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Spin-orbit coupling (SOC) plays a crucial role in many branches of physics. In this context,
the recent experimental realization of the coupling between spin and linear momentum of ultra-
cold atoms opens a completely new avenue for exploring new spin-related superfluid physics. Here
we propose that another important and fundamental SOC, the coupling between spin and orbital
angular momentum (SOAM), can be implemented for ultra-cold atoms using higher order Laguerre-
Gaussian laser beams to induce Raman coupling between two hyperfine spin states of atoms. We
study the ground state phase diagrams of SOAM coupled Bose-Einstein condensates on a ring trap
and explore their applications in gravitational force detection. Our results may provide the basis for
further investigation of intriguing superfluid physics induced by SOAM coupling, such as collective
excitations.

PACS numbers: 03.75.Mn, 37.10.Vz, 67.85.-d

I. INTRODUCTION

Spin-orbit coupling (SOC), the interaction between a
particle’s spin and orbital degrees of freedom, takes place
in nature in various ways. For a relativistic spinor, its
spin angular momentum naturally couples to the linear
momentum under Lorentz transformation, constituting
the key physics in the Dirac equation [1]. In solid state
systems, the spin and linear momentum (SLM) coupling
(e.g., Rashba [2] and Dresselhaus [3] coupling) is crucial
for many important phenomena such as quantum spin
Hall effects [4–7], topological insulator, and topological
superconductor [8, 9]. Recently, a highly tunable SLM
coupling has been realized in cold atom experiments [10–
20] using Raman coupling between two atomic hyperfine
states [21]. These experimental advances have resulted in
an active field of experimental and theoretical study [22–
48] on the physics of SLM coupled Bose-Einstein conden-
sates (BECs) and degenerate Fermi gases.

Another ubiquitous SOC in atomic and condensed
matter physics is the coupling between spin and orbital
angular momentum (SOAM). In a hydrogen atom, the
electron’s orbital movement generates a magnetic mo-
ment that couples to its spin, leading to SOAM coupling
that is responsible for the spectroscopic fine structure. In
solid state systems, SOAM coupling plays a crucial role
for magnetic properties of materials [49, 50]. However,
the SOAM coupling for ultra-cold atoms has not been
realized in experiments and the physics of SOAM cou-
pled BEC and degenerate Fermi gases has not been well
explored.

In this paper, we propose a practical scheme for gen-
erating SOAM coupling for cold atoms and investigate
the ground state properties of SOAM coupled BEC. Our
main results are the following:

1) We propose that the SOAM coupling for cold
atoms can be realized using two co-propagating Laguerre-
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Gaussian (LG) laser beams [51–56] that couple two
atomic hyperfine states through the two-photon Raman
process [57, 58] (see Fig. 1a). Note that only the lowest
order Gaussian laser beams have been used in the im-
plementation of SLM coupling and higher order LG laser
beams are widely available in optical and atomic exper-
iments. We derive the single particle Hamiltonian with
SOAM coupling as a function of the laser parameters.

2) We study the ground state properties of a SOAM
coupled BEC trapped on a ring. This geometry has been

FIG. 1. (Color online) (a) Two co-propagating LG beams
with different OAM couple two internal states of a BEC
through the Raman transition. (b) Non-interacting ground
state phase diagram for l = 2 in the plane of detuning δ and
Raman coupling Ω. The ground state OAM quantum num-
bers are labeled in corresponding blocks separated by dashed
lines. The colors scaled in bar graph represent spin polar-
ization 〈σz〉. (c) The ground states (filled squares) and the
assumed continuous spectra (dashed curves) at selected points
in panel (b). i: single ground state |0〉; ii: 3-fold degeneracy
|0〉, |±1〉 at Ωc = 15; iii: 2-fold one |±1〉; iv: 4-fold one |±1〉,
| ± 2〉. The curves are arbitrarily shifted in ŷ direction.
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recently realized in experiments [59–61]. We find that
the interplay between SOAM coupling and orbital angu-
lar momentum (OAM) quantization can lead to 4-fold
degenerate ground states and first-order transitions be-
tween different OAM phases. Both have not been found
in the SLM coupled BEC. We also find strongly interact-
ing effects in the system, including a significant deviation
from the single particle picture and a very large stripe-
phase region.

3) We show that inhomogeneous potentials, such as
gravitational potentials, can induce the mixture of neigh-
boring OAM states, leading to the transition from uni-
form to stripe types of density distributions. Such a tran-
sition may find potential applications in designing grav-
itational force detection devices.

