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Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) superfluids, Cooper pairings with finite momentum,
and Majorana fermions (MFs), quasiparticles with non-Abelian exchange statistics, are two topics
under intensive investigation in the past several decades, but unambiguous experimental evidences
for them have not been found yet. Here we show that the recent experimentally realized shaken
optical lattice provides a new pathway to realize FFLO superfluids and MFs. By tuning the shaking
frequency and amplitude, various coupling between the s- and p-orbitals of the lattice (denoted as
the pseudo-spins) can be generated. We show that the combination of the s- and p-band dispersion
inversion, the engineered pseudo-spin coupling, and the on-site attractive interaction, naturally
allows the observation of FFLO superfluids as well as MFs in different parameter regions.

PACS numbers: 03.75.Ss, 03.65.Vf, 74.20.Fg

I. INTRODUCTION

Optical lattices for ultra-cold atoms provide a generic
platform for quantum simulation of various condensed
matter phenomena because of their precise control of the
system parameters and the lack of disorder [1]. In a
static optical lattice, the Bloch bands are well separated
by large energy gaps and usually only one orbital band
plays a dominate role in the static and dynamical proper-
ties of ultra-cold atoms [2–10]. Recently, the experimen-
tally realized shaken optical lattices opens a completely
new avenue for studying the physics originating from the
coupling between different orbital bands induced by the
lattice shaking [11]. It was shown in experiment that the
hybridization of s-band and p-band of a Bose-Einstein
condensate (BEC) in a shaken lattice can cause a change
of the energy dispersion from a parabolic to a double
well structure, yielding a paramagnetic to ferromagnetic
phase transition [11, 12, 60]. More generally, by varying
the shaking parameters, various coupling between differ-
ent Bloch bands can be engineered to implement artificial
gauge fields for cold atoms, yielding exciting new exotic
physics [13, 14], such as the recent experimental obser-
vation of topological Haldane model and the associated
anomalous Hall effect [15].
In this article, we investigate new superfluid phases

emerged from the coupling between the lowest two Bloch
bands (s- and p-bands) in a shaken fermionic optical lat-
tice. The s- and p-orbitals are denoted as two pseudo-
spins, whose energy dispersions are inverted, in contrast
to the same dispersion for usual spins. We show that such
inverted band dispersions, together with on-site interac-
tions between atoms on s- and p-bands, provide a nat-
ural way to realize the long-sought Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) superfluids [16, 17]. Because of the
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inverted band dispersion, the FFLO state becomes the
natural ground state of the system with a fixed FFLO
momentum. Such inverted band induced FFLO pairing
mechanism has not been well explored before and is com-
pletely different from the well-known Zeeman field [16–
20] or asymmetric band dispersion [21–26] mechanisms,
where the FFLO momentum is continuously tunable by
the external Zeeman field.

When the shaking frequency and amplitude are tuned
to certain regimes, the coupling between the two pseudo-
spins may depend on the lattice quasi-momentum, anal-
ogous to the artificial spin-orbit coupling (SOC) [27–31].
However, because of the inverted band dispersions of two
pseudo-spins, such coupling opens a band gap in the en-
ergy spectrum, instead of shifting band dispersions of dif-
ferent spins in the artificial SOC [27–31]. Therefore the
system behaves like a topological insulator (TI) [32, 33]
without interaction and supports topological edge states
in the band gap. With many-body interaction, we show
that there is a quantum phase transition from FFLO
to BCS superfluids with the increasing SOC. The BCS
superfluid is topological in most parameter regions and
supports Majorana fermions (MFs) which are localized
at the lattice boundaries [34, 35]. More interestingly,
the topological BCS superfluids and MFs may utilize the
conduction or valence bands of such a TI, instead of the
edge states inside the band gap that are commonly used
in previous TI-based schemes for MFs [36].

