 → 52P1/2, |F ′ = 1〉
transition is applied. Because the |F = 1, mF = 0〉 → |F ′ =
1, mF ′ = 0〉 transition is forbidden for the D1 line, the atoms
are eventually pumped into |F = 1, mF = 0〉.

possible, with the imperfections that are inadvertently
present in the system, that there might be some residual
atoms left in |F = 1, mF = −1〉 and |F = 1, mF = 1〉.
We avoid the detection of these residual atoms by mak-
ing use of the fact that the Zeeman shifts of levels in
|F = 1〉 and |F = 2〉 are in opposite directions, which
will be discussed in more detail after we outline the null
measurement scheme. Once the initialization of atoms
into |F = 1, mF = 0〉 state is complete, a bias magnetic
field of ∼2 G, generated with a pair of Helmholtz coils, is
turned on in the ẑ direction. While the atoms are in free

|E1Ú
|E2Ú

|E3Ú |EN-1Ú
|ENÚ

|E0Ú

ω1 ω2
ω1

ω2
ω1 ω2

ω1 ω2

Figure 7. In the detection zone, we probe the population of
state |EN 〉 by applying field ω1 and detecting Stokes photons
produced during the Raman transition. In the bad cavity
limit, the atomic system will not reabsorb the photon that
has been emitted during the Raman process, such that the
transition from |Ek〉 to |Ek+1〉 will occur, but not vice versa.

fall, we turn on a pair of co-propagating right circularly
polarized (σ+) Raman beams in the ẑ direction. One of
these beams is tuned to be ∼3.417 GHz red detuned from
the |F = 1〉 → |F ′ = 1〉 transition (D1 manifold), and
the other is tuned to be ∼3.417 GHz red detuned from
the |F = 2〉 → |F ′ = 1〉 transition (D1 manifold). The
second Raman beam is generated from the first one via
an acousto-optic modulator (AOM), for example. The
AOM is driven by a highly stable frequency synthesizer
(FS), which is tuned close to ∼6.835 GHz correspond-
ing to the frequency difference between the |F = 1〉 and
|F = 2〉 states in the 52S1/2 manifold.

These beams excite off-resonant Raman transitions be-
tween |F = 1, mF = m〉 and |F = 2, mF = m〉 levels, for
m = 1, 0,−1. Since the system is initialized in |F = 1,
mF = 0〉, the σ+ Raman transitions through the excited
states |F ′ = 1, mF ′ = 1〉 and |F ′ = 2, mF ′ = 1〉 couple
the initial state to |F = 2, mF = 0〉. Hence, the energy
levels |1〉 and |2〉 from the previously discussed Λ scheme
correspond to hyperfine ground states |F = 1, mF = 0〉
and |F = 2, mF = 0〉, respectively. The resulting four
level system, with the two excited states, can be reduced
to a two level system in the same manner as the Λ system
by adiabatically eliminating the excited states together.
The resulting two level system has a coupling rate that is
the sum of the two Raman Rabi frequencies, one involv-
ing the |F ′ = 1, mF ′ = 1〉 state, and the other involving
the |F ′ = 2, mF ′ = 1〉 state. The laser power at ω1 and
ω2 are adjusted to ensure that the light shifts of levels
|1〉 and |2〉 are matched.

In the first interaction zone, the co-propagating Raman
beams interact with the atomic ensemble for a duration
of ΩT1 = π/2. After waiting for a time T2, chosen such
that T2 ≫ T1, we pulse the Raman beams again, in place,
to interact with the atomic ensemble for another duration
ΩT1 = π/2. The Raman beams can be pulsed in place as
long as the width of the beams is much larger than that
of the free-falling, thermally expanding atomic cloud.

After these excitations, we probe the population in one
of the collective states, |EN 〉 , where all the individual
atoms are in state |2〉, by a method of zero photon de-
tection. For illustrative purposes, let us consider first a
situation where the atomic ensemble is contained in a
single mode cavity with mode volume V , cavity decay
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rate γc, and wavevector k2 = ω2/c. The cavity is cou-
pled to the atomic transition |2〉 → |3〉 with coupling rate
gc = |e〈r〉|E/~, where |e〈r〉| is the dipole moment of the

atom and the field of the cavity is E =
√

2~ω2/(ǫ0V ).
If we then send a probe beam, an off-resonant classical
laser pulse with frequency ω1, the presence of the cav-
ity will allow Raman transitions to occur between the
collective states |Ek〉 and |Ek+1〉 with the coupling rates
Ω′

k+1 =
√
N − k

√
k + 1Ω′ where Ω′ = Ω1gc/2∆. The

schematic of the interaction is shown in Fig. 7.

In the bad cavity limit where γc ≫
√
NΩ′, the Raman

transitions will still occur. However, the atomic system
will not reabsorb the photon that has been emitted dur-
ing the process, such that the transition from |Ek〉 to
|Ek+1〉 will occur, but not vice versa. The electric field

of such a photon is E =
√

2~ω2/(ǫ0Acτ), where A is
the cross sectional area of the atomic ensemble, c is the
speed of light, and τ is the duration of the photon. This
limit applies in our case, which has no cavity. In this
limit, the stimulated Raman scattering is an irreversible
process that can be modeled as a decay with an effective
decay rate that is singular to each |Ej〉 state. The decay

rate from state |E1〉 is γ0 = 4NL|gcΩ1|2/(∆2c) = Nγsa
where γsa = 16LΩ′2/c [23] is the decay rate for a single
atom. The value of gc is given by |e〈r〉| · E. The effec-
tive decay rates for the other states can be calculated
following the same logic as γj = (j + 1)(N − j)γsa.

