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Ultracold mixtures of different atomic species have great promise for realizing novel many-body
phenomena. In a binary mixture of fermions with a large mass difference and repulsive interspecies
interactions, a disordered Mott insulator phase can occur. This phase displays an incompressible
total density, although the relative density remains compressible. We use strong-coupling and Monte
Carlo calculations to show that this phase exists for a broad parameter region for ultracold gases
confined in a harmonic trap on a three-dimensional optical lattice, for experimentally accessible
values of the trap parameters.

I. INTRODUCTION

The advancement of ultracold atom experiments with
both homonuclear fermionic mixtures [1–6] and heteronu-
clear fermionic mixtures [7–9] demonstrates the possibil-
ity of realizing a quantum degenerate binary fermonic
mixture with great mass and/or density imbalance. Pre-
vious theoretical studies have focused on ground-state
or low-temperature phases of the repulsive imbalanced
fermion mixtures, discussing the segregated phase or
itinerant ferromagnetism in density imbalanced systems
[4, 10–17] and the crystallization and complex long range
density ordering in mass imbalanced systems [11, 18–23].
These complex phases are often unstable to thermal fluc-
tuations and the inhomogeneity of the trapping potential
and they have yet to be realized in experiments because
the ordering temperature is too low. Broadly speaking,
many body phases of atomic mixtures of bosonic and
fermionic spiecies in optical lattices have attracted a wide
range of research interests and have been shown to dis-
play extremely rich many-body ordering, such as the ap-
pearance of the supersolid [24–29], the Fulde-Ferrell and
Larkin-Ovchinnikov phases (see Ref. [30] for a review),
the paired and counterflow superfluid for both Bose [31–
35] and Bose-Fermi mixtures [36]. These studies are ei-
ther focusing on ground state or extremely low temper-
ature. These phases requires to various degree the ex-
istence of phase coherence of the superfluid state and
they are generally susceptible to large thermal fluctua-
tions and hence only exist in extremely low temperatures.

It is of great importance to explore new many-body
phenomena that are robust against thermal fluctuations
and inhomogeneity. Here we show an example of such
a robust many-body phase: a disordered Mott insula-
tor (DMI) phase in a mixture of localized and itiner-
ant fermions. The DMI phase corresponds to a situa-
tion where the density of each species of fermions can
vary, as long as the total density is fixed at exactly one.

If we ignore any possible ordered density wave phases,
or phase separation, then this phase would appear as a
zero-temperature phase transition in the ground state as
the interspecies interaction is increased beyond the Mott
transition, just like in the Fermi or Bose Hubbard mod-
els. At finite temperature, the phase only approximately
exists because the compressibility to the total density
becomes finite [23, 37]. Hence, at finite-temperature, we
always refer to the system as having a smooth crossover
to the DMI phase. Of course, for most fillings of the
fermions (with the total still equal to one), the system
will undergo phase separation to the segregated phase as
the temperature is lowered [11] precluding the direct ob-
servation of the quantum phase transition for the DMI.

We show that in an inhomogeneous system, the DMI
phase exhibits an incompressible total density while the
relative density is compressible. The DMI also exists
in cases of large number imbalance and asymmetries in
the trapping potentials for the two fermonic species. It
can be detected with procedures similar to those used
for detecting a Mott insulator phase of fermionic 40K
in Refs. [1, 38]. The DMI phases we discussed here
can also exist in the Fermi-Bose mixtures, which have
been realized in experiments with 87Rb-40K mixtures
[39–41], which focus on how the impurity of fermions
changes the bosonic superfluid-Mott insulator transi-
tion, and in 170Yb-173Yb mixtures, where the interaction
and filling induced phases in a strongly correlated Bose-
Fermi system with both repulsive and attractive inter-
species interactions are studied [42]. In the regime of a
strongly repulsive inter-species interaction, a dual Mott
insulator occurs where the total density of bosons and
fermions are incompressible, while the individual density
is compressible[42]. This phase is similar to the DMI
phase, although the theoretical study in [42] neglected
the coherent hopping of both fermions and bosons.

It is also worth noting that for many relative densities
of the particles, the system will be susceptible to segrega-
tion, which is usually a first-order phase transition, but
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occurs at temperatures too low to be seen with current
experimental technology. But the behavior of the system
in the DMI region is distinctive with interesting proper-
ties which are unlike that of a non-interacting mixture.

