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An understanding of the possible ways in which interactions can produce fundamentally new
emergent many-body states is a central problem of condensed matter physics. We ask if a Fermi sea
can arise in a system of bosons subject to contact interaction. Based on exact diagonalization studies
and variational wave functions, we predict that such a state is likely to occur when a system of two-
component bosons in two dimensions, interacting via a species independent contact interaction, is
exposed to a synthetic magnetic field of strength that corresponds to a filling factor of unity. The
fermions forming the SU(2) singlet Fermi sea are bound states of bosons and quantized vortices,
formed as a result of the repulsive interaction between bosons in the lowest Landau level.

I. INTRODUCTION

While non-interacting fermions form a Fermi sea, an
attractive interaction between them can lead to a Bose-
Einstein condensation (BEC) of boson-like Cooper pairs
or molecules [1–4]. One may ask the inverse question:
Can interacting bosons produce a Fermi sea? The bound
state of multiple bosons cannot behave as a fermion, but
examples are known where Fermi-liquid-like physics ap-
pears for interacting bosons. A well-known example is
that of one-dimensional interacting bosons, whose local
properties resemble those of free fermions as manifested
in Tonks-Girardeau and Lieb-Liniger systems [5–10]. The
one-dimensional spin-1/2 XY model, which is equivalent
to a certain model of bosons, can be mapped to a free
spinless fermion problem by a Jordan-Wigner transfor-
mation [11]. For two- and three-dimensional spin sys-
tems, free fermionic excitations are thought to emerge in
some gapless spin liquids [12–14].

In this article, we explore a different mechanism
through which a Fermi sea can emerge in bosonic sys-
tems. We consider two-dimensional bosons with repul-
sive contact interaction and subjected to a synthetic mag-
netic field. The bosons used in cold atom experiments are
charge neutral so do not couple to a real magnetic field,
but the effect of a magnetic field can be mimicked either
by rapid rotation in a trap [15–17] or with laser-assisted
complex hoppings in optical lattices [18, 19]. The single-
particle problems of charged particles in continuum and
lattice are both well-studied [20–23]. We shall use the
Landau level (LL) eigenstates below but our results are
also applicable for a system in which the periodic lat-
tice potential is not very strong [24]. To characterize
the strength of the synthetic magnetic field, we define
the ratio between the number of bosons and the num-
ber of single-particle states in the lowest Landau level
(LLL) as the filling factor ν. In rotating BEC experi-
ments, there has been a significant progress toward bring-
ing a small number of atoms into the strongly correlated
regime [25]. For lattice systems, a strong uniform mag-
netic field has been achieved [26, 27] and the topological
invariant (Chern number) has been measured [28].

Previous theoretical works have demonstrated that in-

teracting bosons in synthetic magnetic field can form
fractional quantum Hall (FQH) states [29–38]. The phys-
ical mechanism is that the bosons capture one vortex
each to turn into composite fermions [39, 40]. The com-
posite fermions experience an effective magnetic field
B∗ = B − ρhc/e, where B is the actual magnetic field
and ρ is the particle density. The integer quantum Hall
(IQH) states of composite fermions explains the promi-
nent bosonic FQH states at ν = n/(n±1) found in nu-
merical studies [34, 35]. This suggests that the compos-
ite fermions might form a Fermi sea when B∗ vanishes at
ν = 1, analogous to the composite fermion (CF) Fermi
sea of electrons at half filling of the LLL [41]. For one-
component bosons at ν = 1 with contact interaction, it
has been shown that even though composite fermions are
produced [29, 30, 32, 34, 35], they experience a weakly at-
tractive residual interaction and form a paired BCS-like
state described by the Moore-Read Pfaffian wave func-
tion [42].