When photons are scattered through stimulated Ra-
man scattering in the detection process, the resonant op-
tical density (OD) determines the degree to which the
emission occurs in the direction of propagation of the
probe beam [23]. Specifically, the fraction of photons
that are not emitted in the direction of the probe is give
by 1/OD. Thus, (1 − 1/OD) determines the effective
collection efficiency of the detection process. The OD
depends on the density of atoms n, the diameter of the
atomic ensemble wA, and and the resonant scattering
cross section σ ≃ (λ/2)2, as ρ = σnL. For the rubidium-
87 D1 line wavelength, λ ∼ 795 nm, and a cigar shaped
trap with N = 2 · 106 atoms, a diameter of 50 µm, and a
length of 1 mm, we find that the resonant optical density
is ρ ∼ 300. The beam consisting of the probe and the
emitted photons is sent to a high speed detector, which
produces a dc voltage as well as a signal at the beat
frequency of ∼ 6.835 GHz. The phase of this beat fre-
quency signal is unknown. As such, the total signal is
sent in two different paths, one to be multiplied by the
FS signal and another to be multiplied by the FS signal
shifted in phase by 90 degrees. Each of these signals is
squared, then combined and sent through a low pass fil-
ter (LPF) to extract the dc voltage that is proportional
to the number of scattered photons. A voltage reading
above a predetermined threshold value will indicate the
presence of emitted photons during the interrogation pe-
riod. The interrogation period is set to γ0T = 10 where
γ0 = γN−1 = Nγsa is the slowest decay rate, to ensure
that even the longest lived state has a chance to decay
almost completely. If no photon emission occurs and the

voltage reads below the threshold, this indicates that the
atoms are all in |2〉 and the collective state of the system
is |EN 〉. For any other collective state, at least one pho-
ton will be emitted. For a given value of δ, this process is
repeated m times (where the choice of m would depend
on the temporal granularity of interest). The fraction of
events corresponding to detection of no photons would
represent the signal for this value of δ. The process is
now repeated for a different value of δ, thus enabling one
to produce the clock signal as a function of δ. Usual
techniques of modulating the detuning and demodulat-
ing the signal can be used to produce the error signal for
stabilizing the FS, thus realizing the COSAC.
As noted earlier, it is possible that a small fraction of

the detected signal might be due to the residual atoms
that were not optically pumped to |F = 1, mF = 0〉
initially. The σ+ polarized Raman probe is applied
to |F = 1〉 level, and the residual atoms in |F = 1,
mF = −1〉 and |F = 1, mF = 1〉 can also see the ex-
citation. However, the bias magnetic field of 2 Gauss
lifts the degeneracy of the energy levels. Moreover, since
gF = −1/2 for |F = 1〉 and gF = 1/2 for |F = 2〉, the
energy levels shift in opposite directions such that the Ra-
man signals for the transitions involving mF = −1 and
mF = 1 are detuned from resonance. Each will be shifted
by δz = −m(gF=2 − gF=1)µBB/~ = −1.4 [MHz/Gauss]
·mFB where B = 2 Gauss. Therefore, these transitions
will not be a part of the detection, which only involves
looking at 6.835 GHz beat frequency between the probe
and the spontaneously generated photon.
In the particular implementation of the COSAC con-

sidered here, we have used off-resonant Raman transition.
However, effects such as residual light shifts can limit the
stability of such a clock. The ground states can also be
coupled directly by using a microwave pulse, which has
the advantage of being free from differential light shifts.
Thus, the COSAC can also be realized by using a trav-
eling wave microwave pulse sequence for the separated
Ramsey field experiment [24], as long as the detection
pulse remains the same. Since the Hamiltonian for light-
shift balanced off-resonant Raman excitation, with the
excited state eliminated adiabatically, is formally iden-
tical to that of microwave excitation [12], the basic be-
havior of the COSAC would be identical for a microwave
version.

V. PERFORMANCE OF THE COSAC

COMPARED TO THAT OF THE CC

In order to compare the performance of the COSAC
to that of the comparable CC, we examine the stabil-
ity of the clocks by investigating the fluctuation that has
both quantum mechanical and classical components, or
δf |total = (∆SQM + ∆Sclass)/(∂S/∂f), where S(f) is
the signal and f is the detuning of the clock away from
its center value. Because the signal depends on the fre-
quency, the fluctuations in a clock are not necessarily
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constant, and there is not a single value of the SNR to
compare unless we compare the two clocks at a particu-
lar value of the frequency. Instead, the fluctuations must
be compared as a function of f for completeness. In this
section, we discuss the quantum fluctuation due to quan-
tum projection noise, ∆P =

√

P (1− P ) [8], where P is
the population of the state to be measured, the classical
noise in the long term regime, and the effects of detector
efficiency and the collection efficiency. The ratios of the
frequency fluctuations in the CC to the frequency fluctu-
ations in the COSAC show that the two clocks perform
comparably around the signal at f = 0 if the clocks have
perfect collection efficiency. However, the traditional flu-
orescence detection based clock suffers from collection ef-
ficiency issues that the collective clock is immune to. For
the CC, a resonant beam probes the clock state, gen-
erating spontaneously emitted photons. The collection
efficiency of such a system is limited by the solid angle
of the detection system. On the other hand, the COSAC
collects the fluorescence of photons through coherent Ra-
man scattering, which enables large collection efficiency
that can be close to unity for sufficiently high resonant
optical density (as noted earlier). As such, for the same
number of atoms detected per unit time, the COSAC
is expected to perform better than the fluorescence de-
tection based CC by as much as a factor of 10. This is
discussed in greater detail in subsection C of this section.