The paper is organized as follows. In Sec. II we de-
rive the model Hamiltonian with SOAM coupling. We
then analyze the single particle physics of a ring system
in Sec. III and show interacting phase diagrams for a re-
alistic ring BEC in Sec. IV. In Sec. V we study effects
of external potentials. Experimental parameters are dis-
cussed in Sec. VI. Section VII is the conclusion.

II. MODEL AND HAMILTONIAN

As illustrated in Fig. 1a, we consider an atomic BEC
with two internal spin states, |↑〉 and |↓〉, coupled by a
pair of co-propagating Raman lasers. In order to transfer
OAM from the laser to atoms, both Raman lasers are
chosen to be LG beams with different OAM denoted by
azimuthal indices l1,2, respectively. The one-photon Rabi
frequency from the j-th beam in cylindrical coordinate
can be written as

Ωj(r) = Ω0,j(

√
2r

w
)|lj | exp

(
− r

2

w2
+ iljφ+ ikzz

)
, (1)

where Ω0,j is proportional to the beam intensity, w is
the beam waist, r is the radius and φ is the azimuthal
angle. Hereafter we consider the case −l1 = l2 = l for
convenience. The two-photon Raman coupling between
two spin states is Ω1Ω̄2/4∆ ≡ (Ω̃/2)f(r)e−2ilφ with the

strength Ω̃ and spatial distribution f(r). Incorporat-

ing additional detuning δ̃/2, the effective single-particle
Hamiltonian is written as

H0 =

(
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2
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2 fe

−2liφ
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2 fe
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in basis Ψ =
(
ψ↑, ψ↓

)T
, where V (r) =

diag.
(
|Ω1|2/4∆, |Ω2|2/4∆

)
describes the Stark

shift [51] and M is the atomic mass. After a unitary
transformation ψ↑/↓ → e∓ilφψ↑/↓, we obtain
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2
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where Lz = −i~∂φ is the z-component of the angular
momentum operator and {σj} are Pauli matrices. The
SOAM coupling Lzσz (as a part of more general L · σ
coupling) emerges from such transformation, similar as
the appearance of kxσz in SLM coupling experiments [10–
20].

III. RING SYSTEM

To reveal the most salient effects of SOAM coupling in
both theoretical and experimental aspects, we investigate
a ring BEC with a fixed radius R. Integrating out the
z and r dependence and using the natural energy unit
ε = ~2/(2MR2), we turn Eq. (3) into a dimensionless
ring Hamiltonian,

Hring
0 = −∂2

φ +

(
2il∂φ +

δ

2

)
σz +

Ω

2
σx, (4)

where δ = δ̃/ε and Ω = Ω̃f(R)/ε are the dimension-
less detuning and Raman coupling, respectively. Because
[Hring

0 , Lz] = 0, the eigenstates of Hring
0 coincide with the

OAM eigenstates |m〉, or eimφ with an integer m. The
energy spectrum shows two bands with the lowest one

E−(m) = m2 − 1

2

√
( 4lm− δ)2

+ Ω2. (5)

Applying the Hellmann-Feynman theorem, one can com-
pute the spin polarization from the energy spectrum as
〈σz〉 = ∂E−/∂(δ/2) and 〈σx〉 = ∂E−/∂(Ω/2).

For an assumed continuous spectrum, the ground state
would correspond to a real number m∗, analogous to the
SLM coupling case. In our system, however, due to OAM
quantization, the ground state does not exactly lie at
m∗ but the nearest integer(s) [m∗]. Therefore, there can
be two degenerate ground states with adjacent quantum
numbers (reminiscent of a recently proposed idea of quan-
tum time crystal [62]). By letting E−(m) = E−(m + 1)
we obtain a condition for degenerate |m〉 and |m + 1〉
as qmΩ =

√
(4l2 − q2

m)[(2lqm − δ)
2 − q2

m] with qm =

2m + 1. If δ = 0, the system has another two-fold de-
generacy | ± m〉, except for m = 0. Combining these
conditions, the non-interacting case can exhibit at most
4-fold degeneracy | ±m〉 and | ± (m+ 1)〉. On the other
hand, in the large Ω limit, the system always has a single
ground state |0〉. The double minimum structure of |±m〉
degeneracy appears as Ω decreases across a critical value
Ωc, which can be evaluated as a 3-fold degeneracy point
of |0〉 and | ± 1〉. We hence obtain Ωc = 4l2 − 1. This
is different from a continuous spectrum because of the
quantization of m. When double minima appear at ±m∗
closer to 0 than 1, the system is enforced in the single
state |0〉.