We present below detailed microscopic calculations
which strongly suggest that an SU(2) singlet Fermi sea is
produced at ν = 1 in a system of two-component bosons
interacting with the standard two-body contact interac-
tion. We stress that while our finite system studies below
can tell us whether the Fermi sea state is plausible, they
cannot prove its existence in a conclusive fashion given
the compressible nature of the Fermi sea, and the true
test of a Fermi sea will eventually only come from exper-
iments. The experimental techniques available in cold
atom systems should enable a preparation of this state
and may also be able to measure its many observable
consequences. We note that two component bosons in
the LLL have been considered in the contexts of FQH
effect[43–49] and of a proposal for the measurement of
fractional braiding statistics [50]. Also, it was proposed
by Chung and Jolicoeur [51] that a Fermi sea state forms
at ν = 1/3 for one-component bosons with dipolar in-
teractions. In Appendix A, we show that a Fermi sea
may also occur at ν = 1 for one-component bosons with
long-range two-body and three-body interactions; such
interactions are difficult to realize in cold atom experi-
ments.
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II. MODELS AND METHODS

We study bosons on both an open disk and a closed
sphere. For disk geometry with the symmetric gauge, the
single-particle eigenstates are labeled by a LL index α≥0
and an angular momentum index m≥−α. The LLL wave
functions are

φm(z) =
zm exp

(
−|z|2/4

)
√

2π2mm!
(1)

where z = x+ iy and x, y are the usual Cartesian coordi-
nates. {z↑} and {z↓} are used to denote respectively the
coordinates of spin-up and spin-down particles and {z}
represent the coordinates of all particles. In the spheri-
cal geometry, the radial magnetic field for particles on a
sphere is generated by a monopole at the center of the
sphere, whose strength Q has to be an integer or a half
integer [52, 53]. The single-particle eigenstates on sphere
are labeled by a LL index α≥0 and an angular momen-
tum index α+Q≥m≥− α−Q.

The bosons under investigation have two internal state
that we refer to as spin-up and spin-down. The number
of spin-up particles and the number of spin-down parti-
cles are denoted as N↑ and N↓, respectively. The total
number of particles is N = N↑+N↓. The synthetic mag-
netic field is assumed to be large enough so the bosons
are confined to the LLL and mixing with higher LLs can
be neglected. The two-body contact interaction between
the particles is encoded in the Hamiltonian

H =
∑
ij

∑
στ

Vστ δ
(2)(rσi − rτj ) (2)

where i, j label the bosons, σ, τ denotes their spins, and
Vστ characterizes the interaction strength (they are de-
termined by the s-wave scattering length). In practice,
we rewrite this Hamiltonian using the Haldane pseudopo-
tentials [57] to express it as a sum of projectors which
penalize boson pairs with nonzero relative angular mo-
mentum. Our main focus below will be on the case in
which the two-body contact interaction is SU(2) invari-
ant and we choose Vστ in such a way that the pseudopo-
tential is one, which will be the units of the energy values
presented below.

The wave function for the emergent CF Fermi sea is

ΨCF−FS
singlet ({z}) = PLLL

[
ΦFS

singlet({z↑}; {z↓})J({z})
]

(3)

Here, ΦFS
singlet({z↑}; {z↓}) is the wave function of the spin-

singlet Fermi sea in zero magnetic field, and both spin-up
and spin-down bosons capture one vortex each to become
composite fermions as implemented by multiplying the

Jastrow factor J({z}) =
∏N
i>j=1(zi − zj). In the final

step, the wave function is projected to the LLL using the
PLLL operator. The wave function ΦFS

singlet has angular
momentum L∗z = 0, so the ν = 1 Fermi sea has angular
momentum Lz = L∗z +N(N − 1)/2 = N(N − 1)/2. The
CF Fermi sea wave function on sphere, analogous to that

FIG. 1. (color online) Energy spectra of two-component
bosons with SU(2) invariant contact interaction on sphere
(dashes). The dots represent the energies of the CF trial
states ΨCF−FS

singlet . The values of (N↑, N↓, 2Q) are (6, 6, 11) in

panel (a) and (7, 7, 13) in panel (b). The horizontal coordi-
nate is the linear combination L+ 0.3S so the states with the
same L but different S can be distinguished by their relative
shifts. The spin quantum numbers are also shown in different
colors as indicated by the inset of panel (a).

in Eq. 3 for disk, can be obtained using standard meth-
ods [54–56]. The effective monopole strength for ΦFS

singlet
is Q∗ = 0, which implies that the ν = 1 Fermi sea occurs
at Q = Q∗ +N − 1 = N − 1.