A. Effects of quantum and classical noise

In order for the COSAC to be useful, it must perform
at least as well as, or better than, the CC, and for that, we
must compare the two clocks’ stability in the short term
and the long term regimes. The stability of a clock can be
measured by investigating the frequency fluctuation that
has both quantum mechanical and classical components.
Before comparing the stabilities of the COSAC and the
CC, it is instructive first to review briefly the stability of
a CC.
For concreteness, we consider an off-resonant Raman-

Ramsey clock as the CC. The population of the detected
state |2〉 at the end of the second pulse is given by P2 =
cos2 (fT2/2), where T2 is the separation period of the two
π/2-pulses and f is the deviation of the clock frequency
away from its ideal value, expressed in radial units (i.e.
rad/s rather than Hz). The signal is detected by prob-

ing the desired state for a duration of time. If Ñ is the
number of atoms per unit time and τ is the interrogation
period, the net signal is Ssa = ÑτP2 = Ñτ cos2(fT2/2).
For the sake of comparison, we allow the number of atoms
per trial in the COSAC signal, N , multiplied by the num-
ber of trials, m, to equal Ñτ . Therefore, we can write
Ssa = mN cos2(fT2/2). The quantum mechanical vari-

ance of this quantity is ∆SQM,sa = (
√
mN/2) sin(fT2),

where the derivation is made by noting that the fluctu-
ations in mN is

√
mN [8], and the projection noise in a

single two level atomic system is ∆P2 =
√

P2(1− P2)

[8]. (It should be noted that the fluctuation in mN
is also a manifestation of this projection noise, as dis-
cussed in detail in [8].) When the probability of find-
ing the population in this state is unity or nil, the pro-
jection noise vanishes; on the other hand, it is largest
at P2 = 1/2. Calculating the slope from the signal,
we find that ∂Ssa/∂f = −[mN/(2γsa)] sin(fT2), where
γsa = 1/T2 is the linewidth.
Assuming perfect quantum efficiency for the detec-

tion process, the frequency fluctuation can be written
as δf |total = |(∆SQM + ∆Sclass)/(∂S/∂f)|, which can
be regarded as noise (∆S), both quantum and classical,
over the Spectral Variation of Signal (∂S/∂f), or SVS. In
what follows, we consider first the effect of quantum noise
only. Thus, the quantum frequency fluctuation (QFF) for
a CC can be expressed as

∂fQM,CC ≡
∣

∣

∣

∣

∆SQM,sa

(∂Ssa/∂f)

∣

∣

∣

∣

=
γsa√
mN

(8)

It should be noted that while both ∆SQM and (∂S/∂f)
depend on f , their ratio is a constant, which is merely an
accident due to the fact that the signal is cosinusoidal.
However, this accidental cancellation has led to an ap-
parently simple perception of the QFF as being simply
the ratio of the linewidth (γsa) to the SNR, where the

SNR is understood to be
√
mN . This expression for the

SNR, in turn, follows from thinking about the signal as
being S′ = mN and noise N ′ as being

√
mN , so that

SNR≡ S′/N ′ =
√
mN . However, it should be clear from

the discussion above that the signal is not given by mN ,
and noise is not given by

√
mN ; rather, they both depend

on f .
In cases where frequency fluctuation is not a constant

(as will be the case for the COSAC), we can no longer
measure the stability of the clock in terms of a constant
γ/SNR. Instead, it is necessary to carry out the full cal-
culation of the frequency fluctuation as a function of fre-
quency. Thus, we will adopt the convention that the
net frequency fluctuation, δf , should be thought of as
the ratio of the noise to the SVS. This approach should
be adopted universally for all metrological devices. Of
course, for devices where the relevant quantity is not the
frequency, the definition should be adapted accordingly.
For example, in an interferometer that measures phase,
the relevant quantity can be expressed as follows: net
phase fluctuation is the ratio of the noise to the Angular
Variation of Signal (AVS).
Following this convention, we can now examine the

net frequency fluctuation of the COSAC and compare it
to that of the CC. We will first compare their quantum
fluctuations, which is relevant in the short term regime,
and then the classical fluctuations, which dominates the
long term regime. The collective state signal for m tri-
als is Scol = mPC

N = m cos2N (fT2/2) and the projec-

tion noise is ∆PC
N =

√

PC
N (1− PC

N ) for a single trial and

∆PC
N =

√
m
√

PC
N (1− PC

N ) for m trials, so that the total
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quantum mechanical noise in the signal is

∆SQM,col =
√
m cosN (fT2/2)

√

1− cos2N (fT2/2) (9)

and the SVS is

∂Scol/∂f = −(mN/γsa) sin (fT2/2) cos
2N−1 (fT2/2)

(10)
Therefore, the frequency fluctuation in the COSAC due
solely to quantum noise can be expressed as:

δfQM,COSAC =

∣

∣

∣

∣

∣

γsa
N
√
m

√

1− PC
N

PC
N

cot

(

fT2
2

)

∣

∣

∣

∣

∣

(11)

where PC
N is a function of f . Thus, unlike in the case of

the CC, the frequency fluctuation is not a constant, and
depends strongly on f .
We consider first the limiting case of f → 0. Using

Taylor expansion, it is easy to see that

δfQM,COSAC ≃ γsa√
mN

(12)

which is the same as that of the CC, given in Eq. (8).
This can be understood physically by noting that while
the fringe width becomes much narrower for the COSAC,
the SNR also decreases due to the fact that a single ob-
servation is made for all N atoms in a given trial.
The QFF for the COSAC, given in Eq. (11), is smallest

as f → 0 and increases as f moves away from resonance.
The ratio of the QFF for the CC, given in Eq. (8), to
that of the COSAC, given in Eq. (11), is plotted as a
function of f in Fig. 8 (left) for T2 = 10−4 s, m = 1000
and N = 2 · 106. Here, the vertical bars indicate the
FWHM of the COSAC signal. It is clear from this plot
that the QFF for the COSAC increases significantly as
we move away from resonance. However, since a servo
will keep the value of f confined to be close to zero, the
frequency stability of the COSAC, under quantum noise
limited operation, should be very close to that of the CC,
assuming that all the other factors remain the same.
The classical frequency fluctuation (CFF), ∂f |class =

