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In the presence of nonrelativistic supersymmetry, a sharp fermionic collective mode similar to the Goldstino

mode in high-energy physics was proposed to be realized in Bose-Fermi mixtures. The Goldstino mode is

relaxed (a.k.a. decays) if supersymmetry is explicitly broken, which can be revealed as the broadening of

the corresponding spectral function. We find that the situation shares many similarities with the electron spin

resonance in magnetic systems and adopt the well-known Kubo-Tomita theory to perform a general analysis of

the spectral function lineshape broadening of the Goldstino mode.

I. INTRODUCTION

Supersymmetry (SUSY), the intriguing symmetry relating

bosons and fermions, has been of strong interest in elementary

particle physics after the first theoretical model in interacting

quantum field theory with supersymmetry was constructed by

Wess and Zumino [1]. It may play a fundamental role because

the mathematical structure of supersymmetry called graded

Lie superalgebra is the only one consistent with that in rel-

ativistic quantum field theory [2]. The first realistic super-

symmetric version of the standard model known as the min-

imal supersymmetric standard model was also later proposed

to solve the hierarchy problem about the large discrepancy be-

tween aspects of the weak force and gravity [3]. Regardless of

the intense theoretical works on supersymmetry in the particle

physics, none of the superpartners, which have identical prop-

erties except for opposite statistics, of any known elementary

particle has been found in experiments so far. Even though

the Large Hadron Collider (LHC) recently confirmed the dis-

covery of the Higgs particle [4–6], there is still no evidence of

any supersymmetric particle.

Despite the difficulties in confirming the relativistic SUSY

in high energy physics, there have been a few theoretical

proposals on the spacetime SUSY in condensed matter and

atomic systems, e.g. the possible emergence of spacetime

SUSY at quantum critical points in lattice models [7, 8], simu-

lation of the spacetime SUSY in optical lattices in atomic sys-

tems [9], and the emergence of spacetime SUSY at the bound-

ary of topological phases in condensed matter systems[10].

On a different front, nonrelativistic SUSY (a Bose-Fermi

symmetry unrelated to space-time symmetry) has attracted

considerable interest due to the recent experimental progress

in mixtures of ultra cold Bose and Fermi atoms [11–18]. The

Bose-Fermi mixtures provide an opportunity to realize and

study supersymmetry. An ultra cold superstring model was

constructed [19–21]. The physical behavior of an exactly

soluble of one-dimensional Bose-Fermi mixtures was inves-

tigated [22–24]. A general formalism to study such super-

symmetric systems based on coherent state path integral was

also set up [25].

In Ref. [26], one of the present authors studied general

properties of supersymmetric Bose-Fermi mixtures, in which

bosons and fermions are supersymmetric partners of each

other. In the presence of time-reversal symmetry, supersym-

metry is broken by a chemical potential difference between

bosons and fermions, µf − µb ≡ ∆µ > 0, which still keeps

the canonical Hamiltonian, consisting of kinetic energy and

the potential terms, supersymmetric. Such systems support

a sharp fermionic collective excitation [26] similar to that in

supersymmetric high-energy theories, referred to as the Gold-

stino. The spectral function of the Goldstino mode has a sharp

δ-function peak at zero momentum k = 0 and frequency

ω = ∆µ. However, in experiments, it is a tremendous task

to tune the parameters in such Bose-Fermi mixtures to keep

the canonical Hamiltonian supersymmetric. The supersym-

metry of the canonical Hamiltonian is expected to be broken

and the sharp δ-function peak at ω = ∆µ of the spectral func-

tion will be modified due to the relaxation of the Goldstino

mode, which is the main focus in this work.

Studying the relaxation of the Goldstino, a.k.a. the broad-

ening of the sharp δ-function peak at ω = ∆µ of the spec-

tral function corresponding to the Goldstino mode, is not as

straightforward as it seems, because the Goldstino mode itself

is a highly nontrivial zero-momentum mode involving the lin-

ear combination of the fermion-boson pair at all sites (or all

momentum) in the system. The present problem we encounter

mimics the electron spin resonance (ESR) with anisotropy

in magnetic systems. Comparing the two problems, we are

interested in the relaxation of the q = 0 Goldstino mode,

Q ∼ ∑

j f
†
j bj , while the ESR measures the q = 0 mode, e.g.

motion of total spin in Heisenberg anti-ferromagnets (AFM),

S+ ≡ ∑

j S
+
j . We adopt the Kubo-Tomita (KT) theory [27],

the well-known theoretical approach for the ESR, to perform

a general analysis of the relaxation of the Goldstino mode.

The paper is organized as follows. In Sec. II we introduce

the model system followed by performing the general analy-

sis of the broadening effects due to supersymmetry breaking

using KT theory. We conclude the work in Sec. III. We briefly

review the KT theory in App. A and provide a perturbative

analysis in the non-interacting limit in App. B which is consis-

tent with the results in the more general KT theory approach.
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II. KUBO-TOMITA THEORY APPROACH TO THE

RELAXATION OF GOLDSTINO MODE

The model Hamiltonian is defined as Ĥ = Ĥ0 + Ĥ ′ =
Ĥ1 + Ĥ2 + Ĥ ′, where

Ĥ1 = −µf N̂f − µbN̂b, (1)

Ĥ2 = T̂ + V̂ =

= −th
∑

〈jk〉

[

b†jbk + f †
j fk

]

+ U
∑

j

[

nb
jn

f
j +

1

2
nb
j

(

nb
j − 1

)

]

,

(2)

Ĥ ′ = δU
∑

j

n̂b
j n̂

f
j . (3)

The unperturbed Hamiltonian, Ĥ0 = Ĥ1 + Ĥ2, con-

tains the chemical potential term, Ĥ1, and the canonical

Hamiltonian,Ĥ2, at the SUSY point. Ĥ ′ represents the SUSY

breaking term. In the Bose-Fermi mixtures, there are only two

possible SUSY breaking terms–(i):the interaction strength dif-

ference between the onsite boson-fermi interaction and the on-

site boson-boson interaction and (ii):the difference between

the hopping strengths of bosons and fermions. We consider

the former case (i) first and the whole discussions below can

also be applied to the latter case (ii), which will be discussed

near the end of the paper. The Goldstino field is defined as,

[26]

Q ≡ 1√
N

∑

j

f †
j bj, (4)

where N = Nf + Nb is the total number of fermions and

bosons.