III. RESULTS AND DISCUSSIONS

We first show our results for the spherical geometry.
The exact energy spectra of two-component bosons on
sphere are shown in Fig. 1. The energy eigenstates are
classified by their total angular momentum L and total
spin S. The energy levels with different S at the same L
are shifted horizontally for clarity. To compare with the
CF theory, we take all the possible fermionic wave func-
tions ΦFS

singlet({z↑}; {z↓}) at Q∗ = 0, in the basis with def-
inite L and S quantum numbers, for which the compos-
ite fermions have lowest effective kinetic energy. When
there are multiple linearly independent states in a given
(L, S) sector, we diagonalize the Hamiltonian in this re-
duced basis. The CF predictions thus obtained are also
shown in Fig. 1 for comparison. The overlaps between the
CF and the exact states are shown in Table I. [For the
(L, S) = (0, 0) sector, the CF theory nominally predicts
two states in both cases, but one of them is pushed to a
very high energy so is not shown in Fig. 1 and Table I.]
When the system size increases from N = 12 to 14, the
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(L, S)
Figure (0,0) (1,1) (2,0) (2,1) (2,2) (3,0) (3,1) (4,0) (4,1) (5,1) (6,0)

1(a) 0.931† 0.876 0.902 0.935 0.969 0.939 0.937 0.919 0.953 0.965 0.982
(1210) (7963) (5427) (12859) (14323) (7196) (17993) (9345) (22452) (27008) (12732)

1(b) 0.872† 0.933 0.929 0.952 0.971 0.942 0.946 0.926 0.962 0.968 0.963
(18607) (136181) (89876) (224106) (261967) (123338) (312212) (157877) (395292) (477017) (220148)

TABLE I. The overlaps between CF trial states and the corresponding exact eigenstates shown in Fig. 1. L is the total angular
momentum quantum number and S is the total spin quantum number. When N > 1 multiplets occur in a given (L, S) sector,

the overlap is defined as

√
1
N

∑
α,β

[
〈ΨCF−FS

singlet,α|Ψexact
β 〉

]2
where the summation is over all the N states. The dagger indicates

that there are two CF states in the (L, S) = (0, 0) sector but one of them is pushed up to a very high energy [higher than
the range of Fig. 1 (a) and (b)] and we keep only the lower energy state in our comparison. The total number of linearly
independent (L, S) multiplets is given in parentheses below each overlap.

FIG. 2. (color online) Energy spectra of two-component
bosons with SU(2) invariant contact interaction on disk
(dashes). The number of particles is N = 6 in panel (a)
and N = 12 in panel (b). The horizontal coordinate is the
linear combination Lz + 0.3S so the states with the same Lz
but different S can be distinguished by their relative shifts.
The spin quantum numbers are also shown in different colors
as in Fig. 1. There is a clear cusp at Lz = N(N−1)/2, with a
spin singlet ground state. The dot shows the energy of the CF
wave function, and the number above the dot is the overlap
between this wave function and the exact ground state.

number of states in each (L, S) sector increases many fold
but the overlaps remain large. One can see that the CF
Fermi sea description captures the low-energy physics of
the systems very accurately. It has been noted that the
Hund’s rule can be applied with some success to com-
posite fermions [58–60]. We see from Fig. 1 that for a
given total spin S the energies generally decrease with
increasing L as expected based on the Hund’s rule. If
the Hamiltonian is tuned away from the SU(2) invariant
point, the agreement between exact eigenstates and the
trial wave functions rapidly worsens, indicating that an
SU(2) invariant interaction is optimal for producing the
CF Fermi sea.

The cold atom experiments are generally performed in
parabolic traps, making it important to understand how
the SU(2) singlet Fermi sea would manifest itself in finite
open systems on a disk. In this case, the good quantum
numbers are the z-component of angular momentum Lz
and the total spin S. This problem is similar to that of
interacting electrons in a parabolic quantum dot, which

FIG. 3. (color online) Energy spectra two-component bosons
with SU(2) invariant contact interaction on disk. The number
of particles is N = 6 in panel (a) and N = 12 in panel (b). For
simplicity, the spin quantum numbers are not shown. Some of
the compact states where the energies have a downward cusp
are indicated by arrows. The Lz = 15 state in panel (a) and
the Lz = 66 state in panel (b) are the ones that would evolve
into the CF Fermi sea in the thermodynamic limit. The dots
mark the Halperin 221 state which is the maximum density
zero energy eigenstate.