∆Sclass/(∂S/∂f), is the limiting factor in the long term
stability. While the quantum fluctuation is dominated
by quantum projection noise, the classical noise is dom-
inated by noise in the electronics employed to generate
the clock signal. Since the pieces of equipment used in
the development of both the COSAC and CC suffer from
similar noise issues, the variance ∆S is expected to be
of the same order of magnitude for both clocks. On the
other hand, the SVS, (∂S/∂f), is not the same, as was
shown previously. The ratio of the SVS of the COSAC
to the SVS of the CC is

∂Scol/∂f

∂Ssa/∂f
=

cos2N
(

fT2

2

)

cos2
(

fT2

2

) =
PC
N

P2
(13)

and is plotted in Fig. 8 (right). With ∆Sclass,col ∼
∆Sclass,sa, the ratio of the CFF of the COSAC to the
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Figure 8. (left) Ratio of the QFF in the CC to the QFF in
the COSAC, for T2 = 3 ·10−5 s, m = 1000 and N = 2 ·106. It
should be noted that the fluctuation in the CC is independent
of f while that of the COSAC varies significantly with f .
(right) Ratio of the SVS of the COSAC to the SVS of the CC
for T2 = 3 · 10−5 s, m = 1000 and N = 2 · 106. The dashed
vertical lines in the plots show where the FWHMcol are.

CFF of the CC can be written

δfclass,COSAC

δfclass,CC
≃

cos2
(

fT2

2

)

cos2N
(

fT2

2

) (14)

Similar to the ratio of the two clocks in QFF, Eq. (14)
is smallest as f → 0 and increases as f moves away from
resonance. Thus, with respect to both quantum and clas-
sical sources of noise, the COSAC must be operated near
f ≃ 0 for optimal performance.
We have investigated the effects of quantum and clas-

sical noise by deriving the expression for fluctuation in
frequency. However, as was shown in the first section,
the signal is also a function of other experimental vari-
ables; and in general, the fluctuations in any of these can
be expressed as

∂A ≡
∣

∣

∣

∣

∆SQM (A) + ∆Sclass(A)

∂S(A)/∂A

∣

∣

∣

∣

(15)

where A is the variable whose fluctuation is of interest,
and the signal S is expressed in terms of A.

B. Effect of detector efficiency

We recall briefly that in the COSAC detection scheme,
a laser with a frequency corresponding to one leg of the
Raman transition interacts with the atoms, which are in

the quantum state |ψ〉 = cN |EN 〉 +
∑N−1

j=0 cj |Ej〉. Inter-
action between this field, the atoms, and the free space
vacuum modes on the other leg would lead to production
of photons unless cN = 1 and cj = 0 for all j. These
photons are detected using a heterodyning technique, as
described previously. The voltage output of the hetero-
dyning system is proportional to the amplitude of the
electric field corresponding to the photons.
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In general, one or more photons are produced as |Ej〉
decays to |Ej+1〉 and subsequent states. The time needed
for these photons to be produced depends on the vacuum
and probe field induced Raman transition rates between
|Ej〉 and |Ej+1〉. If one assumes perfect efficiency for de-
tecting each of these photons, and waits for a time long
compared to the inverse of the weakest of these transi-
tion rates, then the detection of no photons implies that
the system is in state |EN 〉. In practice, we can choose a
small threshold voltage at the output of the heterodyning
system as an indicator of null detection. Thus, any signal
below this threshold would be viewed as detection of the
quantum system in the |EN 〉 state, and all signals above
this threshold would be discarded. The number of events
below this threshold for m trials carried out with all the
parameters of the experiment unchanged, is the derived
signal for the COSAC. After collecting data for all the
values of detuning that is of interest, the result would
ideally yield the plot of the COSAC signal Scol = |cN |2,
averaged overm trials. However, with a fractional detec-
tor efficiency and finite detection period, the signal would
deviate from the ideal result.
Consider first the effect of the detection period. Given

the decay rate of the off-resonant Raman process, γj =
(j+1)(N− j)γsa as described previously, the probability
that |Ej〉 will produce zero photons during the measure-
ment period τ is P0,j = e−γjτ . Thus, the total probabil-
ity of zero photon emission (which should vanish ideally

for any cj 6= 0) is given by P0 =
∑N−1

j=0 |cj |2e−γjτ . The
collective state signal, Scol, is the total probability of
finding zero photons during τ , and can be expressed as

Scol = |cN |2 +
∑N−1

j=0 |cj |2e−γjτ . Noting that γN = 0,

we can rewrite this compactly as Scol =
∑N

j=0 |cj |
2
e−γjτ .