We treat a mixture of Nf heavy and Nc light fermions
in a cubic lattice with lattice constant a and additional
isotropic harmonic potentials, at finite temperature T >
0. Due to the mass asymmetry, Mf > Mc, there is a large
difference in the hopping energies of the two species. In
this work, it is a hopping imbalance, not a mass difference
that is most critical. A mass imbalance is the easiest way
to achieve a hopping imbalance. Thus, the system can be
effectively described by a model of localized and itinerant
fermions [11, 43]. Its Hamiltonian is written as

H =− J
∑
〈j,j′〉

c†jcj′ + U
∑
j

c†jcjf
†
j fj

+
∑
j

[
(Vc,j − µc)c

†
jcj + (Vf,j − µf )f†j fj

]
, (1)

where cj and fj are the annihilation operators for light
and heavy fermions at lattice site j, J is the hopping
energy for the light fermions, U > 0 is the repulsive in-
teraction between light and heavy fermions, µc/f is the
chemical potential for light/heavy fermions and Vc/f,j is
the corresponding harmonic trapping potential at lat-
tice site j, specifically Vc/f,j = (Mc/f/2)ω2

c/fr
2
j where

ωc/f is the trapping frequency for heavy/light fermions
and rj is the distance of the lattice site j from the cen-
ter of the trap. It is convenient to define Lc/f through

Vc/f,j = J(rj/Lc/f )2. The total particle number of each
species, Nc/f , is determined by the chemical potentials
µc/f .

Although we assume that the heavy species’ hopping
is zero, results given here should directly carry through
for small nonzero hopping, especially in achieving a ther-
malization of the heavy species [44]. One might won-
der how a system with vanishing hopping can sample all
possible heavy configurations in a thermodynamic sense,
when there is no direct movement of the heavy particles
in the Hamiltonian? This issue already arose in the study
of the Ising model, which has no spin-flip terms in the
Hamiltonian, yet averages over all possible spin config-
urations having a transition from a paramagnetic phase
to an ordered phase. The Falicov-Kimball model is dealt
with in exactly the same way. From run to run, we ex-
pect the experiment to be sampling the system with a
heavy atom configuration that is from a high probability
state in the thermodynamic average of possible states.
This can easily occur during the ramping up of the lat-
tice if the system maintains thermodynamic equilibrium
due to an adiabatic ramp. Then the system will pick
the appropriate heavy atom configuration by moving the
heavy atoms to the right locations while the heavy hop-
ping is small but not yet so small that we can neglect it.
The sampling of the experiment, will then be similar to
a Monte Carlo sampling over configurations after the al-
gorithm has thermalized. If the hopping is large enough

that there remains some heavy atom motion during the
experiment, the heavy atoms should only move between
high probability configurations, which will continue to
maintain the behavior needed for an experimental real-
ization.

We use both the Monte Carlo (MC) calculations and
the strong coupling (SC) method [35] to investigate the
finite-temperature phases of these mixtures. The MC
calculations are based on a modified Metropolis algo-
rithm, developed for interacting systems with both quan-
tum and classical degrees of freedom. For a given con-
figuration of heavy fermions the Hamiltonian is a one–
particle Hamiltonian representing itinerant free fermions
in a nonuniform potential defined by the positions of the
heavy fermions. As such, it can be easily numerically di-
agonalized, giving states of the light fermions and their
energy spectrum. In each MC step, the configuration of
the heavy fermions is modified, the Hamiltonian is then
diagonalized and the new configuration is accepted or re-
jected according to the Metropolis criterion. In this crite-
rion, however, the free energy of the fermionic subsystem
is used instead of the internal energy. This method has
been successfully applied to the Falicov-Kimball model
and its details are given in Ref. [45]. The SC formalism
is discussed in Section II. In Section III, we discuss inter-
esting features of the disordered MI phase based on the
SC and MC calculations and we show that the SC deriva-
tions and the MC calculations are in excellent agreement
for the parameter region considered in this article. The
summary and future directions are in IV.