II. MODEL HAMILTONIAN

We first consider a degenerate spinless Fermi gas
trapped in a three dimensional (3D) optical lattice. The
shaking of the lattice is along the x direction [11], yield-
ing a periodically modulating potential

V = Vx cos
2[kLx+ f cos(ωt)] +

∑

i=y,z

Vi cos
2(kLri) (1)
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FIG. 1. (Color online) Single-particle band structure of the
shaken lattice with (a) one-photon coupling Ω = 0.3ts; (b)
two-photon coupling α = 1.0ts and Zeeman field h = 0.3ts.
The band dispersions without coupling are shown as thin
lines. The colors represent the band compositions of each mo-
mentum state. The orange filled circles denote the preferred
Cooper pairings.

where Vi (i = x, y, z) are the lattice depths, kL = π/a, a
is the lattice spacing that is set as the length unit. f and
ω are the shaking amplitude and frequency, respectively.
The energy dispersions of the static Bloch bands can be
shifted by n~ω (n is an arbitrary integer) due to the shak-
ing, forming the new Floquet bands. The shaking also
couples two close Floquet or static bands, leading to gaps
in the energy spectrum, as illustrated in Fig. 1. Note
that when the frequency ~ω is close to the energy gap
between s- and p-orbital bands, the higher orbital bands
involve only through a multi-photon process which con-
tributes a very small correction. Therefore we here focus
on the lowest s- and p-bands. Because the shaking is
along the x direction, only the px-band can be coupled
with the s-band and atoms stay at the s-band along the
other two directions. When ~ω is tuned close to the band
gap (∆g) of the static lattices, the s-orbital state can ab-
sorb an energy of ~ω and couple with the px-orbital state.
Such “one-photon process” coupling strength is denoted
by Ω, which can be approximated as a constant [61]. If
2~ω ∼ ∆g, the s-orbital band is shifted upward by two
photon energy 2~ω to couple with the px-band. In this
“two-photon process”, by properly tuning the frequency
and amplitude of the shaking, the dominate term is the
coupling between s- and px-orbital states of the nearest
neighboring sites which simulates a SOC [61].
For a deep shaken lattice, the system can be well de-

scribed by an effective two-band model. In the basis of
(ψs(k), ψpx

(k))T , the single-particle Hamiltonian in mo-
mentum space reads

H0(k) =

(
ǫs(k) + h Πk

Πk ǫp(k)− h

)
(2)

under the tight-binding approximation. Here ǫs(k) =
−ts cos(kxa) − t⊥s [cos(kya) + cos(kza)] − µ and ǫp(k) =
tp cos(kxa) − t⊥s [cos(kya) + cos(kza)] − µ, where ts and
tp are the nearest neighbor tunneling amplitudes for an
atom in s-orbital and p-orbital states along the x di-
rection, and t⊥s is the tunneling amplitudes along the
y and z directions. For one-photon dominated processes,

Πk = Ω is the k-independent coupling strength between
the two orbital states. For two-photon dominated pro-
cesses, Πk = α sin(kxa) is the k-dependent coupling
strength which simulates the SOC. µ is the chemical po-
tential, h is the off-resonance detuning determined by
the difference of the shaking frequency and the band gap.
Fig. 1 illustrates the effective band structures of the one-
photon and two-photon processes. With a finite coupling
Ω or α sin(kxa), two bands are hybridized around the
crossing points, and thus yield an energy gap.
We consider on-site attractive interaction between

atoms on different orbital bands. The renormaliza-
tion of the periodic driving on the on-site interac-
tion is small and thus ignored in the following calcu-
lations (See Appendix C2). In the momentum space,
the interaction Hamiltonian can be written as HI =
− U

∑
ψ†
s(k1)ψ

†
px
(k2)ψpx

(k3)ψs(k4), where k1 + k2 =
k3 + k4 due to the momentum conservation in the two-
body scattering processes, U > 0 is the interaction
strength.
As the first step approach for a qualitative understand-

ing of the interacting Fermi gas in a shaken optical lat-
tice, we consider the mean-field approximation and as-
sume a single-plane-wave FF-type order parameter, i.e.,
∆ = U〈ψpx

(Q2 − k)ψs(
Q

2 + k)〉, where Q = (Q, 0, 0) is
the FF vector along the x direction. Q = 0 corresponds
to a conventional BCS superfluid. The dynamics of the
system is governed by the Bogliubov-de Gennes (BdG)
Hamiltonian,

HBdG(k) =

(
H0(

Q

2 + k) ∆

∆∗ −σyH∗
0(

Q
2 − k)σy

)
, (3)

in the Nambu-Gorkov spinor basis [ψs(
Q

2 + k), ψpx
(Q2 +

k), ψ†
px
(Q2 − k),−ψ†

s(
Q
2 −k)]T . The gap and momentum

equations are solved by minimizing the thermodynamic
potential to obtain ∆ andQ, through which we determine
different phases (See Appendix A1). When ∆ 6= 0 and
Q 6= 0, the system is in a FFLO phase. When ∆ 6= 0,
Q = 0, the system is in a BCS phase. Otherwise, the
system is a normal gas or a band insulator.