The lower and upper bounds of Scol can be established
by considering the strongest and the weakest effective de-
cay rates. The strongest decay rate occurs for the mid-
dle state, γN/2 = (N/2)(N/2 + 1) ≈ (N2/4)γsa, where
N ≫ 1 approximation has been made. With the sub-
stitution of the largest decay rate for each |Ej〉 into the
equation for Scol, the lower bound is set by

SLB = |cN |2 +
(

1− |cN |2
)

e−
N2

4
γsaτ (16)

Likewise, with the substitution of the weakest decay rate
for each |Ej〉, γ0 = γN−1 = Nγsa, into Scol, the upper
bound is set by

SUB = |cN |2 +
(

1− |cN |2
)

e−Nγsaτ (17)

The signal produced in time τ will then lie somewhere
between the lower and the upper bounds.
Consider next the effect of non-ideal detection effi-

ciency of the heterodyning scheme. To be concrete, let
us define as η the efficiency of detecting a single photon.
In practice, this parameter will depend on a combina-
tion of factors, including the quantum efficiency of the
high-speed photodetector and the overlap between the
probe laser mode and the mode of the emitted photon,

as well as the resonant optical depth of the ensemble, as
discussed earlier. For the COSAC, it should be noted
that we are interested in knowing only whether one or
more photons have been detected, and not in the actual
number of photons. When more photons are emitted, the
detector will have a better chance of observing a non-zero
signal, and hence distinguish zero photon emission from
the rest with more certainty. For example, if three pho-
tons are emitted during the interrogation time, then four
different outcomes are possible:

• All three photons are detected, with probability η3;

• Two of the photons are detected, with probability
η2(1−η); this can occur for any two of the photons,
so the multiplicity is 3;

• One photon is detected, with probability η(1− η)2

and multiplicity of 3.

• No photons are detected, with probability ǫ3 where
ǫ ≡ 1− η

The sum of these probabilities is 1. The probability that
at least 1 photon is detected is thus (1−ǫ3). For any state
j 6= N , the probability of detecting at least 1 photon is
therefore (1 − ǫN−j).
Moreover, we must also consider how the effective de-

tection efficiency is influenced by the fact that the col-
lective states decay at different rates. Specifically, the
jth level for j < N might produce N − j photons,
N−j−1 photons, down to no photons, depending on the
length of the measurement time and the effective decay
rate. If the system is in the state |EN−3〉, for exam-
ple, it can produce up to 3 photons but with probabili-
ties that change over the course of the detection period.
For a given time τ , |EN−3〉 evolves into a sum of the

states |EN−3〉 → ∑N
k=N−3 ajk(τ)|Ek〉, where the coeffi-

cient ajk(τ) depends on the effective decay rate that is
specific to each state, and changes as the states evolve in
time. The detector efficiency can be inserted to show the
true probability of detecting a non-zero signal, keeping in
mind that no photon is produced if the ensemble remains
in state |EN−3〉, 1 photon is produced via evolution of the
ensemble to state |EN−2〉, and so on. Then the probabil-
ity of at least one photon being produced during a period
of τ is

PN−3 =

N
∑

k=N−3

(

1− εk−N+3
)

|αjk(τ)|2 (18)

Thus, the total probability of detecting at least one pho-
ton is:

P =

N−1
∑

j=0

|cj |2
N
∑

k=j

(

1− εk−j
)

|αjk(τ)|2 (19)

The probability of seeing no photon is

Scol = 1−P = 1−
N−1
∑

j=0

|cj|2
N
∑

k=j

(

1− εk−j
)

|αjk(τ)|2 (20)
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Figure 9. Plot of the ideal signal (solid line), the upper
bound (dotted line), and the lower bound (dashed line) for
N = 2 · 106, T2 = 3 · 10−4 s, and γsa = 104 s−1. Note that in
(c) and (d), the upper and lower bounds are virtually indis-
tinguishable.

The numerical analysis for a large number of atoms is
tedious and scales as at least (N − 1)! for the COSAC.
However, we can take the worst case scenario to serve as
the upper bound for the signal. The worst case occurs
when only a single photon is produced as a result of |Ej〉
decaying to only the |Ej+1〉 state, so that the index of the
second summation stops at k = j+1. In this case, we can
write |aj,j+1(τ)| = (1 − e−γjτ ) and the signal becomes

Scol = |cN |2 + ε
(

1− |cN |2
)

+ η
N−1
∑

j=0

|cj |2e−γjτ (21)

Now, using the approach we employed in arriving at
equations Eq. (16) and Eq. (17), we now consider the
strongest and the weakest decay rates for single photon
production to arrive at the lower and upper bounds of
the zero photon count signal:

SLB = 1− η
(

1− |cN |2
)(

1− e−
N2

4
γsaτ

)

(22)

SUB = 1− η
(

1− |cN |2
)

(

1− e−Nγsaτ
)

(23)

Plots in Fig. 9 are of the ideal signal (under infinite
detection time and η = 1), the lower bound, and the
upper bound for various values of τ and η for N = 2 ·106,
T2 = 3 · 10−5 s, and γsa = 104 s−1. As can be seen, the
detector efficiency and measurement time do not affect
the peak value of the amplitude. As the signal trails off
for non-zero detuning, however, the difference increases.
The decrease in η affects both SUB and SLB similarly,
whereas the effect of the decrease in τ is more evident
in SUB . With the given parameters, the interrogation
period of τ = 10−4 s and detector efficiency of η = 0.99
yields almost ideal signal. A somewhat lower value of η

(e.g. 0.70) still yields a signal that is nearly ideal near
zero detuning, which is the desired operating regime for
the COSAC, as pointed out earlier.
If we set γsaτ = 1, the signal depends on η as

Scol ≃ 1− η
[

1− cos2N (fT2/2)
]

(24)

for large N and m = 1. Hence, we can calculate the
QFF for the COSAC to see how it depends on the de-
tector efficiency, and how it compares to the CC. For
the CC, it is straightforward to show that with Ssa =
ηN cos2 (fT2/2), the quantum mechanical noise in the
signal is ∆Ssa =

√
ηN cos (fT2/2) sin (fT2/2) and the

SVS is |∂Ssa/∂δ| = (ηN/γsa) cos (fT2/2) sin (fT2/2), so
that the QFF is δfQM,CC = γsa/