II. STRONG COUPLING EXPANSION
FORMALISM

We summarize the main results of our derivation. More
detailed discussion of the derivation can be found in [35].
To simplify the notation, we introduce µ̄c,j(nf,j) and
µ̄f,j(nf,j) for the light and heavy fermions in the atomic
limit at site j,

µ̄c,j(nf,j) ≡ µc − Vc,j − Unf,j (2)

and

µ̄f,j(nf,j) ≡ (µf − Vf,j)nf,j . (3)

Here nf,j = 0, 1 denotes whether there is heavy particle
at site j. The effective fugacities are written as

φc,j(nf,j) = exp[βµ̄c,j(nf,j)], (4)

and

φf,j(nf,j) = exp[βµ̄f,j(nf,j)]. (5)

After the second order expansion of the time-evolution
operator of the hopping term, the partition function has
two parts: the atomic limit partition function Z(0) and
the second-order expansion term Z(2) as

Z = Z(0)(1 + Z(2)), (6)
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where

Z(0) = ΠjZ(0)
j = Πj

∑
nf,j

φf,j [1 + φc,j ]

 (7)

and

Z(2) =
β

2

∑
j,k

J2
∑

nf,jnf,k

φf,jφf,k

Z(0)
j Z

(0)
k

φc,j − φc,k
µ̄c,j − µ̄c,k

, (8)

The density and the entropy of light and heavy
fermions at site j can be derived from the partition func-
tion. The density for the light particles is written as

ρc,j = ρ
(0)
c,j + ρ

(2)
c,j (9)

where

ρ
(0)
c,j =

∑
nf,j

φc,jφf,j

Z(0)
j

(10)

and

ρ
(2)
c,j =

∑
k

J2
∑

nf,jnf,k

φb,jφb,k

Z(0)
j Z

(0)
k

[
β

(1− ρ(0)c,j )φc,j + ρ
(0)
c,jφc,k

µ̄c,j − µ̄c,k

+
φc,k − φc,j

[µ̄c,j − µ̄c,k]2

]
. (11)

The density for the heavy particles is

ρf,j = ρ
(0)
f,j + ρ

(2)
f,j (12)

where

ρ
(0)
f,j =

∑
nf,j

nf,j(φc,j + 1)φf,j

Z(0)
j

(13)

and

ρ
(2)
f,j =

∑
k

J2
∑

nf,jnf,k

β(nf,j − ρ(0)f,j)
φb,jφb,k

Z(0)
j Z

(0)
k

φc,j − φc,k
µ̄c,j − µ̄c,k

.

(14)

The local entropy at site j also contains two parts, the
entropy at the site j in the atomic limit,

S
(0)
j /kB = ln(Z(0)

j )− βεj , (15)

where εj corresponds to the onsite energy at site j in the
atomic limit,

εj =
1

Z(0)
j

∑
nf,j

[µ̄f,jφf,j(1 + φc,j) + µ̄c,jφf,jφc,j ], (16)

and the averaged contributions from the hopping at site
j,

S
(2)
j /kB = −β

2

2

∑
k

J2
∑

nf,jnf,k

φf,jφf,k

Z(0)
j

Z(0)
k [µ̄c,j − µ̄c,k]

× {[φc,j − φc,k][µ̄f,j + µ̄f,k − εj − εk]

+µ̄c,jφc,j − µ̄c,kφc,k} . (17)

The double occupancy dj is determined as the joint prob-
ability of having exactly one heavy and light particle at
site j. It is derived from the density expressions as fol-
lows,

dj = d
(0)
j + d

(2)
j (18)

where

d
(0)
j =

φb,jφc,j |nf,j=1

Z(0)
j

(19)

and

d
(2)
j =

∑
k

J2
∑

nf,jnf,k

φf,jφf,k

Z(0)
j Z

(0)
k

{
−βd(0)j

φc,j − φc,k
µ̄c,j − µ̄c,k

+ δnf,j ,1

[
β

φc,j
µ̄c,j − µ̄c,k

+
φc,k − φc,j

(µ̄c,j − µ̄c,k)2

]}
.

(20)

The average double occupancy is determined as D =
N−1

∑
j dj , where N is the lesser of the total particle

numbers for the light and heavy particles.