In Fig. 1b we plot the ground state phase diagram for
l = 2. The OAM quantum numbers m are labeled on
the corresponding blocks with borders in dashed lines,
which also represent regions with degeneracy. The spin
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polarization 〈σz〉 displays discontinuity with the change
of m, and its sign is locked with the sign of m for any
non-zerom. Both signatures can be directly attributed to
the presence of SOAM coupling. In Fig. 1c, we label the
ground state(s) on the assumed continuous spectrum at
selected points along the δ = 0 line. We see the transition
from non-degenerate to various multi-degenerate ground
states as Ω varies. Remarkably, the 3-fold (curve ii) and
4-fold (iv) degeneracy does not occur in the continuous
spectrum.

IV. INTERACTION EFFECTS

We now analyze realistic systems with s-wave scatter-
ing interactions. Incorporating the interactions g↑ (g↓)
between up (down) bosons and the inter-spin one gl, the
system’s energy reads as

E =

∫ 2π

0

Ψ†
(
Hring

0 +Hring
g

)
Ψdφ, (6)

where

Hring
g =

1

2

(
g↑ψ̄↑ψ↑ glψ̄↓ψ↑
glψ̄↑ψ↓ g↓ψ̄↓ψ↓

)
. (7)

The normalization condition is set as
∫ 2π

0
Ψ†Ψdφ = 1

such that g↑,↓,l are proportional to the total number of
particles N .

To capture the effects of SOAM coupling, interactions,
and possible degeneracies, we adopt a variational wave
function of the form

Ψ =
(
Ψ1 + eiζΨ2

)
/
√

2π, (8)

where

Ψj =
∣∣∣Cj1∣∣∣ ( cos θj

− sin θj

)
ei(mjφ+ηj) +∣∣∣Cj2∣∣∣ ( sin θj

− cos θj

)
e−i(mjφ+ηj), (9)

with m1 = m and m2 = m + 1. The normalization con-

dition gives
∑
i,j |C

j
i |

2
= 1. The range of parameters is

set to be 0 ≤ θj ≤ π/2 and −π ≤ ηj , ζ < π. With
this ansatz, we obtain E as a function of six indepen-
dent parameters |C1

1 |, |C2
1 |, |C1

2 |, θ1, θ2, and ζ. The two
phases η1 and η2 do not affect E here but can play a
role in a general case with external potentials. These
parameters are determined through the minimization of
E. In addition, we compare the variational results with
those from solving the Gross-Pitaevskii equation (GPE)
by the imaginary time evolution and find good agreement
between them.

With the interactions on, we obtain either Ψ1 = 0 or
Ψ2 = 0, which indicates energetic disfavor of the super-
position of |m〉 and |m+1〉. As a result, 〈|m|〉 is always an
integer and the phase ζ plays no role. Below we assume
Ψ2 = 0 for convenience.

FIG. 2. (Color online) Phase diagrams with the presence of
interactions. (a) [(b)] corresponds to l = 2 and g↑ = 3.421×
103 (104), and (c) [(d)] does to l = 10 and g↑ = 3.421 × 103

(105). We set g↓ = gl = 0.9954g↑, which is good for 87Rb
atoms. In (a) the non-interacting boundaries are drawn in
gray dashed lines for comparison. Conventions are the same
as Fig. 1b, except an emerging stripe phase as a combination
of | ±m〉 is denoted by Sm.

Figures 2a and 2b show phase diagrams for l = 2 at
a fixed ratio g↓ = gl = 0.9954g↑. We present quantum
numbers, phase boundary, and spin polarization in the
same convention as Fig. 1b. The gray dashed curves in
panel (a) show the non-interacting phase boundary for
comparison. We see that the presence of interaction leads
to (1) an emerging stripe phase and (2) phase boundary
shifts. In regions denoted with integer m, the ground
state lies in this specific quantum number, which means
only one of |C1

1 | and |C1
2 | is non-zero, or |C1

1C
1
2 | = 0.

Similar to the SLM coupling case, there appears a region
showing |C1

1C
1
2 | 6= 0, corresponding to a linear combina-

tion of | ± m〉 (denoted by Sm ). This state exhibits a
spatial modulation in particle density or a stripe struc-
ture since Ψ†Ψ = 1+2|C1

1C
1
2 | sin 2θ1 cos 2(mφ+η1). The

net spin polarization 〈σz〉 is strongly suppressed in the
stripe phase due to the cancellation from | ± m〉 with
opposite polarizations. In contrast to the SLM coupling
case, the stripe phase here can still exhibit significant
spin polarization as a function of the detuning.