√
ηN . It is also straight-

forward to calculate the QFF for the COSAC. The total
quantum mechanical noise in the COSAC signal in Eq.
(24) is:

∆SQM,col =
√
η cosN (fT2/2)

√

1− cos2N (fT2/2) (25)

and the SVS is

∂Scol/∂f = −(ηN/γsa) sin (fT2/2) cos
2N−1 (fT2/2)

(26)
Thus, the QFF in the COSAC is:

δfQM,COSAC =

∣

∣

∣

∣

∣

γsa
N
√
η

√

1− PC
N

PC
N

cot

(

fT2
2

)

∣

∣

∣

∣

∣

(27)

which approaches γsa/
√
ηN as f → 0. Assuming that

the detector efficiencies of the COSAC and the CC can
be essentially the same, they do not affect the ratio of
the two QFFs.

C. Effect of collection efficiency

We consider next the effect of the collection efficiency,
β. The signal, for both the COSAC and CC, is directly
proportional to β. Thus, it is easy to see, using Eqs. (8)
and (11), that

ζ ≡ δfQM,COSAC

δfQM,CC

=

[

1√
N

√

1− PC
N

PC
N

cot

(

fT2
2

)

]
√

βCC

βCOSAC
(28)

where βCC (βCOSAC) is the collection efficiency of the
CC (COSAC).
As noted above, the quantity written in the square

bracket in Eq. (28) approaches unity as f → 0. Thus,
in this limit, we see that the ratio of the QFF for the
COSAC to that of the CC would depend on the ratio
of the collection efficiencies of the detection processes.
As discussed previously, for a high enough resonant op-
tical density (103 in the example we are considering) the
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coherent stimulated Raman scattering based detection
method used for the COSAC process has a collection ef-
ficiency that is close to unity, or βCOSAC ≃ 1. As for
the CC, the fluorescence is typically collected from the
spontaneous emission process, which emits photons in a
dipolar radiation pattern. We can estimate typical values
of βCC by considering, for example, a CC that makes use
of cold atoms released from a MOT. For a lens placed
at a distance of 5 cm, with a diameter of 2.5 cm, ignor-
ing the dipolar pattern of radiation for simplicity, and
assuming it to be uniform in all directions, this system
yields a value of βCC ≃ r2/(4d2) = 1/16 corresponding
to ζ ∼ 0.25. In a typical CC, various geometric con-
straints make it difficult to achieve a value of βCC much
larger than this. In fact, in cases where the total volume
occupied by the CC has to be constrained in order to
meet the user requirements, the value of βCC is typically
1%, which would correspond to ζ ∼ 0.1. Thus, the near
unity collection efficiency of the COSAC can lead to an
improvement of the clock stability by as much as a fac-
tor of 10, compared to a typical CC that makes use of
fluorescence detection.
Absorption is another way of detecting the signal in a

CC. However, many practical issues must be taken into
account if absorption is to be used. First, the fluctuation
in the clock frequency is affected by additional noise con-
tributed by the laser used in absorption. Let us assume
that the observation time window is τ , and the number
of photons in the probe beam, before absorption, is NP ,
and the probe is in a Coherent state. We also assume
that the number of atoms passing through the detection
process in this time window is NA, and the linewidth of
the resonance is Γ. If the detection process produces an
absorption by a fraction of α (i.e., α = 1 represents per-
fect absorption of the laser beam), and the detector has
a quantum efficiency of η, then the resulting fluctuation
in the clock frequency can be expressed as:

δωABS = Γ

(

1√
ηαNA

+
1√
ηαNP

)

(29)

Here, the first term inside the parenthesis represents
the quantum projection noise of the atoms, and the sec-
ond term represents the shot noise of the photons (which
can be thought of as the quantum projection noise of
photons). The validity of this expression can be easily
established by considering various limits. Consider first
the ideal case where ξ ≡ ηα = 1. For NP ≫ NA, the
additional noise from the laser can be neglected, and we
get the fundamental noise limit due to the quantum pro-
jection noise of atoms. On the other hand, if NA ≫ NP ,
the quantum projection noise from the atoms can be ne-
glected, and the process is limited by the shot-noise of
the laser. In general, the parameter ξ represents the
overall quantum efficiency of the detection process. The
corresponding expression for detection via fluorescence is
δωFLU = Γ(ηρNA)

−1/2, where again η is the quantum
efficiency of the detector, and ρ is the fraction of fluores-
cence falling on the detector.

The contribution from the second term in Eq. (29)
shows that the intensity of the laser beam used in ab-
sorption must be made strong enough in order to make
the effect of this term negligible compared to the first
term. However, since the absorption process is nonlinear
and saturates for a strong laser beam, increasing the laser
intensity often decreases the effective value of α. For ex-
ample, consider an ensemble of 2 ·106 atoms with a linear
resonant optical density of 300, which can be realized (as
we have shown above) for an ensemble confined to a cigar
shaped ensemble with a diameter ∼ 50 µm. For a weak
probe, the value of α is unity. However, as the probe
power is increased, the value of α decreases dramatically.
This can be seen by considering a situation where the
value of NP is 109, for example. Since the atomic tran-
sition used for absorption is not closed (i.e., not cyclic),
the ensemble can only absorb a number of photons that
is of the order of 2 · 106. Thus, the maximum value of
α would be only about 0.002. Furthermore, if the area
of the laser beam (AL) is much larger than the area of
the atomic ensemble (AA), then the value of α can never
exceed the value of AA/AL. We are not aware of any
publication reporting a cold atom clock that makes use
of absorption for detecting the atoms, possibly because
of these constraints and considerations. Nonetheless, as
a matter of principle, an absorption process can certainly
be used to reduce the quantum frequency fluctuation be-
low what is observed in fluorescence detection systems,
under proper choice of parameters..