Before discussing how the supersymmetry breaking term

affects the Goldstino spectral function lineshape, we first point

out how the present model system mimics the ESR problem

in the Heisenberg AFM with anisotropy. For a Heisenberg

AFM in the Zeeman magnetic field with anisotropy in the

Heisenberg term, which breaks the spin rotation symmetry,

the Hamiltonian is HAFM = HAF +Hz +H ′, with

HAF = J
∑

〈j,ℓ〉

~Sj · ~Sℓ, (5)

Hz = −Bz

∑

j

Sz
j , (6)

H ′
ans =

∑

〈jℓ〉

∑

α=x,y,z

δJα
jkS

α
j S

α
ℓ . (7)

ESR only probes the q = 0 total spin mode, S+ =
∑

j S
+
j ,

and without anisotropy H ′
ans, the equation of motion for the

total spin can be solved exactly as

dS+

dt
= i

[

HAF +Hz, S
+
]

= −iBzS
+ (8)

⇒ S+(t) = S+(0)e−iBzt. (9)

Therefore, the spectral function corresponding to the retarded

total spin Green’s function GS(t) = −iθ(t)〈[S+(t), S−(0)]〉

will show a δ-function peak located at ω = Bz . However, the

presence of the anisotropy in the Heisenberg term H ′
ans will

have effects on broadening the linewidth and shifting the peak

center. [27]

Comparing the Hamiltonian in the Goldstino problem with

that in the Heisenberg AFM, we can have almost a one-to-one

correspondence between these two problems. The chemical

potential term H1 in the Bose-Fermi mixtures is similar to

the Zeeman energy Hz in the Heisenberg AFM, the canonical

Hamiltonian H2 consisting of kinetic and interacting terms is

similar to the isotropic Heisenberg term HAF , and the super-

symmetry breaking term H ′ is similar to the anisotropy term

H ′
ans which significantly changes the spectral function line

shape.

Back to the Goldstino problem, we first notice that several

commutators can be greatly simplified,

[

Ĥ1, Ĥ2

]

= 0,
[

Ĥ ′, Ĥ1

]

= 0, (10)
[

Q, Ĥ2

]

=
[

Q†, Ĥ2

]

= 0, (11)

[Q,H1] = (µf − µb)Q ≡ ∆µQ, (12)

while [H ′, H2] and [Q,H ′] remain complex and are not com-

mutable.

In order to apply the KT theory, which is briefly reviewed

in App. A we introduce the interaction picture representation

of Q as

Q(0)(t) = eiH0tQe−iH0t = eiH2teiH1tQe−iH2te−iH1t

= Qe−i∆µt. (13)

According to the KT theory, we can identity the Fourier com-

ponent Q(ω = ∆µ) = Q. On the other hand, the interaction

picture representation of H ′ is

H ′(t) = eiH0tH ′e−iH0t = eiH2teiH1tH ′e−iH1te−iH2t

= eiH2tH ′e−iH2t = H ′(ω = 0; t) ≡ H ′(t), (14)

where we identity H ′(ω = 0) = H ′. The Goldstino field at

time t, Q(t), can be expanded in powers of the perturbation as

Q(t) =
∑∞

n=0 Q
(n)(t), where the general expression of n-th

order of Q is

Q(n)(t)

≡ 1

in

∫ t

0

dt1 · · ·
∫ tn−1

0

dtn

[

Q(0)(t);H ′(t1), · · · , H ′(tn)
]

,

(15)

where we introduce [A;B,C, · · · ,K] ≡
[· · · [[A,B], C], · · · ,K]. The retarded Goldstino Green’s

function can be expanded as

GR(t) ≡ −iθ(t)
〈

0
∣

∣

{

Q(t), Q†(0)
} ∣

∣0
〉

=

∞
∑

n=0

GR
n (t), (16)

where
∣

∣0〉 represents the (unperturbed) ground state. Accord-

ing to Eqs. (15)-(16), we can extract the Goldstino Green’s

function up to any order and its corresponding spectral func-

tion.
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At zeroth order, we get

GR
0 (t) = −iθ(t)e−i∆µt

〈{

Q,Q†
}〉

= −iθ(t)e−i∆µt. (17)

Introducing Fourier transform, GR
0 (ω) =

∫

dtGR
0 (t)e

iωt, we

get

GR
0 (ω) =

1

ω −∆µ+ i0+
, (18)

and the spectral function at zero order is, A(0)(ω) =
−(1/π)ImGR

0 (ω),

A(0)(ω) = δ(ω −∆µ), (19)

which shows a δ-peak located at ∆µ. The zeroth order (un-

perturbed) result is consistent with that in Ref. [26].