In panel (a), the vertical shifts of the phase boundary
come from the asymmetry of the interactions g↑ 6= g↓,
which causes an effective Zeeman splitting (g↑−g↓)/8π×
〈σz〉 in the energy functional. This interaction induced
splitting, which energetically favors down spins, com-
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FIG. 3. (Color online) (a) Phase diagram in the Ω–(g↑/gl)
plane. The |m〉 phases labeled by |m| and the stripe phase
S3 are separated by dashed lines. The colors represent spin
polarization magnitude |〈σz〉| scaled in the bar graph. The
parameters are l = 3, δ = 0, g↑ = g↓ and gl = 424 (good

for 23 Na atoms). (b) From top to bottom: quantum num-
ber |m| (circles) and spin polarizations |〈σz〉| (triangles) as
well as |〈σx〉| (squares) vs Ω at g↑/gl = 0.95, 1.05, and 1.25,
respectively, corresponding to the white dashed lines in (a).

petes with the detuning δ/2 in its negative region. The
phase boundary between | ± m〉 and the zero polariza-
tion line of the stripe phase hence vertically shifts to
a point δ ∼ −(g↑ − g↓)/4π where the two effects bal-
ance. As g↑ increases by an order [from (a) to (b)],
the stripe phase S2 expands, invades the single-m region,
and finally intersects with all m phases. At intermediate
stages, the boundary of S2 can meet the point of degen-
erate | ± 1〉, | ± 2〉 to forms a 5-fold degeneracy and meet
Ωc (point of degenerate |0〉, |±1〉) to form a 4-fold degen-
eracy. We notice that the S1 phase is never energetically
favorable here. In addition, we find that Ωc decreases
with the increase in g↑, indicating an interaction-induced
change between the single and double minimum struc-
tures [13, 32].

For a larger l case, the structure of the phase diagram
remains the same: the stripe phase on the left, m ≥ 1
phases decreasing from |m| = l to |m| = 1 in the middle,
and m = 0 phase on the right. Panels (c) and (d) are
phase diagrams for a case of higher-order LG beams with
l = 10. In (c) we see the same structure as the l = 2 case
in (a). The stripe phase S10 appears on the left between
−2.4 < δ < 0 while the zero momentum one |0〉 does
on the right. In the middle region, the finite quantum
number phases |m〉 monotonically decreases from m = 10
to m = 1 if δ < −1.2, while m changes sign if δ >
−1.2. The magnitude and sign of 〈σz〉 behave in the same
trend as m. In (d) we show strongly interacting effects
by increasing the interaction strength by 100 times. One
sees that the stripe phase region significantly expands,
the boundaries of single-m phases become more inclined,
and the zero momentum phase region shrinks. Such trend
is similar to the l = 2 case in (a) and (b).

We turn to study a case where the ratio of intra-
spin and inter-spin interactions varies. Figure 3a shows

FIG. 4. (Color online) (a) Expectation value 〈m〉 (circles,
axis on left) and density contrast [triangles, axis on right of
(b)] vs Ω at gravity strength VG = 0.05 in a non-interacting
system. The dashed curve shows 〈m〉 at VG = 0 for compar-
ison. Insets: normalized ring density profiles (scaled in bar
graph) for the two cases at Ω = 10.25, indicated by the ar-
rows respectively. (b) Same quantities vs VG at Ω = 10 and
g↑ = g↓ = gl = 100.

a phase diagram as a function of Ω and g↑/gl, given
g↑ = g↓, gl = 424, l = 3 and δ = 0. We see that the
stripe phase S3 exists only when the ratio g↑/gl > 1 and
m ≥ 1 phases disappear at large ratio. In Fig. 3b we plot
|m|, |〈σz〉|, and |〈σx〉| vs Ω at g↑/gl = 0.95 (no stripe
phase), 1.05 (all phases), and 1.25 (no finite-m phase),
corresponding to the white dashed lines from left to right
in Fig. 3a, respectively. We see that the system finally
becomes fully polarized in 〈σx〉 at large Ω . The discrete
jumps of 〈σx〉 = ∂E/∂Ω indicate first-order phase tran-
sitions between stripe and non-stripe phases as well as
between different m phases.