VI. PHYSICAL INTERPRETATION OF

LINEWIDTH REDUCTION AND ITS

RELEVANCE TO THE TRANSIT TIME LIMIT

As we have shown, the fact that the linewidth in a
COSAC is narrower by a factor of

√
N can be proven

mathematically. However, it is instructive to discuss the
physical mechanism that leads to this narrowing. Fur-
thermore, it is also important to address the issue of why
the violation of the conventional notion of the transit
time limit does not contradict the fundamental laws of
quantum mechanics.

A. Physical interpretation of line narrowing

We consider a simple picture of an oscillator and a
probe in order to understand the physical explanation
as to why the linewidth of a COSAC narrows by

√
N .

A clock is essentially an oscillator oscillating at some fre-
quency ω. In order to ascertain that the oscillator has not
drifted, the oscillator frequency is mapped into light and
interacts with a two level atom, with the ground state
|1〉 and the excited state |2〉, and a transition frequency
ω0. If ω does not match ω0, an error signal proportional
to δ = ω − ω0 is produced to correct for the difference.
Now consider for a moment that we can create a two
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Figure 10. Collective state energy levels, separated by ω0, are
excited by a field of frequency ω. All the states from |E0〉
to |EN〉 are excited, and participate in producing an effective

clock transition frequency proportional to
√
N .

state superposition of N atoms such that they are all ei-
ther in the ground state or the excited state. In other
words, |ψ〉 = C0|E0〉 + CN |EN 〉 where |E0〉 = |111...11〉
and |EN 〉 = |222...22〉. The energy difference between
these two states is Nω0. The oscillator frequency is still
ω, but when a light field with N photons is compared
with such a two level system, the difference in energy is
Nδ = Nω − Nω0. If it were possible to produce an er-
ror signal that is proportional to this energy difference
without degrading the effective signal to noise ratio (or,
more accurately, the ratio of noise to the SVS, as dis-
cussed in Section V-A), the resulting clock would be N -
fold more accurate. This is functionally equivalent to the
clock transition frequency being enhanced by a factor of
N.

However, this clean two level superposition of collective
states is virtually impossible to achieve with a collection
of N non-interacting atoms and a single field since there
is no electric dipole moment to excite the |EN 〉 state di-
rectly from the |E0〉 state. What occurs instead is that all
the states between these get excited as well, as illustrated
in Fig. 10. If we consider only the excitations from state
|E0〉, there are N possible transitions that can occur, so
that the error signal includes the set of all the possible
detunings, δ, 2δ, 3δ, ...Nδ. In other words, there are ef-
fectively N different sensors running at the same time.
All the other states also act as sensors as they interact
with the others. It turns out, as we have proven math-
ematically in Section III, that the error signal becomes
proportional to

√
Nδ, corresponding to an effective de-

tuning of
√
Nδ. This is functionally equivalent to the

clock transition frequency being enhanced by a factor of√
N .

In the Ramsey fringe experiment, the error signal that
is generated occurs as a result of the phase difference be-
tween the interacting states. A detailed picture can be
viewed in Fig. 11. Consider first a single two level atom,
initially in state |1〉A, going through the Ramsey fields.
In the Jaynes-Cummings model, when a field withm pho-
tons interacts with an atom, the π/2-pulse will produce
the quantum state |ψ〉 = |1〉A|m〉ν − i|2〉A|m− 1〉ν . The

energy of state |2〉A|m − 1〉ν is lower than that of state
|1〉A|m〉ν by ~δ. In the second zone, these two composite
states evolve freely for a time T2 and accumulate differ-
ent phases. State |1〉A, with energy 0 remains the same,
whereas |2〉A with energy ω0 evolves as eiω0T2 . The field
with m photons evolve as eimωT2 whereas the field with
m− 1 photons evolve as ei(m−1)ωT2 . Thus, the quantum
state of the total system at the end of the dark zone is

|ψ〉 = eimωT2 |1〉A|m〉ν − ieiω0T2ei(m−1)ωT2 |2〉A|m− 1〉ν
(30)

The net accumulated phase difference in the two states
is eiδT2 . The third zone where another π/2-pulse oc-
curs produces interference between the two states, so
that when interrogation occurs, the signal produced is
in the form of Ramsey fringes that oscillate at frequency
δ. Therefore, the energy difference between the two com-
posite states determines the oscillation frequency of the
Ramsey fringes. Alternatively, if one were to plot the sig-
nal as a function of the dark zone time, T2, the width of
the fringe is given by the inverse of this energy difference.
If the same calculation is carried out now for a two state
system where the ground state is |E0〉A|m〉ν and the ex-
cited state is |EN 〉A|m − N〉ν , where |E0〉A and |EN 〉A
are the collective states of N atoms, then the energy dif-
ference is Nδ and the width of the fringe as a function of
T2 would be 1/(Nδ) and the width of the Ramsey fringe
as a function of δ will be (T−1

2 /N).

As mentioned earlier, such a two level system of collec-
tive states for a large value of N is virtually impossible to
realize for non-interacting atoms. Instead, for N atoms,
the first Ramsey zone produces a superposition of all the
states from |E0〉A to |EN 〉A. In the second zone, each
of the collective states |Ek〉A accumulates a phase factor
of ei(δT2)k with respect to the state |E0〉A. When the
atoms pass through the third zone, each of these collec-
tive states interferes with one another and contributes
to the total population of |EN 〉A. It is the collection of
these interferences among all the collective states that
produces the narrowed linewidth.