For the first-order term, we have

GR
1 (t) = −iθ(t)e−i∆µt 1

i

∫ t

0

dt′
〈{

[Q,H ′(t′)] , Q†
}〉

= −iθ(t)e−i∆µt 1

i

∫ t

0

dt′
〈{

[Q,H ′] , Q†
}〉

= −iθ(t)e−i∆µt(−it)
〈{

[Q,H ′] , Q†
}〉

, (20)

where from first line to second line we use the fact that H2

commutes with Q. Using the identity {Q,Q†} = 1, we ob-

tain that 〈{[Q,H ′], Q†}〉 is real, which leads to the fact that

the effect of the first-order term is only to shift the location

of the δ-function peak of the spectral function, which will

be presented below. For a more concrete result, we crudely

mean-field decouple the expectation value,
〈{

[Q,H ′] , Q†
}〉

≃ −2δU
〈

nb
j

〉 〈{

Q,Q†
}〉

= −2δUρb,(21)

where in the last equality we assume the density of the bosons

is uniform and replace it by 〈nb
j〉 = Nb/V ≡ ρb, with V being

the whole system volume. After the mean-field decoupling, at

first order we get the renormalized Goldstino Green’s function

GR,(1)(t) = GR
0 (t) +GR

1 (t) ≃ −iθ(t)e−i∆µt (1 + i2δUρbt)

≃ −iθ(t)e−i∆µte+i2δUρbt, (22)

where in the last line, we assume small δU and exponentiate

the correcting term. In Fourier space, we get

GR,(1)(ω) ≃ 1

ω − (∆µ− 2ρbδU) + i0+
, (23)

which gives the spectral function

A(1)(ω) ≃ δ(ω − (∆µ− 2ρbδU)). (24)

The first-order perturbation indeed only shifts the δ-function

peak. The result is consistent with the previous studies.[28]

In App. Bl we perform the perturbative studies in the U = 0
limit and we also obtain exactly the same result at first-order.

For the second order term, the general form is

GR
2 (t)

= iθ(t)e−i∆µt

∫ t

0

dt1

∫ t1

0

dt2
〈{

[Q;H ′(t1), H
′(t2)] , Q

†
}〉

= iθ(t)e−i∆µt

∫ t

0

dτ(t − τ)
〈{

[Q;H ′(τ), H ′] , Q†
}〉

. (25)

If we follow KT theory to approximate
〈{

[Q;H ′(τ), H ′] , Q†
}〉

≃
〈{

[Q,H ′(τ)] ,
[

H ′, Q†
]}〉

≡ σ2
GfG(τ), (26)

with

σ2
G ≡

〈{

[Q,H ′] ,
[

H ′, Q†
]}〉

, (27)

fG(τ) ≡
〈{

[Q,H ′(τ)] ,
[

H ′, Q†
]}〉

〈{[Q,H ′] , [H ′, Q†]}〉 , (28)

we can approximately rewrite GR
2 (t) as

GR
2 (t) ≃ −GR

0 (t)σ
2
G

∫ t

0

dτ(t − τ)fG(τ). (29)

It is clear that σ2
G ∝ (δU)2 and f(τ) is a “dimensionless”

function which depends on variable τ , and σ2
G and fG(τ) are

both positive and real in this approximation. For the “time-

independent” σ2
G, we again crudely mean-field decouple it as

σ2
G =

〈{

[Q,H ′] ,
[

H ′, Q†
]}〉

≃ (δU)
2 (

6ρ2b + 2ρb
)

.(30)

If we know the exact or approximate form of fG(τ), we can

get the exact or approximate form of GR
2 (t). We do not find a

way to get the exact form of fG(τ), and below we take a plau-

sible form of fG(τ) [29], which was proposed in the studies in

relaxation effects in nuclear magnetic resonance absorption,

that leads to a reasonable result.

Before discussing the general analysis of the second order

term, we first point out that the main difficulty of extracting

the exact form of fG(τ) is that the time dependence of H ′(τ)
can not be factored out similar to that for Q(0)(τ) due to the

complicated form of [H ′, H2]. Nevertheless, for a qualitative

result in the “long-time” limit, t → ∞, we can approximate

GR
2 (t) ≃ −GR

0 (t)σ
2
Gt

∫ ∞

0

dτfG(τ) ≡ −GR
0 (t)σ

2
Gtτ

′,(31)

where τ ′ ≡
∫∞

0 dτfG(τ). The renormalized Goldstino

Green’s function containing up to second-order perturbation

is

GR,(2)(t) = G0(t) +G1(t) +G2(t)

≃ GR
0 (t)

(

1 + i2ρbδU − σ2
Gτ

′t
)

≃ GR
0 (t)e

i(2ρbδU)t−σ2
Gτ ′t, (32)

which gives the spectral function

A(2)(ω) ≃ 1

π

σ2
Gτ

′

[ω − (∆µ− 2ρbδU)]
2
+ (σ2

Gτ
′)2

. (33)

We can see that the lineshape is a Lorentzian function with

width σ2
Gτ

′ ∝ (δU)2 centered around ∆µ − 2ρbδU . σ2
Gτ

′

corresponds to the “relaxation-rate” of the Goldstino or we

can define a Goldstino “relaxation time” via the relation

1/TG = σ2
Gτ

′ ∝ (δU)2. For further strengthening the con-

jecture of the Lorentzian lineshape of the spectral function of

Goldstino Green’s function, in App. Bl we provide the per-

turbative calculations up to second-order of δU in the limit

U = 0. We indeed find that the second-order self-energy
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contains an imaginary part proportional to square of the per-

turbation, Im[Σ(2)] ∝ (δU)2, and the lineshape of the spec-

tral function of Goldstino Green’s function is modified to be

Lorentzian with width ∼ Im[Σ(2)] ∝ (δU)2, consistent with

the results presented here using KT theory approach.