III. RESULTS

A. Main features

An intrinsic feature of ultra-cold atom experiments is
the spatial inhomogeneity induced by the existence of a
trapping potential. With the MC calculation, we simu-
late experimental in-situ images of atoms in trapped sys-
tems through snapshots generated by the MC simulation
(after thermalization) [11]. These snapshots show a strik-
ing feature of the DMI. Figures 1 and 2 shows series of
possible experimental realizations of the DMI phases for
three particular choices of Nf/Nc. The snapshots of the
density distribution are generated by a MC simulation for
a two-dimensional lattice in a harmonic trap. We con-
sider the process of adding heavy fermions as impurities
into an ultra-cold gas of light fermions, with a strong re-
pulsive interaction between the light and heavy fermions.
If no heavy fermions are present, the light fermions form
a band insulator at the center of the trap as a result of
the trapping potential. When heavy fermions are added,
one heavy fermion leads to the modification of the total
wave function of the light fermions. In the three pan-
els shown in Fig. 1, the individual density distribution
is disordered. But when we compare the distributions
of the two atomic species, they are perfectly complimen-
tary. Around the center of the trap, the total density
always remains at unit filling as shown in Fig.2. The
radius of the MI plateau in the total density increases
as more heavy particles are added, but the MI plateau
remains for a very large range of particle number ratios.

This re-configuration of both fermions is the result of
the strong anti-correlation due to their interactions. If
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FIG. 1. Monte Carlo snapshots of the disordered MI phase in
a trapped two-dimensional lattice system of light and heavy
mixtures. The light particle number is fixed at 200 and the
heavy particle numbers are (a) 20, (b) 200, and (c) 340.
The interaction U is 50J , the trap frequencies are set by
Lc = Lf = 2a and the temperature is 2J/kB . The density
distribution of the light and heavy particle appears disordered
but the sum of them, the total density, remains at unit filling
near the center for all the cases. This plateau of the total
density in the center of the trap remains in the MI phase.

there was no interaction, the light fermions would still
form a band insulator when heavy fermions are added.
The added heavy fermion will form a separate Fermi gas
with either a compressible or incompressible state de-
pending on the trapping potential and particle number.
Since there is a tendency at low temperature for the two
species to phase separate in a homogeneous mixture [46],
the inhomogeneity of the trap and the thermal energy at
a finite temperature both act to stabilize this MI phase.

With the SC method, we calculate much larger systems
for three-dimensional inhomogeneous systems. We find
that the inhomogeneity leads to complex spatial depen-
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FIG. 2. (Color online) Spatial distribution of the total density
in the cases presented in Fig. 1. The number of light fermions
is 200, the number of heavy fermions is 20 (a), 200 (b), and
340 (c).

dence of different phases. In Fig. 3, we show that the ra-
dial distributions of the densities, entropy and double oc-
cupancy for a strongly interacting system undergo differ-
ent phases as the trapping curvature changes. Here, the

double occupancy, dj = 〈c†jcjf
†
j fj〉, expresses the proba-

bility of having both the light and heavy atom on site j.
In Figs. 3 (a) and (d), we show the case of a shallow po-
tential (L = 16.5a). The cloud expands to minimize the
kinetic energy and the total density is less than one. The
local entropy changes with the density and the double
occupancy is almost zero due to the strong repulsive in-
teraction. As the trapping potential becomes strong, the
cloud is forced inwards and the density at the center of
the trap increases. When the total density reaches unit
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FIG. 3. (Color online) Radial distribution of densities, en-
tropy and double occupancy for different trapping frequen-
cies in a 3D system. The interaction is fixed at U = 50J
and temperature at T = 2J/kB . There are 5 × 104 heavy
and light fermions. The trapping frequencies are the same for
both heavy and light fermions, Lc = Lf = L. (a)-(c): Ra-
dial distribution of the total density nt (magenta line), heavy
fermions nf (red line) and light fermions nc (blue line). (d)-
(f): Radial distribution of the entropy ε(r) (green line) and
the double occupancy d(r) (black line). (a) and (d): The
trapping frequency is set by L = 16.5a. The system is in the
metallic state and the density is compressible. (b) and (e):
The trapping frequency is set by L = 5.0a. A MI state is
developed at the center. A peak is formed in the entropy dis-
tribution ε(r) at the edge of the MI phase, because the strong
anti-correlation of the MI leads to a reduction of local entropy.
(c) and (f): The trapping frequency is set by L = 3.0a. A
band insulator is formed at the center and a ring of the MI
exists near r = 20a. A metallic state exists elsewhere.