III. PHASE DIAGRAMS IN 3D LATTICES

In Fig. 2 we plot the phase diagrams for resonant one-
photon (Fig. 2(a)) and two-photon processes (Fig. 2(b))
with tp = 3ts, t

⊥
s = ts, respectively. The phase diagram

is similar for quasi-2D and quasi-1D systems with t⊥s → 0
(See Appendix D). The system favors FFLO states in a
large parameter regime with a finite momentum along
the shaking direction Qx = ±π/a. Here the FFLO pair-
ing originates from the intrinsic band dispersion inver-
sion between s- and px-bands, which suppresses the con-
ventional BCS pairing. This can be further understood
through a coordinate transformation k′x → k′x ± π/a for
the px-band dispersion to remove the band inversion. In
the system without the band inversion, we expect a con-
ventional BCS superfluids between kx and −kx, leading
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FIG. 2. (Color online) Phase diagram of a 3D shaken opti-
cal lattice with (a) one-photon coupling Ω or (b) two-photon
coupling α. Other parameters U = 4.0ts, h = 0.0, tp = 3ts ,
t⊥
s
= ts.

to k′x ± π/a = −kx. Therefore the preferred pairings in
the shaken lattice are between two spins with momenta
of kx and k′x = ±π/a− kx, and the FFLO momentum is
Qx = ±π/a (See Appendix B). The analysis still applies
in the presence of small SOC and Zeeman fields. Note
that such inverted band induced FFLO pairing with a
fixed Q has not been well explored before and is com-
pletely different from the well-known Zeeman field [16–
20] or asymmetric band dispersion [21, 22] mechanisms.
For larger Ω, the gap between two hybrid bands is very

large, thus a band insulator phase appears near the half
filling. Each of the hybrid band polarizes to one spin
state for a large Ω, leading to vanishing Cooper pairing.
In the presence of small SOC ∼ α sin(kxa), the system
still favors the FFLO superfluid. However, the SOC leads
to different wavefunctions at kx and −kx, leading to the
BCS pairing, as observed in Fig. 2(b) for larger SOC.

IV. TOPOLOGICAL PHASE AND MAJORANA

FERMIONS IN 1D LATTICES

Hereafter we focus on possible topological phases in-
duced by the SOC in the two-photon process. It is well
known that there is no topological phases in a 3D sys-
tem with such 1D SOC. To reach the topological phase
that may support topological excitations such as MFs,

we need to consider a quasi-1D system with small or
vanishing transverse tunneling t⊥s . We first present the
results for t⊥s = 0 for simplicity, and then discuss how
a small t⊥s modifies the phase diagram and the topo-
logical phases. In Fig. 3, we plot the phase diagrams
in the presence of a Zeeman field h for two different
SOC strengths, where a new phase, topological BCS (t-
BCS) superfluids that host MFs, emerges in a large pa-
rameter regime. The transition from BCS to t-BCS is
characterized by the bulk quasiparticle excitation spec-
trum closing and reopening at kx = 0 (and kx = ±π/a)
and can be understood from the symmetry of the BdG
Hamiltonian. The BdG Hamiltonian (3) satisfies the
particle-hole symmetry ΞHBdG(kx)Ξ

−1 = −HBdG(−kx),
where Ξ = ΛK, Λ = σxτz and K is the complex con-
jugate operator. For a BCS superfluid (Qx = 0), if
tp = ts, it also respects a time-reversal-like symmetry
T HBdG(kx)T −1 = HBdG(−kx), where T = σzτ0K. This
topological BCS superfluid belongs to the BDI symme-
try class characterized by a Z invariant and MFs can
be found at the boundary of the superfluids [38–40]. If
tp 6= ts, it belongs to the more generalized D symme-
try class characterized by a Z2 invariant. The topologi-
cal BCS phase region can be determined by the Pfaffian
sign of the skew matrix Γ(kx) = HBdG(kx)Λ, yielding
sign[Pf(Γ(0)) × Pf(Γ(π))] = −1, which has an explicit
form

[(t+ − h)
2 −∆2 − (µ+ t−)

2
]×

[(t+ + h)
2 −∆2 − (µ− t−)