We have verified this interpretation explicitly for two
atoms. The collective states in this case are (where the
subscript A has been dropped) |E0〉, |E1〉, and |E2〉. Af-
ter they accumulate different phases in the second zone,
each of them contributes to the final state |E2〉 by amount
χ0 = 1/4, χ1 = eiδT /2, and χ2 = e2iδT /4 respectively.
The total signal is Scol = |〈E2|E2〉|2 = cos4 (δT2/2).
This comes about because Scol = |χ0 + χ1 + χ2|2 =
|χ0 + χ1|2 + |χ1 + χ2|2 + |χ0 + χ2|2 − (χ2

0 + χ2
1 + χ2

2).
In other words, it is as though |E0〉 and |E1〉 interfered
together to produce Ramsey fringes at frequency δ, |E1〉
and |E2〉 interfered together to produce Ramsey fringes
at frequency δ, and |E0〉 and |E2〉 interfered together to
produce Ramsey fringes at frequency 2δ; the signal ob-
served is the addition of all these Ramsey fringes minus
an overall factor (see Fig. 12), which is due to the fact
that the actual process is a simultaneous interference be-
tween the three states.
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Figure 11. Ramsey fringe experiment of a two level atom,
in the Jaynes Cummings model, involves states |1〉A|m〉ν and
|2〉A|m− 1〉ν where the state with subscript A represents the
atomic state, and subscript ν represents the Ramsey field.
The phase difference of the two levels at the end of the ex-
periment is eiδT2 , and the signal produced would oscillate at
frequency δ; If a two level system existed in which the ground
state were the collective state |E0〉A|m〉ν and the excited state
were the collective state |EN 〉A|m−N〉ν , the phase accumu-
lation between the two states at the end of the Ramsey fringe
experiment would be eiNδT2 , and the oscillation frequency
would be Nδ.
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Figure 12. In a two atom ensemble, each of the three collective
states interfere with one another to produce different Ramsey
fringes (a)-(c). The overall envelope is not drawn. The sum of
these interferences gives the narrowing of the fringe linewidth
as seen in (d). In (d), the dotted curve represents the signal
from a single atom and the solid curve the signal from two
atoms for comparison.

B. Violation of the conventional notion of the

transit time limit

The narrowing of the COSAC fringe as given by
Γ(N) = Γ(1)/

√
N = π/(T2

√
N) violates the conven-

tional transit time limit, which constrains the fringe
width to be at least ∼ 1/T2. This is a manifestation
of the uncertainty relation ∆f · ∆t ≥ 1, which appar-
ently follows from the Heisenberg uncertainty principle
of ∆E · ∆t ≥ ~. However, when we properly define ∆f
as the uncertainty in the fringe width – in the case of
the Ramsey technique considered here – and ∆t as the
total observation time, we can derive the uncertainty re-

lations more systematically and show that despite the
fact that the conventional transit time limit is violated,
the Heisenberg uncertainty principle is not violated.
First, consider a single atom that undergoes the Ram-

sey fringe experiment. The uncertainty in the fringe
width is ∆f = (1/T2), where T2 is the separation period
between the two π/2 pulses. When the experiment is re-
peated m times, it is as though the separation period ex-
pands m-fold, so that the effective observation time is in
fact ∆t = mT2, and the uncertainty in the fringe width is
∆f = (1/T2)/

√
m in the standard quantum limit (SQL)

and ∆f = (1/T2)/m in the Heisenberg limit (HL). Hence,
the product ∆f ·∆t yields √m in the SQL and 1 in the
HL. Note that as m → 1, the SQL approaches the HL,
which is the more fundamental limit.
Next, consider N atoms in the same Ramsey fringe

experiment during a single trial. Since each atom, in its
individual state, is considered separately from the rest,
having N atoms is equivalent to running N trials simul-
taneously. The effective observation time in this case
is ∆t = NT2, and the uncertainties in the fringe width
are ∆f = (1/T2)/

√
N in the SQL and ∆f = (1/T2)/N

in the HL. Moreover, if the experiment is repeated m
times, the effective observation time increases to ∆t =
mNT2, and the uncertainties in the fringe width are
∆f = (1/T2)/

√
mN in the SQL and ∆f = (1/T2)/(mN)

in the HL. Thus, we find that the uncertainty relations
for N atoms and m trials are ∆f · ∆t =

√
mN in the

SQL and ∆f ·∆t = 1 in the HL.
Consider next the COSAC case, containing N atoms,

and repeated m times. As we have shown in Section
V, the frequency fluctuation in the COSAC is ∆f =
1/(T2

√
mN) for ideal detection efficiency. It may not

be obvious what the effective observation time is for this
case. However, given the fact that, under ideal detec-
tion efficiency, the COSAC is equivalent to the case of N
atoms repeated m times, we are led to conclude that the
effective observation time is ∆t = T2mN . As such, we
get ∆f ·∆t =

√
mN , which is the SQL in this case. In the

HL, we could get ∆f ·∆t = 1. Thus, we see that when
the frequency uncertainty and the observation times are
interpreted properly, the COSAC signal does not violate
the fundamental quantum limit.

VII. CONCLUSION

We have described an atomic clock with a significant
reduction in the Ramsey fringe linewidth, by a factor
of

√
N , by measuring the amplitude of a collective state

with a heterodyne detection scheme. We have shown that
the reduction occurs due to multipath interference among
the collective states, and does not violate the fundamen-
tal quantum limit. The performance of the COSAC has
been compared to that of the CC by analyzing quantum
and classical fluctuations in frequency. When the effects
of detector efficiency and collection efficiency are consid-
ered, it can be seen that the COSAC may perform 10
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times better than a typical CC employing fluorescence
detection.
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