filling, the Hubbard band gap prevents it from increasing
its density further and a plateau of unit filling is formed.
In this region, the cloud size stays largely unchanged as
the trap curvature increases. In Figs. 3 (b) and (e), we
show the case of an incompressible MI phase at the center
of the trap. It is important to note that in this MI phase,
the incompressibility only applies to the total density and
the individual densities can still be compressible, which
is further demonstrated in Fig. 4. The unit filling of the
total density is not the result of each species forming an
incompressible phase at half-filling, but the strong anti-
correlation between the light and heavy particles that
guarantees there is always either a light or heavy parti-
cle. This anti-correlation leads to a reduction of the local
entropy, which is most noticeable at the edge of the MI
plateau. At the edge, there is a MI and metallic state
for almost identical densities. However, the entropy in
the metallic state is much higher because the light and
heavy particles are less correlated. This leads to a peak
in the entropy distribution about the edge. In Figs. 3
(c) and (f), we discuss the case where the trapping po-
tential is strong enough to force the particle to fill in the
upper Hubbard band and a band insulator is formed for
both species at the center of trap. Away from the center,
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FIG. 4. (Color Online)Radial density distribution for systems
of asymmetric particle numbers and trap potentials in a 3D
system. The interaction is fixed at U = 50J and temperature
at T = 2J/kB . (a)-(c): changing the light particle number
while keeping the heavy particle number fixed at 5× 104 and
trap potentials for both fixed at Lc = Lf = L = 5a. The
light particle number is 1 × 105 (a), 6 × 104 (b) and 1 × 104

(c). Remarkably, the system remains in a MI phase for all the
range of the particle numbers with the total density fixed at
unity while the individual densities form a plateau at various
fractional fillings. (d)-(f): changing the trap potential of the
heavy fermions while keeping the particle number fixed at 5×
104 for both and the trap potential for the light fermions fixed
at Lc = 5a. The trapping potential for the heavy fermions is
set by Lf = 4.9a (d), Lf = 4.5a (e) and Lf = 4a (f).

there is a secondary plateau that corresponds to the MI
phase. In Fig. 3 (f), we show distinct behavior of the en-
tropy and double occupancy for different phases. From
the center of the trap, the band insulator state is char-
acterized by a sharp increase of the double occupancy to
one and a sharp decrease of the entropy to zero. The
metallic state is characterized by an increase of the local
entropy. The MI state is characterized by a plateau of
the local entropy which is reduced from the entropy of
the surrounding metallic state. The double occupancy in
both the metallic and the MI state is extremely low as a
result of the strong interaction.

The anti-correlation between the particles in the MI
phase is further illustrated under asymmetric conditions.
First, we consider the case of large particle number asym-
metry. As is shown in Fig. 1 of the MC calculation of
the 2D lattice, the MI phase is robust for large num-
ber asymmetry. The robustness is confirmed in the SC
calculation for 3D systems. We change the light parti-
cle number from 1 × 104 to 1 × 105. Remarkably, the
system always self-organizes into the MI phase, even un-
der extreme particle number asymmetry. In Figs. 4 (a),
(b) and (c), we show the radial density distribution for
the cases of Nc = 1 × 105, 6 × 104, and 1 × 104. In all
three cases, a MI plateau is present at the center of the
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trap. The plateau is signaled by unit filling of the total
density. The radius of the plateau is different in each
case because the total particle number is different. For
Nc = 1 × 105, the individual density forms a plateau at
nc ≈ 0.65 and nf ≈ 0.35. For Nc = 6× 105, the individ-
ual density forms a plateau at nc ≈ 0.55 and nf ≈ 0.45.
For Nc = 1× 104, the individual density forms a plateau
at nc ≈ 0.15 and nf ≈ 0.85. The same behavior is ob-
served when we fix the light particle number while chang-
ing the heavy particle number. The remarkable robust-
ness of such MI phases also points to a new possibility
of creating a density plateau at any fractional filling of
a species by changing the other species’ particle number.
We next consider the case of trap frequency asymme-
try by varying the trap potential for the heavy particles
while keeping the light one fixed via the choice Lf = 5a.
In the case of asymmetric traps, the difference of the
trap potential causes particles to reorganize to minimize
their energy. Because the relative density remains com-
pressible, it changes responding to the difference in the
local chemical potential. This is the case for Fig. 4(d)
and (e). When the difference of the trap potentials is
too large, the particles are spatially separated. This is
the case in Fig. 4 (f), where the center of trap becomes a
band insulator of only heavy particles and the light parti-
cles are forced outside the band insulator. Note that this
phase separation is different from the phase separation at
much lower temperature, which happens for symmetric
traps and particle numbers [11]. This phase separation
is induced by the asymmetry of the trap potential.