In the general circumstance, it is difficult to get an analyt-

ical result unless we know the exact form of fG(τ). Since

fG(τ) is a dimensionless function, the simplest form it can

be, which is well-defined at any time, is [29]

fG(τ) = e−τ/τ0, (34)

where τ0 is some “characteristic time” with unit of energy

inverse (the same unit to time since we set ~ ≡ 1). The

simplest form of τ0 is a function consisting of the interac-

tion strength inverse U−1, the hopping strength inverse t−1
h ,

and the chemical potentials of fermions and bosons, µf/b,

τ0 = h(U−1, t−1
h , µ−1

f , µ−1
b ). With the form of fG(τ), we

get

GR
2 (t) ≃ −GR

0 (t)σ
2
Gτ

2
0

[

e−
t
τ0 − 1 + t

τ0

]

. (35)

Therefore,

GR,(2)(t) ≃ GR
0 (t)e

i2ρbδUe
−σ2

Gτ2
0

(

e−t/τ0−1+ t
τ0

)

≃ eσ
2
Gτ2

0GR
0 (t)e

i2ρbδUe−σ2
Gτ0t

∞
∑

n=0

1

n!

(

−σ2
Gτ

2
0 e

−t/τ0
)n

.

(36)

The series converge very rapidly for σGτ0 ≤ 1. The leading

term with n = 0 gives the spectral function

A(2)(ω) ≃ eσ
2
Gτ2

0

π

σ2
Gτ0

[ω − (∆µ− 2ρbδU)]
2
+ (σ2

Gτ0)
2
, (37)

which is a Lorentzian function with half-width σ2
Gτ0 ∼

(δU)2h(U−1, t−1
h , µ−1

f , µ−1
b ) ∝ (δU)2.

If σGτ0 → ∞, which means τ0 → ∞ since σG ∼ ρbδU <
1, Eq. (35) can be Taylor expanded in powers of t/τ0 giving

the leading term,

GR
2 (t)

−−−−−−−→σGτ0 → ∞−GR
0 (t)σ

2
G

t2

2
. (38)

Note that in this limit, the leading second-order term is τ -

independent. If we ignore higher-order terms in the Taylor se-

ries, the leading result corresponds to the approximation that

[H ′, H2] ≃ 0, which means the time-dependence of H ′(τ)
is dropped. In this limit, the renormalized Goldstino Green’s

function becomes

GR
2 (t)

−−−−−−−→σGτ0 → ∞GR
0 (t)e

−i2ρbδU−σ2
Gt2/2, (39)

which gives spectral function

A(2)(ω)−−−−−−−→σGτ0 → ∞ 1
√

2πσ2
G

e
−

[ω−(∆µ−2ρbδU)]2

2σ2
G . (40)

The spectral function lineshape becomes a “Gaussian distri-

bution” with width (standard deviation) σG ∝ |δU |, which

is consistent with the first situation originally discussed by

Kubo and Tomita and briefly reviewed in the App. A, in which

the Fourier components of perturbation, i.e. H ′(ω), are time-

independent.

The crossover of the lineshape from a Lorentzian function

to a Gaussian distribution can be possibly observed experi-

mentally. In the present case, the commutator, [H ′, H2] =

[H ′, T̂ ] 6= 0, does not vanishes because the perturbation, H ′,

is not commutable with the hopping term, T̂ . In the cold

atom systems, it is possible to gradually decrease the hopping

strength by tuning the potential depth [30–32], which makes it

possible to observe experimentally the change of the lineshape

and the crossover from a Lorentzian with half-width ∝ (δU)2

to a Gaussian distribution with width ∝ |δU | before entering

the Mott-insulating phase.

So far we have focused on the case in which the SUSY

breaking term is the difference between the strength of the

onsite fermion-boson and onsite boson-boson interaction. On

the other hand, if we consider the other possible SUSY break-

ing term, case (ii):the hopping strength difference between

bosons and fermions, whose Hamiltonian is

H ′
h = δth

∑

〈jk〉

f †
j fk, (41)

most of the discussions above can be directly applied to this

case with H ′ → H ′
h. For the first-order term, we find that

〈{

[Q,H ′
h] , Q

†
}〉

=
δth
N

∑

k

ξk

(

〈

nb
k

〉

+
〈

nf
k

〉

)

≡ δthγ,(42)

where we introduce ξk ≡ −∑

{eµ}
e−ik·eµ , with {eµ} being

the unit vectors that connect a site to its nearest neighbor sites.

Following the previous discussions, we obtain, at the first or-

der, the spectral function as A(1)(ω) ≃ δ (ω − (∆µ+ γδth)),
which shows the shift of the δ-peak. The second-order term

involves

〈{

[Q,H ′
h] ,

[

H ′
h, Q

†
]}〉

=
(δth)

2

N

∑

k

ξ′k

(

〈

nb
k

〉

+
〈

nf
k

〉

)

≡ (δth)
2γ′, (43)

where we introduce ξ′k ≡ ∑

k

∑

{eµ}

∑

{eν}
eik·(eµ−eν).

Following the previous discussions, we conclude that σ2
G ∼

(δth)
2 and the spectral function becomes a Lorentzian func-

tion with half-width σ2
Gτ0 ∼ (δth)

2h′(U−1, t−1
h , µ−1

f , µ−1
b ),

where h′(x, y, z, w) is a phenomenology function that has the

correct unit. Furthermore, if we experimentally “tune down”

the interaction strength to make [H ′
h, H2] = [H ′

h, V̂ ] → 0, the

time-dependence of H ′
h(t) can be dropped. The spectral func-

tion lineshape in this limit becomes a Gaussian distribtution

with width ∝ |δth|, which can be experimentally confirmed.