can be well understood using CF theory [62–66]. The
single-particle orbitals of composite fermions are labeled
by the CF LL index α and angular momentum index m,
in analogy to the labels of the single-particle states of the
physical bosons. The most relevant many particle states
are the ones that appear at downward cusps in the plot
of energy versus Lz. These correspond to the so-called
“compact states” of composite fermions [64] denoted as
[N0, N1, N2 · · · ], wherein every CF LL is compactly oc-
cupied (without leaving any holes) with the occupation
numbers satisfying N0≥N1≥N2 · · · . To have a unique
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configuration with lowest CF cyclotron energy at L∗z = 0
[Lz = N(N−1)/2], we fill the innermost Nα/2 orbitals in
each CF LL according to a pyramid-like structure with
Nα+1 = Nα + 2. As an example, the 12 particle CF
Fermi sea is given by the compact state [6, 4, 2] in which
the (α,m) = (0, 0), (0, 1), (0, 2), (1,−1), (1, 0), (2,−2) CF
orbitals are doubly occupied. We can ask two questions:
If we plot the exact energy as a function of Lz, is there a
downward cusp at N(N −1)/2? If so, is it well described
by the CF wave function? The results presented in Fig. 2
show that there indeed are cusps at Lz = N(N − 1)/2,
the ground states at the cusps are spin-singlets, and they
have a high overlap with the CF Fermi sea state. To re-
duce the computational effort, we impose in our numeri-
cal study a cutoff on the single-particle angular momen-
tum. For the systems studied here, we find that m ≤ 16
is a suitable cutoff; we have tested that the many-body
eigenvalues remain essentially unchanged when the cut-
off is increased to 18. For the N = 12, the Hilbert space
dimension at Lz = 66 is 35027058 (with the cutoff), in-
dicating that the overlap 0.861 is still very significant.

Another important question is whether the CF Fermi
sea state can become the global ground state for some
range of rotation frequency. If so, this state can be adi-
abatically prepared as in Ref. 25. To this end, we need
to calculate the ground state energy as a function of Lz,
i.e. the yrast spectrum. For a parabolic confinement po-
tential (with a strength characterized by ωc), the total
energy at rotation frequency Ω has an additional term
(ωc − Ω)Lz. If the finite size representation of the CF
Fermi sea at Lz = N(N − 1)/2 is below the line joining
any two yrast states, it will become the global ground
state for a suitable choice of confinement potential. For
the SU(2) invariant two-body contact interaction, the
Halperin 221 wave function is the maximum density zero
energy solution, which occurs at total angular momen-
tum L221

z = N(3N −4)/4 [81], so it is sufficient to obtain
the yrast spectrum up to L221

z . We show in Fig. 3 the
energy spectra of the N = 6 and 12 systems at many
different angular momenta. For the N = 6 system shown
in Fig. 3 (a), we are able to calculate the low-lying eigen-
values from Lz = 0 to Lz = 21 and the CF Fermi sea
indeed can become the global ground state for some Ω.
For the N = 12 system shown in Fig. 3 (b), we are only
able to obtain the spectrum up to Lz = 67 and the CF
Fermi sea can be tuned to the global ground state com-
pared to the states at Lz < 67. One expects to see cusp
states at Lz = 72, 76, 84 but we are unable to calcualte
their energies.

We now discuss some issues relating to the experimen-
tal feasibility of preparing and detecting the emergent
Fermi sea. It is straightforward to create two-component
bosons, by imposing a coherent rotation that flips half of
the bosons into a different internal state (along with an
additional decoherence mechanism, such as a magnetic
field gradient [61] or an optical field that produces spon-
taneous photon scattering), or by optical pumping fol-
lowed by evaporative cooling. The condition of an SU(2)

FIG. 4. (color online) Density profiles and pair distribution
functions of the exact ground state and the CF trial state for
the N = 12 system on disk. The distance r is measured in
units of the magnetic length `B =

√
~c/eB. As we restrict

m ≤ 16 in exact diagonalizations, we have normalized the
density profiles by that of a uniform state with total filling
ν = 1. In panels (b) and (d), the two lines show g↑↑ and g↓↑
as indicated by the symbols in their vicinities.

invariant interaction requires that the atoms have the
same scattering length in all channels, which can be very
well achieved using Rb or Na. One limitation of the rotat-
ing BEC experiment [25] is that only a small number of
particles can enter the FQH regime and the system can-
not get very close to the “centrifugal limit” Ω = ωc. The
filling factor ν = 1 is comfortably far from the centrifu-
gal limit which occurs at ν = 2/3 for a two component
system.