2
] < 0 , (4)

where t+ = (ts + tp)/2, t− = (ts − tp)/2.
Because tp 6= ts , the phase diagrams are not symmetric

about h = 0 or µ = 0 as shown in Fig. 3. However, the
system is symmetric with the transformation h → −h
and µ → −µ. This is in stark contrast to conventional
systems (with two pseudo-spins both in s-bands), where
the phase diagrams are symmetric with respect to either
h = 0 or µ = 0 and the Zeeman field must be larger than
a critical value for the appearance of t-BCS phase.
From Fig. 3, we see the FFLO superfluid dominates

for small SOC and the region of t-BCS superfluids does
not change much when the strength of SOC is increased.
There exists an insulator block with ∆ = 0 near µ = 0
surrounded by the superfluid phase in Fig. 3(b). Note
that for a 1D non-interacting system with t⊥s = 0 and
tp = ts, the single particle Hamiltonian H0 breaks the
time reversal symmetry but preserves a chiral symmetry
σyH0(kx)σy = −H0(kx), which realizes an AIII class TI
characterized by a Z topological invariant [38, 39]. In
the topological phase, there are a pair of in-gap topo-
logical states on the system boundaries [41–43]. When
tp 6= ts, there will be an additional kinetic energy term,
which does not change the phase transition and topolog-
ical properties of the system [44, 45]. With the inter-
action tuned on in Fig. 3(a,b), the system evolves into
a topological superfluids with finite BCS order parame-
ters. The original edge states of the topological insulator
are now replaced by the zero energy Majorana boundary
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FIG. 3. (Color online) Phase diagram of the 1D shaken op-
tical lattice with two-photon coupling. (a) α = 0.7ts; (b)
α = 1.4ts. The red dashed lines are the boundary between
BCS/insulator and t-BCS superfluids. U = 4.0ts, tp = 3ts,
Ω = 0.0.

states [41] when the chemical potential is in the band
gap, similar as previous TI based MF scheme using edge
states [36]. More interestingly, when the chemical poten-
tial cuts only one of the conduction or valance bands, we
find the coexistence of the edge states from the topolog-
ical insulator and the zero energy Majorana edge states
from the topological superconductor.

The above momentum space analysis is further con-
firmed by self-consistently solving the BdG Hamiltonian
in the real space. In Fig. 4(a) we plot the average value of
the order parameter ∆ and the lowest two quasi-particle
excitation energies E1 and E2 as a function of the Zee-
man field h. In consistent with the white dashed line
in Fig. 3(b), there is a phase transition from insulator
phase to trivial BEC superfluids and then to a topolog-
ical BCS superfluids at h ≈ 0.45ts. The momentum of
FFLO Cooper pairs in real space is either FF or LO types,
both have the same ground state energies as that in mo-
mentum space. In the topological phase, the zero energy
MFs are protected by a finite mini-gap E2. In Fig. 4(b)
we plot of the BdG quasi-particle excitation energies for
α = 1.4ts. The inset shows the quasi-particle excitation
spectrum with zero energy degenerate MF states and the
single particle band structure where the chemical poten-
tial cuts a single conduction band. The zero energy MF
modes are localized on the system boundaries. As men-

FIG. 4. (Color online) Majorana fermions in a shaken optical
lattice. (a) The order parameter ∆ (Blue circles) and the
lowest two quasi-particle excitation energies E1 (red squares),
E2 (cyan diamonds) as a function of Zeeman field h. α =
1.4ts. Unlabeled white regions correspond to either normal
gas or insulator phase. Other parameters are µ = −0.5ts, U =
4.0ts, Ω = 0.0, tp = 3ts. (b) BdG quasi-particle excitation
energies for α = 1.4ts, µ = −0.7ts, h = 0.8ts. There are three
pairs of sub-gap states all localized on the boundaries.

tioned in the above, for µ 6= 0 and when the chemical
potential cuts either of the two bands, we may find an-
other two pairs of sub-gap edge states with finite ener-
gies which are induced by the topological insulator and
coexist with the MFs edge states from the topological
superconductor (See Appendix E for the real space wave
functions of these coexist edge states).