V. EXTERNAL POTENTIAL

We consider effects of a gravitational potential
MagR sinα cosφ, where ag is the gravitational acceler-
ation and α is the angle between the ring plane and
the horizontal plane. For the mass of 23Na, R = 8
µm, we obtain a dimensionless gravity strength VG ≡
MagR sinα/ε = 1315 sinα, comparable to the inter-
action strength as shown later. The gravity couples
two adjacent OAM states because 〈m| cosφ |m± 1〉 =
1
2 〈m| e

iφ + e−iφ |m± 1〉 6= 0, so it should play a cru-
cial role when the two states are nearly degenerate. In
such case the variational ground state can have both Ψ1

and Ψ2 non-zero. To pinpoint this effect, we first study
the transition region between m = 1 and 2 in the non-
interacting case with tiny detuning (along the δ = −0.01
line in Fig. 1b). We plot 〈m〉 and density contrast (de-
fined as normalized difference ρM−ρm

ρM+ρm
between density

maximum ρM and minimum ρm) vs Ω at VG = 0.05 in
Fig. 4a. In contrast to the discontinuity of the VG = 0
case (dashed curve), 〈m〉 at VG = 0.05 goes smoothly
from 2 to 1, indicating a mixed state around the transi-
tion point Ω = 10.25. Such state exhibits an inhomoge-
neous density profile (i.e., a stripe) that is qualitatively
different from the uniform one at VG = 0 (see inset). This
makes the system a very sensitive detector for gravity
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(VG = 0.05 corresponds to α . 10−4 ). Figure 4b shows
the same quantities vs VG at Ω = 10, g↑ = g↓ = gl = 100,
and δ = 0 , obtained from GPE (the variational results
deviate at large VG due to the truncation of the Hilbert
space). The contrast linearly increases with VG and satu-
rates when VG > 16. The sensitivity is hence controllable
through the tuning of Ω and the interactions.

Another experimentally feasible potential is an
anisotropic trapping 1

2mω
2[x2 + (1 − λ2)y2] =

1
4mω

2R2λ2 cos 2φ up to a constant. This potential cou-
ples |m〉 and |m± 2〉 and is expected to stabilize the
stripe phase composed of | ± 1〉. The gravity and
anisotropic trapping are also capable of inducing dipole
and quadrupole density oscillations, respectively, for
studying the ring’s collective excitations.

VI. EXPERIMENTAL ASPECTS

For a 87Rb gas trapped in a ring of radius R = 20 µm
and thickness b = 5 µm [59, 60], we have ε = 2π~×0.145
Hz. The dimensionless interaction strength can be eval-
uated as g = 8NRas/b

2 with the two-body scattering
length as [63, 64]. The intra- and inter-spin scatter-
ing lengths fix the ratio g↓ = gl = 0.9954g↑ [10]. For

as = 100.86a0 (Bohr radius) and N = 105, we obtain
g↑ = 3.421 × 103 (as used in Fig. 2). One can enhance
ε to 2π~ × 0.91 Hz by shrinking the ring size to R = 8
µ m, which, combined with higher order LG beams of
l = 10 [65], gives Ωc = 2π~× 363 Hz. For a 23Na gas [66]
with R = 8 µm and l = 10, we get ε = 2π~ × 3.43 Hz
and Ωc = 2π~×1369 Hz. Given b = 2 µm, N = 104, and
as = 50 a0, typical interaction strength is equal to 424
ε (as used in Fig. 3). For typical Ω ' 1 kHz, the heat-
ing effect due to spontaneous photon emission of Raman
lasers should be weak for a typical experimental time
scale of one second [33]. We notice that, because ε can
be so small, the interaction energy [O(g/2π)] can be much

larger than the kinetic energy [O(l)] and even Ωc. There-
fore, unlike the current 87Rb platform where interactions
show little competition with the SLM coupling, our ring
system is instead suited for exploring the strongly in-
teracting regime, where the ground state phase diagram
could be significantly different from the non-interacting
case. For experimental detection, the quantum number
m corresponding to a superfluid winding number can be
determined by absorption images of the BEC after time-
of-flight (TOF) expansion [60]. The stripe phase will
maintain its pattern during TOF [65]. Finally, we note
that there is ongoing experimental effort for generating
such SOAM coupling using 87Rb atoms confined on a
ring trap [67] .

VII. CONCLUSION

A realistic scheme for generating SOAM coupling in
cold atom gases is proposed and analyzed. Study of the
ground state phase diagram of the SOAM coupled BEC
on a ring reveals the strong effects of many-body interac-
tion with the currently experimentally available param-
eters. The results should provide a new platform for
exploring SOAM coupled cold atomic physics for both
bosons and fermions. Generalization of the scheme for
the full L · σ coupling may involve more LG laser beams
and additional hyperfine states, but may bring new ex-
otic physics.
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