The cold atom experiments allow one to directly ac-
cess some information of the wave function. In particu-
lar, one can measure the density profile by time of flight
expansion and the pair distribution function (PDF) by ei-
ther photo-association creation of molecules (which gives
the short range behavior) or counting statistics (which in
principle can give any equal time correlation function).
For a given state |Φ〉, the PDF gστ (r1, r2) is defined as

gστ (r1, r2) =
〈Φ|ψ†σ(r1)ψ†τ (r2)ψτ (r2)ψσ(r1)|Φ〉

〈Φ|ψ†σ(r1)ψσ(r1)|Φ〉〈Φ|ψ†τ (r2)ψτ (r2)|Φ〉

where σ, τ are spin indices and ψ†σ(r) [ψσ(r)] is the cre-
ation (annihilation) operator for a boson at position r.
The density profiles ρ and the PDFs gστ (r) of the exact
ground eigenstate and the CF trial state for the N = 12
system on disk are shown in Fig. 4. For the PDFs, we
have defined r = r1 − r2 and taken r2 to be the origin,
so g is only a function of r = |r| due to rotational in-
variance. The difference in the density profiles implies
that the Fermi sea trial wave function is not very accu-
rate for the edge physics. However, a comparison of the
PDFs shows that the CF Fermi sea captures the bulk
inter-particle correlations accurately. At the same time,
the PDF also serves as a caveat against overextending
the analogy between the CF Fermi sea of bosons and a
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FIG. 5. (color online) Density profiles and pair distribution functions of the three lowest-energy exact eigenstates and the
corresponding CF trial states (from top to bottom, labeled 1, 2 and 3) for the the N = 14 system on sphere. The distance r

is measured in units of the magnetic length `B =
√

~c/eB and the density values are given in units of `−2
B . In panels (c), (d),

(g), (h), (k) and (l), the two lines show g↑↑ and g↓↑ as indicated by the symbols in their vicinities.

spin-singlet Fermi sea of free fermions. The g↑↑ curve
shows that there is a large exchange correlation hole for
bosons with the same spin (as expected), but it does not
vanish at r = 0. Furthermore, bosons with different spins
are also correlated, to be contrasted with the g↑↓(r) of a
Fermi sea of free fermions which does not depend on r.

In addition to the density profiles and PDFs for the
states on disk, we have also calculated these quantities
for the states on sphere, which should better reflect the
PDFs in the thermodynamic limit. One issue about the
calculation on sphere is that most of the states presented
in Fig. 1 are not uniform states (i.e. they do not have L =
0), and consequently the PDFs depend on the choice of
both r1 and r2. For definiteness, we choose r2 to be at the
north pole of the sphere and define r as the chord distance
between r1 and r2. The density profiles ρ and the PDFs
gστ (r) of the three lowest-energy exact eigenstates and
the corresponding CF trial states for the N = 14 system
on sphere are shown in Fig. 5. We can see that variations
in density are weak, the PDFs do not depend significantly
on which low energy state is chosen, and have a similar
behavior as that seen for the CF Fermi sea state in a
rotating trap.

IV. CONCLUSIONS

The finite system studies presented above strongly sup-
port the existence of an SU(2) singlet Fermi sea at ν = 1,
but are not definitive. To reveal the nature of the state
at ν = 1, several decisive experimental manifestations of
this state may be envisioned by analogy to those that led
to the confirmation of a CF Fermi sea at half filling of

electrons in the LLL [68–71]. To begin with, the state will
have no gap and no superfluidity no matter how small the
temperature. It may be possible to measure the zero ef-
fective magnetic field by throwing an excitation off center
and monitoring its oscillations in the trapping potential,
which should not feel any Lorentz force in the rotating
frame. Moving slightly away from ν = 1 should produce
a Lorentz bending which is determined by the small ef-
fective magnetic field sensed by the particle as well as
its Fermi velocity, a central property of the Fermi sea.
When the filling factor is moved away from ν = 1, IQH
states of composite fermions should occur and produce
FQH states at ν = n/(n±1) [52].

The wave functions in Eq. (3) may also be interpreted
in terms of “partons” [73]. In this view, the boson is de-
composed into two fictitious fermions (partons) and one
species forms an IQH state while the other a Fermi sea.
The patrons must of course be stitched together at the
end to produce the physical bosons. This interpretation
bears some similarity to the Bose metal phase discussed
in Refs. [74, 75] in connection with the non-Fermi liquid
“strange metal” phase of cuprate superconductors.