The interaction strength U can be easily tuned in cold
atom experiments which provides a way to study the
crossover from the BCS superfluids with weak attrac-
tive interaction to the Bose-Einstein condensation (BEC)
of strongly bounded molecules. BCS-BEC crossover has
been widely studied in ultracold Fermi gases in various
free space and optical lattice systems [46, 47]. In Fig.
5 we plot the phase diagrams in h-U plane for a two-
photon coupling process with different strengths of SOC
(a) α = 0.7ts (b) α = 1.4ts for a certain value of chem-
ical potential. In consistent with Fig. 3 (a)(b) of the
main text we see FFLO superfluid phase dominates for
small SOC and small Zeeman field, and BCS phase dom-
inates for large Zeeman field or large SOC. The topologi-
cal phase appears when the strength of the Zeeman field
exceeds a critical value for a medium value of interaction
strength U and tends to disappear at the BEC side. Be-
cause SOC leads to an energy gap near half filling, the
band insulator occupies a larger parameter region when
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FIG. 5. (Color online) BCS-BEC crossover. Color plots of the
order parameter in the h−U plane for small SOC (a) α = 0.7ts
and large SOC (b) α = 1.4ts. The chemical potential is taken
as µ = −0.5ts, and Ω = 0.0, tp = 3ts.

SOC coupling strength is increased in the BCS side.
More generally, we can consider quasi-1D atom tubes

generated by optical lattices in a 3D system with weak
tunnelings along the transverse directions for the search
of MFs. The weak transverse tunneling can strongly sup-
press the quantum fluctuations along the 1D tubes, sim-
ilar as that in high temperature cuprate superconduc-
tors. Consider a periodic boundary condition along the
transverse directions, the weak tunneling simply shifts
the chemical potential of the 1D gas at most by 4t⊥s in
Eq. (4). As long as the shifted chemical potential still
stays inside the topological BCS region, we expect the
MFs exist along the tube edges. Similar issue for MFs
has been widely discussed in spin-orbit coupled quantum
wires (nanowire or cold atom tube arrays [48–50]) and our
calculations show that the same conclusion still holds for
the shaken optical lattices.

V. EXPERIMENTAL REALIZATION

Fermions confined in 3D or quasi-1D optical lattices
have been realized in experiments and the Hamiltonian
(2) can be generated by shaking [11] or other means [51].
For a spinless Fermi gas, the s-wave scattering interac-
tions between same orbital states are usually prohibited
by the Pauli exclusion principle, and the interactions

between different orbital states are usually very small.
However, the strong on-site attractive interactions can be
engineered using different methods (See Appendix C 1),
such as the use of the dipole-dipole interaction between
dipolar atoms [52]. Recently, dipolar BEC and degen-
erate dipolar Fermi gases have been observed in experi-
ments [53–56]. When the dipoles are aligned along the
1D direction (i.e., head to head), the dipole interaction
between atoms (∼ 1/r3) is attractive. The long rang
dipole interaction can lead to attractive on-site interac-
tion between atoms with different orbital states at the
same lattice site, which is much larger than the inter-
action between atoms at nearest neighboring sites. The
on-site interaction can be tuned by the lattice confine-
ment along the transverse directions. The FFLO pairing
may be observed by sound speed measurement [57] with
a fixed pairing momentum. MFs may be observed using
the radio-frequency spectroscopy [58].

VI. DISCUSSIONS

The shaking lattice scheme is very different and has
many advantages over widely studied Zeeman field or
SOC schemes for generating FFLO states [16–22]. Here
the FFLO pairing originates from the inversion of two
pseudospin band dispersions, leading to a fixed pairing
momentum at ±π/a, which is completely different from
the Fermi surface mismatch mechanism induced by the
Zeeman field or the asymmetric Fermi surface mecha-
nism induced by a combination of SOC and Zeeman field,
where the FFLO momentum is determined by the system
parameters [16–22]. At a finite temperature, the ther-
modynamic fluctuations suppress the superfluid phase.
However, the FFLO pairing always exists in the super-
fluid phase for the inverted bands. Furthermore, the ex-
ternal Zeeman field in the SOC system must exceed a
nonzero critical value for the topological phase and MFs.
The Zeeman field strongly suppresses the order parame-
ter, therefore it is hard to observe FFLO states and the
topological BCS phase only occurs in a small parameter
region in previous SOC schemes. In our shaking lattice
scheme, no Zeeman field is necessary. The FFLO state
is the natural ground state and almost all BCS phases
are topological. Our scheme resembles to the topologi-
cal insulator (which also has band inversion) based MF
scheme, instead of the SOC one. The presence of the
harmonic trap leads to a spatially dependent chemical
potential, where different superfluid phases may be ob-
served in different radius of the trapped system [59]. Fi-
nally, all lasers are far-detuned with little heating from
lasers, in contrast to the near-resonant Raman lasers in
the SOC scheme.