III. CONCLUSION

We study the relaxation of Goldstino mode in Bose-Fermi

mixtures due to the supersymmetry breaking. We adopt the
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well-known Kubo-Tomita theory in electron spin resonance

theory to find that the spectral function of Goldstino Green’s

function, in general, is broadened to be a Lorentzian function

with width proportional to the perturbation strength square.

In the limit where either the hopping strength or the interac-

tion strength vanishes, the lineshape becomes a Gaussian dis-

tribution with width linearly proportional to the perturbation

strength.
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Appendix A: Brief Review of Kubo-Tomita Theory

Most of the physical quantities can be obtained from the

corresponding Green’s functions G(t), e.g. retarded Green’s

function, real-time ordered Green’s function, imaginary-time

Green’s function depending on the convention you use. The

typical way to examine the resonance “frequency” is to ex-

amine the corresponding Green’s function in Fourier space,

G(ω) =
∫

dωG(t)eiωt. In the noninteracting limit, H = H0,

the Fourier components give sharp resonance peaks at certain

frequencies, G(ω) =
∑

α G(ωα)δ(ω − ωα), and this means

the form of the Green’s function at time domain should be

G(t) =
∑

α Gαe
−iωαt. In the presence of (weak) interaction

H ′, the sharp resonance lines will get shifted and broadened.

The conventional way to examine the effects of the interac-

tion is to use equation of motion theory to expand the Green’s

function in powers of t. Defining the retarded Green’s func-

tion G(t) = −iθ(t)〈O(t)O†(0)〉0, we can use equation of

motion theory to expand O(t) as

O(t) = O(0) +
t

i
[O(0), H ] + · · ·+ tn

n!
[O(0);H, · · · , H ],

(A1)

where we introduce [A;B,C, · · · ,K] ≡
[· · · [[A,B], C] · · · ,K]. The results above can be ob-

tianed as follows. From Heisenberg equation of motion, we

know

dO(t)

dt
=

1

i
[O(t), H ]. (A2)

Integrating both sides with the initial condition O(t = 0) =
O(0), we obtain

O(t) = O(0) +

∫ t

0

dt1[O(t1), H ]. (A3)

By iteration, we get the result above. We then obtain

G(t) = −iθ(t)
∑

n

tn

n!

〈{

[

O(0);H, · · · , H
]

, O†(0)

}〉

= G0(t) +G1(t) +G2(t) + · · ·+Gn(t). (A4)

Despite the simplicity of the expression above, it is, in most

cases, difficult to analyze it analytically. The main reason is

that we are interested in extracting the results perturbatively

in powers of H ′, but, however, it is not easy to extract the

perturbative results in powers of H ′ in this approach. Besides,

if we go to the noninteracting limit, where the strength of the

perturbation H ′ ∝ ǫ vanishes, the perturbative result should

go back to the noninteracting result as

limǫ→0G(t) =
∑

α

Gαe
−iωαt. (A5)

In the presence of perturbation H ′, we may assume gener-

ally that the coefficients of the exponential functions become

function of t,

G(ǫ, t) =
∑

α

Gα(ǫ, t)e
−iωαt, (A6)

which gives the limits

limǫ→0Gα(ǫ, t) = Gα, (A7)

which is independent of t.
For extracting the results perturbatively in powers of H ′,

Kubo and Tomita (KT) introduced another way of performing

the expansion in powers of the perturbation H ′. Below, we

briefly review the KT theory.

As illustrated above, the most convenient way to obtain the

expansion of G(t) is to solve the equation of motion,

i
dO(t)

dt
= [O(t), H ] = [O(t), H0 +H ′] . (A8)

We are interested in performing the expansion in powers of

H ′, and in order to achieve that, we switch to the interaction

picture and introduce

O(t) = eiH0tO∗(t)e−iH0t, (A9)

where H0 is the unperturbed Hamiltonian. In the interaction

picture, we obtain the equation of motion,

i
dO∗(t)

dt
= [O∗(t), H ′(−t)] , (A10)

where we also introduce H ′(t) = eiH0tH ′e−iH0t. Integrating

both sides of the equation with the initial condition O∗(t =
0) = O(0) ≡ O and we get

O∗(t) = O +
1

i

∫ t

0

dt1 [O
∗(t1), H

′(−t1)] . (A11)

By iteration, we get

O∗(t) = O +
∞
∑

n=1

(i)−n

∫ t

0

dtn

∫ tn

0

dtn−1 · · ·
∫ t2

0

dt1 ×

× [O;H ′(−t1), · · · , H ′(−tn)] .(A12)

Plugging the expansion above to Eq. (A9) gives

O(t) = O(0)(t) +O(1)(t) + · · ·+O(n)(t) + · · · ,(A13)
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where the general expression of O(n)(t) is

O(n)(t) = (i)−n

∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtn ×

×
[

O(0)(t);H ′(t1), · · · , H ′(tn)
]

,(A14)

with

O(0(t) = eiH0tOe−iH0t, (A15)

H ′(t) = eiH0tH ′e−iH0t. (A16)

With the expansion of O(t) in the powers of H ′, the Green’s

function can be straightforwardly expanded as

G(t) = G0(t) +G1(t) +G2(t) + · · · , (A17)

where

Gn(t) = (i)−n

∫ t

0

dt1

∫ t1

0

dt2 · · ·
∫ tn−1

0

dtn(−i)θ(t)×

×
〈{

[O(0)(t);H ′(t1), · · · , H ′(tn)], O
†(0)

}〉

.