In conclusion, our calculations present strong evidence
that two-component bosons in the LLL form an SU(2)
singlet CF Fermi sea at ν = 1. Furthermore, advances
in cold atom experiments provide unique opportunities
for creating and studying this state, which represents
extremely complex correlations between bosons but ex-
hibit many properties that we associate with an ordinary
Fermi sea.
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Appendix A CF FERMI SEA OF
ONE-COMPONENT BOSONS

The wave function describing the CF Fermi sea for a
one-component system is

ΨCF−FS
1−comp({z}) = PLLL

[
ΦFS

1−comp({z})J({z})
]

(4)

which can be understood in the same way as Eq. (2) in

the main text: the Jastrow factor J =
∏N
i>j=1(zi − zj)

implements vortex attachment, ΦFS
1−comp({z}) is the wave

function for spin-polarized Fermi sea in zero magnetic
field, and PLLL projects the wave function to the LLL.

As mentioned above, for two-body contact interaction,
composite fermions are produced but they do not form
a Fermi sea but rather a paired Pfaffian state. One can
ask if it is possible to obtain a CF Fermi sea state by
varying the interaction, by making it longer ranged. We
parametrize the interaction in the pseudopotential rep-
resentation using the following Hamiltonian

H
(2)
1−comp =

∑
ij

[
Pij(0) + C

(2)
2 Pij(2)

]
(5)

where Pij(L) projects out a pair of particles i, j with rel-

ative angular momentum L, and C
(2)
L is the interaction

energy of two particles in the state with relative angular
momentum L. The term Pij(0) is due the contact inter-
action and the term Pij(2) can be generated using longer-
range interaction (e.g. dipole-dipole interaction between
particles with permanent dipole moments). For a one-
component system on sphere, the many-body eigenstates
can be labeled by their total orbital angular momentum
values. From exact diagonalization results at many differ-

ent values of C
(2)
2 , we find that the best match between

the exact eigenstates and the CF Fermi sea trial wave

function in Eq. 4 occurs at C
(2)
2 = 0.2 as shown in Fig. 6

[panels (a) and (b)] and Table II. The low energy band
of states is consistent with that expected from the CF
Fermi sea physics, but the quantitative comparison is far
from convincing.

Chung and Jolicoeur [51] have considered bosons in-
teracting with a dipolar interaction. They have shown

L
Figure 0 1 2 3 4 5 6
S1(a) 0.026 - 0.846 0.615 0.608 - 0.561

(181) (779) (1024) (1359) 1900
S1(b) - 0.750 - 0.142 - 0.570 -

(1300) (2944) (5174)
S1(c) 0.917 - 0.943 0.954 0.922 - 0.962

(181) (779) (1024) (1359) 1900
S1(d) - 0.928 - 0.950 - 0.960 -

(1300) (2944) (5174)

TABLE II. The overlaps of the CF trial states with the cor-
responding exact eigenstates shown in Fig. 6. L is the orbital
angular momentum and “−” means that there is no trial state
in that sector. The total number of linearly independent L
multiplets is given in parentheses below each overlap.

that at ν = 1/3 the bosonic system is best described by
a Fermi sea of composite fermions made from the binding
of bosons and three vortices.

Another possible realization of a Fermi sea is suggested
from the following observation for fermions, the Pfaffian
state at ν = 1/2 is the exact zero energy state for an
appropriate three body interaction. It was found in Ref.
76 that when the longer range part of the three body in-
teraction is turned on, the Pfaffian state yields to a CF
Fermi sea. The bosonic Pfaffian is exact for the three
body contact interaction and one may ask what happens
when the three-body interaction becomes longer ranged.
To address this, we write the Hamiltonian in the pseu-
dopotential representation as

H
(3)
1−comp =

∑
ijk

[
Pijk(0) + C

(3)
2 Pijk(2)