6

ACKNOWLEDGMENTS

We thank Yong Xu, Chris Hamner and Peter Engels for
helpful discussions. C. Qu and C. Zhang are supported
by ARO (W911NF-12-1-0334) and AFOSR (FA9550-11-
1-0313). Z. Zheng and X. Zou are supported by Na-
tional Natural Science Foundation of China (Grant No.
11074244 and Grant No. 11274295), and National 973
Fundamental Research Program (2011cba00200).

Appendix A: Mean-field model

1. In the momentum space

Consider the order parameter ∆(r) = U〈ψpψs〉 =
∆eiQ·r, where Q is the pairing momentum, the thermo-
dynamical potential is given by

Ω =
1

2

∑

k

(
ǫs(Q/2− k) + ǫp(Q/2− k)

)

+
∑

kλ

Θ
(
− Eλ(k)

)
Eλ(k) +

|∆|2
U

, (A1)

where Θ(x) is the Heaviside function representing the
Fermi distribution at zero temperature. Eλ(k)(λ =
1, · · · , 4) are the four eigenvalues of the BdG Hamilto-
nian HBdG(k). The order parameter ∆ and momentum
Q are hence given by self-consistently solving the saddle
equations of the thermodynamical potential Ω:

∂Ω

∂∆
= 0 ,

∂Ω

∂Q
= 0 . (A2)

2. In the real space

In the real space the tight-binding Hamiltonian is writ-
ten as

HTB = H0 +HZ +Hα + Vint , (A3)

where

H0 =
∑

〈i,j〉

(
− tsc

†
i cj + tpc

†
icj

)
− µ

∑

i,σ=s,p

niσ, (A4)

HZ = −hz
∑

i

(nis − nip), (A5)

Hα =
α

2

∑

i

(c†i−1pcis − c†i+1pcis +H.C.), (A6)

Vint = −U
∑

i

nisnip, (A7)
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FIG. 6. Self-consistently obtained order parameter in real
space. (a) Ω = 0.3ts, µ = 0.5ts, the system is in FFLO phase;
(b) α = 0.3ts, µ = 0.5ts, the system is in FFLO phase; (c)
α = 1.2ts, µ = 1.2ts, the system is in trivial BCS phase; (d)
α = 1.2ts, µ = 1.2ts, h = −0.5ts, the system is in topological
BCS phase where we adopt open boundary condition for the
appearance of MFs. Other parameters: U = 4.0ts, tp = 3ts.

The mean field order parameters

∆i = U〈cipcis〉. (A8)

We have defined ci and c†i as the particle annihilation
and creation operator on site i and the particle number

operator niσ=s,p = c†iσciσ.

Our numerical calculations are done in both momen-
tum space and real space, which agrees very well with
each other. In Fig. 6, we present the order parameter
profiles in various phases from real space calculations.

Appendix B: Mechanism of FFLO pairing

To demonstrate why the system favors FFLO pair-
ing with a finite momentum Q = ±π/a along the SOC
direction, we start with the most simplest case, i.e.,
with vanishing α, h and µ and consider only the 1D
system. If we choose the Nambu-Gorkov spinor Ψ =(
ψs(kx), ψp(k

′
x), ψ

†
p(k

′
x), ψ

†
s(kx)

)T

, and introduce a gen-

eral pairing order parameter ∆ = U〈ψpψs〉 the BdG
Hamiltonian HBdG(kx) is rewritten as

HBdG(kx, k
′
x) =

(
T (kx, k

′
x) ∆

∆∗ −σyT (kx, k′x)σy

)
, (B1)

where T (kx, k
′
x) = diag[−ts cos(kxa), tp cos(k′xa)]. When

transferred to a new spinor basis Ψ′ =
(
ψs(kx), ψp(k

′
x −

π
a ), ψ

†
p(k

′
x − π

a ), ψ
†
s(kx)

)T

through a unitary transforma-

tion Ψ = UΨ′ with U = diag(1, eiπx/a, e−iπx/a, 1), we
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get

H′
BdG(kx, k

′†
x ) = UHBdG(kx, k

′
x)U

† (B2)

=

(
T (kx, k

′
x − π

a ) ∆̃

∆̃∗ −σyT (kx, k′x − π
a )σy

)
. (B3)

Here ∆̃ = 〈ψp(k
′
x − π/a)ψs(kx)〉. Notice that

T (kx, k
′
x − π

a ) = diag[−ts cos(kxa),−tp cos(k′xa)]
correspond to the conventional bands which are known
to favor a BCS pairing in this new basis. It leads to
kx = −(±π/a + k′x) and hence kx + k′x = ±π/a. As a
result the pairing momentum should be fixed to ±π/a.