(A18)

The result we obtain above is from straightforward expansion

in orders of the perturbation H ′ without making many

assumptions, except for assuming H ′ can be treated as a

perturbation. Hence, the general formula above should be

valid in most (if not all) of the situations.

The general way of evaluating the expression is to expand

O(0)(t) and H ′(t) in a Fourier series. We note that it is not

always possible to decompose O(0)(t) and H ′(t) into Fourier

series exactly, but, fortunately, in most problems it is possible.

There are two general situations depending on whether or not

the Fourier components of O(0)(t) and H ′(t), i.e., O(ωα)
and H ′(ωα), develop time dependence. Let us first focus

on the first situation in which the Fourier components are

“time-independent”, and the generalization to the second case

can be straightforward carried over once we know all the

logics developing in the first case.

In the first case, the O(0)(t) and H ′(t) can be fully decom-

posed to a Fourier series,

O(0)(t) =
∑

α

O(ωα)e
−iωαt, (A19)

H ′(t) =
∑

α

H ′(ωα)e
−iωαt, (A20)

where the Fourier components O(ωα) and H ′(ωα) are “time

independent”. We can use the identity

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] +

1

3!
[A, [A, [A,B]]]

+ · · · (A21)

to get

[O(ωα), H0] = ωαO(ωα), (A22)

[H ′(ωα, H0] = ωαH
′(ωα). (A23)

Then we can repress Gn(t) as

Gn(t) = −iθ(t)
∑

α

i−ne−iωαt
∑

ω1

· · ·
∑

ωn

gn(t;ω1, · · · , ωn)Fn(ωα;ω1, · · · , ωn), (A24)

where

gn(t;ω1, · · · , ωn) ≡
1

2πi

∫ i∞

−i∞

ept[p(p+ iω1)(p+ iω1 + iω2) · · · (p+ i

n
∑

ℓ=1

ωℓ)]
−1dp, (A25)

Fn(ωα;ω1, · · · , ωn) ≡
〈{

[O(ωα);H
′(ω1), · · · , H ′(ωn)] , O

†(0)

}〉

. (A26)

We also know that O†(t = 0) =
∑

β O
†(ωb), and we can

introduce

Fn(ωα;ω1, · · · , ωn)

=
∑

β

〈{

[O(ωα);H
′(ω1), · · · , H ′(ωn)] , O

†(ωβ)

}〉

≡
∑

β

F ∗
n(ωα, ωβ;ω1, · · · , ωn). (A27)

From conservation of frequency, we know F ∗
n vanishes unless

ωα − ωβ +

n
∑

ℓ=1

ωℓ = 0. (A28)

The reason that we introduce the function gn(t;ω1, · · · , ωn)
is due to the fact the it is easier to analyze the gn function,

whose result can be obtained by summing the residues of the

simple poles located at p = 0, − iω1, − iω1 − iω2, · · · ,
and etc. We can then write down the general expression along
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with the constraint of Gn(t),

Gn(t) = −iθ(t)
∑

α,β

i−ne−iωαt
∑

ω

gn(t;ω)F
∗
n(ωα, ωβ;ω)

×δωα−ωβ+
∑

n
ℓ=1 ωℓ=0, (A29)

where we introduce the abbreviations,
∑

ω ≡ ∑

ω1
· · ·∑ωn

,

gn(t;ω) ≡ gn(t;ω1, · · · , ωn), and F ∗(ωα, ωβ;ω) ≡
F ∗(ωα, ωβ ;ω1, · · · , ωn). Let’s try to examine some simple

cases. For the first order perturbation, we have

G1(t) = −iθ(t)
∑

α,β

e−iωαt
∑

ω1

e−iω1t − 1

ω1
×

×F ∗
1 (ωα, ωβ;ω1)δωα−ωβ+ω1=0

= −iθ(t)
∑

α

e−iωαt

[

− itF ∗
1 (ωα, ωα; 0) +

+
∑

β

1− ei(ωα−ωβ)t

ωα − ωβ
F ∗
1 (ωα, ωβ;−(ωα − ωβ))

]

= −iθ(t)
∑

α

e−iωαt

[

− itF ∗
1 (ωα, ωα; 0) +

+
∑

β

1

ωα − ωβ

(

F ∗
1 (ωα, ωβ;−(ωα − ωβ)) +

+F ∗
1 (ωβ, ωα;ωα − ωβ)

)

]

, (A30)

where

F ∗
1 (ωα, ωα; 0) =

〈{

[

O(ωα), H
′(0)

]

, O†(ωα)

}〉

,(A31)

F ∗
1 (ωα, ωβ ;−(ωα − ωβ)) + F ∗

1 (ωβ ;ωα;ωα − ωβ)

=

〈{

[

O(ωα), H
′(ωβ − ωα)

]

, O†(ωβ)

}

+

+

{

[

O(ωβ), H
′(ωα − ωβ)

]

, O†(ωα)

}〉

. (A32)

Using the fact H ′†(ω) = H ′(−ω) and similarly O†(ω) =
O(−ω), we see that the terms in [...] are all real, which sim-

ply indicates that the first order perturbation will only give

resonance line “shift” in the Fourier space. The second-order

perturbation contains more complex terms. The general ex-

pression is

G2(t) = −iθ(t)
∑

α,β

e−iωαt

i2

∑

ω

g2(t;ωγ , ωδ)×

×F ∗
2 (ωα, ωβ;ωγ , ωδ)× δωα−ωβ+ωγ+ωδ=0.(A33)

There are several choices for satisfying the condition.