]
(6)

where Pijk(L) projects out a triple of particles i, j, k with

relative angular momentum L and C
(3)
L is its energy. (For

small enough L, there is only one triplet state.) We
find that longer-range three-body interaction indeed sup-
presses the pairing of composite fermions and leads to a
CF Fermi sea. A comparison between the exact eigen-

states of H
(3)
1−comp with C

(3)
2 = 0.2 and the CF Fermi sea

trial wave functions is shown in Fig. 6 [panels (c) and
(d)] and Table II. The reasonably good agreement be-
tween the energies and the high overlaps suggest that a
suitable three-body interaction can produce a CF Fermi
sea. We have also found that the qualitative and quan-

titative match persists over a wide range of C
(3)
2 , indi-

cating that no substantial fine tuning of parameters is
required. While proposals have been made to engineer
three-body interactions between bosons in cold atom sys-
tems [77–80], an experimental realization of this interac-
tion is likely to be significantly more challenging than
the two body contact interaction considered in the main
text.
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FIG. 6. Energy spectra of one-component bosons at ν = 1
on sphere (dashes). The system parameters are (N, 2Q) =
(13, 12) in panels (a) and (c) and (N, 2Q) = (14, 13) in panels
(b) and (d). The panels (a) and (b) are for the two-body

interaction H
(2)
1−comp with C

(2)
2 = 0.2, while (c) and (d) are

for the three-body interaction H
(2)
1−comp with C

(3)
2 = 0.2. The

dots show the energies of the wave functions ΨCF
1−comp with

respect to the H
(2)
1−comp in (a) an (c) and H

(2)
1−comp in (b) and

(d). The zeroth two-body or three-body pseudopotentials are
chosen to be one and used as units of the energy values.
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man, arXiv:1308.6533 (2013).

[20] P. G. Harper, Proc. Phys. Soc. London, Sect. A 68, 874
(1955).

[21] G. H. Wannier, Rev. Mod. Phys. 34, 645 (1962).
[22] M. Ya. Azbel, Zh. Eksp. Teor. Fiz. 46, 939 (1964) [Sov.

Phys. JETP 19, 634 (1964)].
[23] D. R. Hofstadter, Phys. Rev. B 14, 2239 (1976).
[24] F. Harper, S. H. Simon, and R. Roy, Phys. Rev. B 90,

075104 (2014).
[25] N. Gemelke, E. Sarajlic, and S. Chu, arXiv:1007.2677

(2010).
[26] M. Aidelsburger, M. Atala, M. Lohse, J. T. Barreiro,

B. Paredes, and I. Bloch, Phys. Rev. Lett. 111, 185301
(2013).

[27] H. Miyake, G. A. Siviloglou, C. J. Kennedy, W. C. Bur-
ton, and W. Ketterle, Phys. Rev. Lett. 111, 185302
(2013).

[28] M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J.
T. Barreiro, S. Nascimbène, N. R. Cooper, I. Bloch, and
N. Goldman, Nature Physics 11, 162 (2015).

[29] N. R. Cooper and N. K. Wilkin, Phys. Rev. B 60, R16279
(1999).

[30] N. K. Wilkin and J. M. F. Gunn, Phys. Rev. Lett. 84, 6
(2000)

[31] S. Viefers, T. H. Hansson, and S. M. Reimann, Phys.
Rev. A 62, 053604 (2000).



8

[32] N. R. Cooper, N. K. Wilkin, and J. M. F. Gunn, Phys.
Rev. Lett. 87, 120405 (2001).

[33] M. Manninen, S. Viefers, M. Koskinen, and S. M.
Reimann, Phys. Rev. B 64, 245322 (2001).

[34] N. Regnault and Th. Jolicoeur, Phys. Rev. Lett. 91,
030402 (2003).

[35] C.-C. Chang, N. Regnault, Th. Jolicoeur, and J. K. Jain,
Phys. Rev. A 72, 013611 (2005).

[36] M. N. Korslund and S. Viefers, Phys. Rev. A 73, 063602
(2006).

[37] N. Regnault and Th. Jolicoeur, Phys. Rev. B 76, 235324
(2007).

[38] S. Bargi, J. Christensson, G. M. Kavoulakis, and S. M.
Reimann, Phys. Rev. Lett 98, 130403 (2007).

[39] J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).
[40] J. K. Jain, Annu. Rev. Condens. Matter Phys. 6, 39

(2015).
[41] B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B 47,

7312 (1993).
[42] G. Moore and N. Read, Nucl. Phys. B. 360, 362 (1991).
[43] E. Ardonne and K. Schoutens, Phys. Rev. Lett. 82, 5096

(1999).
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