Appendix C: On-site attractive interaction

1. Generation of on-site interactions

For a three dimensional optical lattice, each well can
be expanded around its center as a harmonic oscillator
potential

V (r) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) , (C1)

where r = (x, y, z). We focus on the on-site interaction
of the lowest two orbital states, for instance s- and px-
orbital states, and assume an s-orbital state along both
y- and z-axes. The wave functions for s- and px-orbital
states in this harmonic potential are given by

ψs(r) =
(m
π~

) 3

4

ω
1

4

x ω
1

4

y ω
1

4

z e
−m(ωxx

2+ωyy
2+ωzz

2)/2~ ,

ψp(r) =
√
2π

(m
π~

) 5

4

ω
3

4

x ω
1

4

y ω
1

4

z xe
−m(ωxx

2+ωyy
2+ωzz

2)/2~ .

In the Hartree-Fock approximation, the on-site interac-
tion can be evaluated as,

−U =

∫
d3r1d

3r2 V (r1 − r2)
[
|ψs(r1)ψp(r2)|2

−ψ∗
s (r1)ψ

∗
p(r2)ψs(r2)ψp(r1)

]

=
2m4

π3~4
ω2
xωyωz

∫
d3Rd3r V (r)rx(rx/2−Rx)

exp
[
− m

~

∑

i=x,y,z

ωi(R
2
i + r2i /4)

]
, (C2)

where we have introduced r = r1 − r2 and R = (r1 +
r2)/2. For simplicity, we assume ωy = ωz = ω in fol-
lowing calculations. For the fermionic atomic gas with
a dipole moment M , the anisotropic interaction is ex-
pressed as

V (r) =
µ0|M |2

4π

[1− 3(M̂ · r̂)]2
r3

, (C3)

FIG. 7. (Color online) Phase diagram of the 2D shaken optical
lattice with (a) one-photon coupling Ω and (b) two-photon
coupling α . The color describes the magnitude of the order
parameter ∆ in unit of ts. Other parameters U = 4.0ts, h =
0.0, tp = 3ts, t

⊥
s
= ts.

where M̂ = M/|M | and r̂ = r/|r|. Substituting it into
the on-site interaction expression Eq. (C2), we get

− U = 2
(mω
π~

) 3

2 µ0|M |2
4π

× F (
ωx

ω
) (C4)

where

F (
ωx

ω
) =

∫ 2π

0

dθ

∫ π

0

dφ
(ωx

ω )
3

2 cos2 θ sin3 φ [1− 3(M̂ · r̂)]2
(ωx

ω cos2 θ + sin2 θ) sin2 φ+ cos2 φ
.

In a real experiment, we can use fermionic atoms of
167Er with M = 7µB. The optical lattice can be created
by laser beams with the wavelength λ ≈ 600nm. The
recoil energy of such an optical lattice is ER = h2/2mλ =
157nK. For a typical tunneling energy ts ≈ 0.36ER ≈
55nK. The on-site interaction U ≈ 224nK when ωx/ω ≈
0.3 hence U ≈ 4ts adopted in our paper can be obtained
in real experiments.

2. On-site interactions in the rotating frame

The time-dependent lattice potential induces the cou-
plings between different orbital bands and may also mod-
ify the diagonal intra-orbital terms to be time-dependent.
To get the effective static Hamiltonian, we usually change
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to a rotating frame to eliminate the diagonal time-
dependent terms which may modify the interactions at
the same time. In this section, we study the validity of
a on-site s-wave interaction approximation that adopted
in the main text.
Similar as reference [60, 61], the field operator Ψ(x) for

the time-dependent single-particle Hamiltonian

H0(t) =

∫
dxΨ†(x)H0(t)Ψ(x) (C5)

H0(t) = − ~
2

2m

∂2

∂x2
+ V cos2[kLx+ f cos(ωt)] (C6)

can be expanded by the Wannier functions, Ψ(x) =∑
ν,i

Wν(x− xi)cνi (ν = s, p), of the static lattice Hamilto-

nian

Hs = − ~
2

2m

∂2

∂x2
+
V

2
J0(f) cos(2kLx) . (C7)

Therefore H0(t) is expressed as

H0(t) =
∑

ij

(
− tsc

†
νicνj + tpc

†
νicνj +H.c.