(1) : ωα = ωβ , ωγ = 0 = ωδ, (2) : ωα = ωβ, ωγ =
−ωδ 6= 0. (3) : ωα 6= ωβ, ωδ = 0, ωγ = −(ωα − ωβ).
(4) : ωα 6= ωβ , ωγ = 0, ωδ = −(ωα − ωβ). (5) : ωδ =
−(ωα − ωβ + ωγ) 6= 0. Below, we will only keep the terms

with ωα = ωβ and ωγ = −ωδ and ignore other highly asym-

metric terms with ωα 6= ωβ . The result ignoring highly asym-

metric terms is

G2(t) ≃−iθ(t)
∑

α

e−iωαt

[

− t2

2
F ∗
2 (ωα, ωα; 0, 0)−

−
∑

γ 6=0

1− iωγt− e−iωγt

ω2
γ

F ∗
2 (ωα, ωα;ωγ ,−ωγ)

]

.

(A34)

Since we already know that the first-order perturbation only

shift the location of the resonance line, let us see focus on the

effects of second-order perturbation due to G2(t). Combining

the zeroth order term with the second order term, we obtain

G(2)(t) ≃ G0(t) +G2(t)

≃ −iθ(t)
∑

α

e−iωαtF ∗
0 (ωα, ωα)

[

1−
∑

γ 6=0

1− iωγt

ω2
γ

σ2
αγ − t2

2
σ2
α0

]

−

−iθ(t)
∑

α

∑

γ 6=0

F ∗
0 (ωα, ωα)

ω2
γ

e−i(ωα+ωγ)tσ2
αγ

≃ −iθ(t)
∑

α

F ∗
0 (ωα, ωα)

(

1−
∑

γ 6=0

σ2
αγ

ω2
γ

)

e
−i(ωα−

∑

γ 6=0

σ2
αγ
ωγ

)t−
σ2
α0
2 t2

−iθ(t)
∑

α,γ 6=0

σ2
αγF

∗
0 (ωα, ωα)

ω2
γ

e−i(ωα+ωγ)t. (A35)

where we define σ2
αγ ≡ F ∗

2 (ωα, ωα;ωγ ,−ωγ)/F
∗
0 (ωα, ωα).

The matrix element in the frequency space forms a trace and

we can use the trace identity to rewrite

σ2
αγ ≡ F ∗

2 (ωα, ωα;ωγ ,−ωγ)

F ∗
0 (ωα, ωα)

(A36)

≃

〈{

[O(ωα), H
′(ωγ)] ,

[

H ′(−ωγ), O
†(ωα)

]

}〉

〈{

O(ωα), O†(ωα)

}〉 .(A37)

Therefore, σ2
αγ and σ2

α0 will be positive and real in this ap-

proximation. The spectral function can be extracted according

to A(ω) = −(1/π)ImG(ω), with G(ω) =
∫

dtG(t)eiωt,

A(2)(ω) =
∑

α

F ∗
0 (ωα, ωα)



1−
∑

γ 6=0

σ2
αγ

ω2
γ



×

× 1
√

2πσ2
α0

e
−

[ω−(ωα−
∑

γ 6=0

σ2
αγ
ωγ

)]2

2σ2
α0 +

+
∑

α

∑

γ 6=0

F ∗
0 (ωα, ωα)

ω2
γ

δ (ω − (ωα + ωγ)) .(A38)

Namely, the spectral function is the Gaussian line shifted by
∑

γ 6=0 σ
2
αγ/ωγ from the original center ωα and broadened to

width σα0. Besides, there is an additional resonance line,

called a “satellite line” by Kubo and Tomita, with the rela-

tive intensity σ2
αγ/ω

2
γ at ωα + ωγ . Therefore, we can see that

if the perturbation can be completely decomposed into Fourier
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series whose Fourier components do not develop time depen-

dence, the perturbations broaden the original resonance line

to a Gaussian line along with shifting the center, and there

are additional resonance peaks (satellite lines). If the satellite

lines are too close to the original resonance line peak, the per-

turbation will break down. Mathematically the perturbation

breaks down if ωγ ≪ σαγ or ωγ ≪ σα0.

Now let’s shift our focus on the second case in which the

Fourier components of H ′(ωα) develops time dependence.

We will see that the Gaussian line will be modified to be

a Lorentzian line, which was called motional narrowing by

KT. In this case, the unperturbed Hamiltonian consists of two

parts,H0 = H1 +H2, which satisfy the conditions

[H1, H2] = 0, (A39)

[H2, O] = 0. (A40)

H1 is assumed to be not commutable with the operator O.

With the conditions, we can straightforwardly adopt the ap-

proach from the first case. In the interaction picture, the un-

perturbed motion of the operator O can be expanded as

O(0) = eiH0tOe−iH0t = eiH1tOe−iH1t =
∑

α

O(ωα)e
−iωαt,

(A41)

where the Fourier component O(ωα) satisfy

[O(ωα), H1] = ωαO(ωα), (A42)

[O(ωα), H2] = 0, (A43)

Similarly, we also introduce

H ′(t) = eiH0tH ′e−iH0t = eiH2teiH1tH ′e−iH1te−iH2t

=
∑

α

H ′(ωα; t)e
−iωαt, (A44)

where we introduce

eiH1tH ′e−iH1t =
∑

α

H ′(ωα)e
−iωαt, (A45)

eiH2tH ′(ωα)e
−iH2t = H ′(ωα; t). (A46)

With the new definitions, we can adopt all the approaches il-

lustrated in the first case with the replacement of H ′(ωα) by

the time-dependentH ′(ωα; t). The general term of the expan-

sion is

Gn(t) =−iθ(t)
∑

α,β

e−iωαt

∫ t

0

dt1 · · ·
∫ tn−1

0

dtn(i)
−n ×

×
∑

γ,··· ,ν

e−i(ωγt1+···+ωνtn) ×

×
〈{

[

O(ωα);H
′(ωγ ; t1), · · · , H ′(ων ; tn)

]

, O†(ωβ)

}〉

.