B. Experimental detection

In experiment, the MI phase can be detected from both
the mixture’s cloud size and the double occupancy follow-
ing procedures similar to previous experiments with sin-
gle species of atoms [1, 38]. In addition, the in situ radial
density profiles discussed in the previous can also be mea-
sured either through selecting a specific 2D plane using a
magnetic resonance imaging approach [47] or through the
inverse Abel transforms [48, 49]. The cloud size of the
mixture is determined based on the total radial density
profile as

Rt =

√
(Nc +Nf )−1

∑
j

r2jnt(rj). (21)

Figure 5 shows the cloud size as a function of the trap-
ping frequency for different interaction strengths and dif-
ferent temperatures for a system of 5×104 light and heavy
particles. In Fig. 5 (a), we consider the dependence of
the MI phase on the interaction strengths at a given tem-
perature T = 2J/kB . When the interaction is relatively
small (U = 10J), the cloud size decreases as the trap po-
tential increases until a band insulator is formed at the

center. When the interaction is large (U = 30J, 50J),
there exists a plateau in the cloud size that corresponds
to the MI phase formed at the center of the trap. The
plateau appears around U = 30J and grows for stronger
interactions. In Fig. 5(b), we consider the MI phase at
different temperatures with U = 50J . We find that the
critical temperature is around T = 5J . Above T = 5J ,
the cloud size decreases smoothly with an increase of the
trap potential. When T < 5J , the decrease is slowed
down corresponds to the MI phase. For T = 2J/kB , a
plateau is clearly present.

Due to the repulsive interaction, the double occupancy
remains very small for low densities and in the MI phase.
Without the existence of the Hubbard band, the double
occupancy began to change gradually as the total particle
number increases and the density at the center of the
trap increases. The effect of the Hubbard band or the
MI phase is to suppress the double occupancy and the
change of the double occupancy becomes more abrupt as
the density at the center of the trap starts to fill in the
upper Hubbard band, rather than the gradual increase
when the MI is not present. This abrupt change of the
double occupancy is captured in the double occupancy
rate, ∂D/∂N . The double occupancy reaches one where
the two individual band insulators are formed. In Figs
6 (a) and (b) we show our calculation of the average
double occupancy as a function of the particle number
with a fixed trapping potential and for various interaction
strengths. In the case of small interaction (U = 10J),
under the same trap potential, the increase of the particle
number increases the density of the cloud and the double
occupancy increases smoothly as the individual density
increases to unity. As the interaction increases further
(U > 30J), the density increase is suppressed when the
MI begins to develop at the center of the trap. This
suppression leads to more than an order of magnitude
difference in the average double occupancy for systems
where a MI plateau is developed. In Fig. 6 (c), we show
the double occupancy rate with regard to the particle
number as a function of the interaction. The derivative
reduces to almost zero at around U = 30J . It signals
that a MI plateau is formed for U > 30J .

It is worth noting that the critical interaction and tem-
perature indicated in our calculation of a trapped system
is not quantitatively the same with those calculated for a
homogeneous system. This is because in the trapped sys-
tem, the Hubbard gap needs to be compared with the po-
tential energy gradient of the trap. If the gap is so small
that the energy difference between neighboring sites at
the center of the trap and the thermal fluctuations are
sufficient to overcome the gap, a MI plateau will not form.
Hence, the measurement of macroscopic quantities, such
as the cloud size and average double occupancy rate, is
more appropriate to detect the existence of a collective
MI region in the trapped system, instead of a measuring
of the critical interaction strength for the corresponding
homogeneous system.
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FIG. 5. (Color online) Cloud size Rt of Eq. 21 as a function of the trapping frequency for different interaction U (a) and
different temperatures T (b). The trapping frequencies ωc/f for light and heavy fermions are

√
2Ja2/(Mc/fL2). The particle

number of each species is fixed at 5 × 104. (a): Temperature is fixed at 2J and U changes from 10J to 50J . The black dots
corresponds to the MI and band insulator cases in Fig. 3. (b): Interaction U is fixed at 50J and temperature varies from
2J/kB to 10J/kB .
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FIG. 6. (Color online) (a) and (b): Average double occupancy as a function of the interaction for different temperature. (c):
Double occupancy rate as a function of the interaction. The interaction is fixed at 50J , the trapping frequency is J/25 and the
particle number for both species is N . The MI phase occurs at around U = 30J when ∂D/∂N reduces to zero (black arrow).