)

+
∑

µν,ij

Ω̃µν
ij (t)c

†
µicνj . (C8)

For the one-photon and two-photon processes, we have

Ω̃µν
ij (t) = Ω̂µν

ij e
iωt , Ω̂µν

ij = (−1)lJ2l−1(f)
V

2

∫
dx W ∗

µ (x − xi) sin(2kLx)Wν (x− xj) . (C9)

Ω̃µν
ij (t) = α̂µν

ij e
i2ωt , α̂µν

ij = (−1)lJ2l(f)×
V

2

∫
dx W ∗

µ (x− xi) cos(2kLx)Wν (x− xj) , (C10)

respectively. Here l = 1, 2, · · · and Jl(x) is the l-th or-
der Bessel functions. We focus on couplings between
two atoms in the same site or between two nearest-
neighbouring sites. Due to the parity of Wannier func-
tions and trigonometric functions, we know Ω̂ss

ii = Ω̂pp
ii =

0 and α̂sp
ii = α̂ps

ii = 0. Therefore for the one-photon pro-
cess, there is no rotation-frame modification to the onsite
interaction, while for the two-photon process we need to
consider it.
In the rotating transformation under

U(t) = exp
( i
~

∫ t

0

dt′i2ωt′
∑

ν,mn

α̂νν
mnc

†
νmcνn

)

= exp
(ei2ωt − 1

2~ω

∑

ν,mn

α̂νν
mnc

†
νmcνn

)
(C11)

we can obtain the effective single-particle Hamiltonian in
the main text. The onsite atom-atom interaction HI =
−U

∑
n
c†snc

†
pncpncsn = −U

∑
n
nsnnpn is expressed as

H ′
I = U(t)HIU

−1(t) = HI +H
(1)
I +O(

1

ω2
),(C12)

H
(1)
I = −g e

i2ωt − 1

2~ω

[∑

mn

(
α̂ss
mnnpnc

†
smcsn

+ α̂pp
mnnsnc

†
pmcpn

)
−
∑

ν,n

α̂νν
nnnsnnpn

]
(C13)

Items withm = n in the first order correctionH
(1)
I vanish

hence have no influence on the interactions. Items with
m = n±1 in H

(1)
I modify the interactions to some kind of

tunnelings terms which should be small. And considering
that 1/ω is also small, therefore in our calculations, it is a

-0.4

 0

 0.4

 20  40  60  80

(a)

U↑ U↓ V↑ V↓

-0.4

 0

 0.4

 20  40  60  80

(b)

-0.4

 0

 0.4

 20  40  60  80
Lattice site

(c)

FIG. 8. (Color online) Wave functions of three pairs of edge
states in real space. (a,b,c) are the wave functions of the three
pairs of sub-gap edge states as shown in Fig. 4 of the main
text for energy level En where n = 80, 160, 240. (a,c) are
the wave functions closely related to the topological insulator
when there are no interactions; (b) are the wave functions of
zero-energy Majorana fermions. Other parameters are α =
1.4ts, µ = −1.0ts, h = 0.8ts, U = 4.0ts.

good approximation to assume that the interactions have
the same form as that in a time-independent system.
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Appendix D: FFLO superfluids in a 2D shaken

optical lattice

The FFLO superfluids induced by the shaken optical
lattice also exist in a 2D case. For simplicity, we consider
the one-photon coupling Ω between the lowest two orbital
states and assume the Cooper pairing can only have a
nonzero momentum along x direction. In the basis of
(ψpx

(k1), ψs(k1), ψ
†
s(k2),−ψ†

px
(k2))

T with k1 = (Q/2 +
kx, ky) and k2 = (Q/2−kx,−ky), the Hamiltonian reads

H =




εpx
(k1) Ω ∆ 0
Ω εs(k1) 0 ∆
∆ 0 −εs(k2) Ω
0 ∆ Ω −εpx

(k2)


 (D1)

where εpx
(k) = −tp cos(kxa) + t⊥s cos(kya) − µ and

εs(k) = ts cos(kxa) + t⊥s cos(kya) − µ. The phase dia-

gram is shown in Fig. 7.

Appendix E: Coexistence of edge states in the

shaken optical lattice

Without interaction, the system supports gap states
which are localized on the system boundaries; When the
interaction is turned on and the chemical potential cuts
either the conduction or valance band, the system may
support multiple edge states as shown in Fig. 8. The
coexistence of the reminiscent edge states from topolog-
ical insulator and the MFs edge states from topological
superconductor may lead to many interesting transport
properties in this system.
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