C. Comparison with Quantum Monte Carlo
calculation

Based on the SC calculations, we use the MC method
to verify our findings. One of the main advantages of the
MC method is that it operates in real space and there-
fore it can show not only average density distributions,
but also particular configurations of the light and heavy
fermions. This is useful to distinguish between disor-
dered phases and phase separation. It also allows us to
calculate the density-density correlation functions. From
the snapshots of the configurations of the light and heavy
fermions, it is easy to calculate the correlation function

and demonstrate that the distributions of the light and
fermions are strongly anticorrelated, i.e., there are no
light fermions on sites occupied by heavy fermions and
vice versa. This, however, does not determine directly
the total density, which in the case of the MI should
be equal to one. Therefore, in Fig. 2, we show the total
density, where the plateau with unit total filling is clearly
visible in the center of the system.

This modified MC method allows us to study much
larger systems than the fully quantum MC methods.
Nevertheless, since in each MC step the Hamiltonian has
to be diagonalized, it is much more resource demand-
ing than the traditional MC method for purely classical
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systems. Moreover, the calculation of the free energy re-
quires the full spectrum of the Hamiltonian and therefore
selective sparse matrix diagonalization methods like the
Lanczös method cannot be used. As a result the max-
imum number of fermions is limited to a few hundreds
which is much less than the number of atoms used in real
experiments. Therefore, we use the MC approach mainly
to show the validity of the SC calculations in the regime
of the DMI phase. Since the MI transition is expected
for rather strong interaction at temperatures much larger
that the ordering temperature, we expect that SC calcu-
lations to give accurate results. The comparison with
the MC results confirms this assumption. In Fig. 7,
we present density profiles calculated with the help of
both the methods and one can see there that even for
relatively weak interaction U = J there is no difference
between these two approaches.

Since the cloud size is directly related to the density
profiles, this comparison guarantees that also the trap
curvature dependence of the cloud radius will be the same
in both approaches. We also compared the other param-
eter that is used to determine the Mott transition, i.e.,
the number of doubly occupied sites D. Also in this
case, we can observe that the dependence of the double
occupancy on the trap curvature calculated in the SC ap-
proach is the same as that found in the MC calculations.
The comparison is presented in Fig. 8.

IV. SUMMARY

In summary, we have demonstrated that despite the
fragility of the magnetic ordering in mixtures of atoms

with large mass differences, the Mott phase exists at a
relative high temperature and in a parameter region that
is quite achievable in realistic experimental settings. This
phase has demonstrated remarkable robustness against
asymmetries, particularly large number imbalance. It
points to new ways of realizing novel incompressible den-
sities at fractional fillings with complementary fillings be-
tween the species of atoms as the result of strong anti-
correlation. Our calculation also shows several possible
measurements to detect the MI phase. These calcula-
tions are based on previous experiments on MI phases
and we considered system sizes comparable to realistic
experimental systems. In addition to the Fermi mixtures,
similar MI phases can exist for mixtures of heavy-light
Bose-Fermi and Bose-Bose atoms in the region where
the intra-species bosonic interaction is stronger than the
inter-species interaction.
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[45] M. M. Maśka and K. Czajka, Phys. Rev. B 74, 035109

(2006).
[46] J. K. Freericks, E. H. Lieb, and D. Ueltschi, Commun.

Math. Phys. 227, 243 (2002).
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FIG. 7. (Color online) Comparison of the MC (red stars) and SC (blue line) density profiles ρ(r) of the light and heavy fermions
calculated for U = 1J and U = 10J for different trap frequencies. The trapping frequency for light and heavy fermions are the
same, Lf = Lc = L. The system is a 51 × 51 square lattice with 200 light and 200 heavy fermions. Columns 1 to 4 correspond
to L = 1a, 3a, 5a, and 7a; rows 1 and 3 present profiles of the heavy fermions, whereas rows 2 and 4 present profiles of the
light fermions. The interaction U is equal to J in rows 1 and 2 and to 10J in rows 3 and 4. The temperature is 2J .
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FIG. 8. (Color online) Comparison of the MC (stars) and
SC (lines) double occupancy rates as functions of the trap
frequency for U = 10J, 30J, 50J in the same lattice system
as in Fig. 7.