(A47)

Again, due to the conservation of the frequency , we require

ωα − ωβ + ωγ + · · ·+ ων = 0. (A48)

The zero-th order term is

G0(t) = −iθ(t)
∑

α

e−iωαt

〈{

O(ωα), O
†(ωα)

}〉

.(A49)

The first order term is

G1(t) =−iθ(t)
∑

α,β

∑

γ

δωα−ωβ+ωγ=0e
−iωαt

∫ t

0

dt1e
−iωγt1 ×

×
〈{

[

O(ωα), H
′(ωγ ; t1)

]

, O†(ωβ)

}〉

(A50)

=−iθ(t)
∑

α,β

e−iωαt

∫ t

0

dt1e
i(ωα−ωβ)t1 ×

×
〈{

[

O(ωα), H
′(−ωα + ωβ; 0)

]

, O†(ωβ)

}〉

, (A51)

which gives us the same result after integration to that in the

first case, whose effects are to shift the center without broad-

ening the resonance line. Let us focus on the second-order

term, which is

G2(t) = −iθ(t)
∑

α,β,γ,δ

δωα−ωβ+ωγ+ωδ=0e
−iωαt ×

×
∫ t

0

dt1

∫ t1

0

dt2e
−i(ωγt1+ωδt2)(i)−2 ×

×
〈{

[

O(ωα);H
′(ωγ , t1 − t2), H

′(ωδ, 0)
]

, O†(ωβ)

}〉

.

(A52)

Again, we focus on the contributions from ωα = ωβ , and

ωγ = −ωδ and ignore highly asymmetric terms from ωβ 6=
ωβ , which in most of the cases are not important. We get

G2(t) ≃ iθ(t)
∑

α,γ

e−iωαt

∫ t

0

dt1

∫ t1

0

dt2e
−iωγ(t1−t2) ×

×
〈{

[

O(ωα);H
′(ωγ , t1 − t2), H

′(−ωγ , 0)
]

, O†(ωα)

}〉

= iθ(t)
∑

α,γ

e−iωαt

∫ t

0

dτ(t− τ)e−iωγτ ×

×
〈{

[

O(ωα);H
′(ωγ , τ), H

′(−ωγ , 0)
]

, O†(ωα)

}〉

.

(A53)

Following Kubo and Tomita, we introduce

σ2
αγfαγ(τ)

=

〈{

[

O(ωα);H
′(ωγ , τ), H

′(−ωγ , 0)
]

, O†(ωα)

}〉

〈{

O(ωα), O†(ωα)

}〉

≃

〈{

[

O(ωα), H
′(ωγ , τ)

]

,
[

H ′(−ωγ , 0), O
†(ωα)

]

}〉

〈{

O(ωα), O†(ωα)

}〉

(A54)
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where σ2
αγ has been introduced before and fαγ(τ) is

fαγ(τ)

=

〈{

[

O(ωα), H
′(ωγ , τ)

]

,
[

H ′(−ωγ , 0), O
†(ωα)

]

}〉

〈{

[

O(ωα), H ′(ωγ , 0)
]

,
[

H ′(−ωγ , 0), O†(ωα)
]

}〉 ,

(A55)

which is reduced to be 1 if H ′(ωγ , τ) becomes time indepen-

dent. Then the expression for the second ordre term is

G2(t) ≃iθ(t)
∑

α,γ

e−iωαt

〈{

O(ωα), O
†(ωα)

}〉

×

×
∫ t

0

dτ(t − τ)e−iωγτσ2
αγfαγ(τ). (A56)

Now, let us combine the terms up to second order. Since first

order term is the same to that in the first case, it will simply

shift the resonance line, so we ignore it. Up to second order,

we get

G(2)(t) ≃ G0(t) +G2(t)

≃ G0(t)
∑

γ

(

1−
∫ t

0

dτ(t− τ)σ2
αγfαγ(τ)

)

≃ G0(t)
∑

γ

e−
∫ t
0
dτ(t−τ)σ2

αγfαγ (τ). (A57)

Focusing on the simplest case with γ = 0, we have

G(2)(t) ≃ G0(t)e
−σ2

α0

∫ t
0
dτ(t−τ)fα0(τ). (A58)

At the long time limit, t → ∞, we can approximate

G(2)(t → ∞) ∼ G0(t)e
−σ2

α0

∫

∞
0

dτtfα0(τ) (A59)

= G0(t)e
−σ2

α0t(τ
′+iτ ′′), (A60)

where we introduce τ ′ ≡
∫∞

0 Re{fα0(τ)}dτ and τ ′′ ≡
∫∞

0 Im{fα0(τ)}dτ . Then the spectral function becomes

A(2)(ω) ≃ 1

π

σ2
ατ

′

[ω − (ωα − σ2
α0τ

′′)]2 + (σ2
α0τ

′)2
, (A61)

where we can see that the line shape becomes Lorentzian!

Note that if we set fα0(τ) = f̄α0, independent of time, the

shape will go back to Gaussian. In general, if we can get

the “exact” form of fαγ(τ), we can obtain the exact form of

the resonance line, which is, unfortunate, not possible in most

cases.

Appendix B: Perturbative studies in the U = 0 limit

We present the perturbative studies of the broadening of the

spectral function of Goldstino mode at U = 0. The Hamilto-

nian is Ĥ = Ĥ0 + Ĥ ′ with

Ĥ0 = −th
∑

〈jk〉

[

b†jbk + f †
j fk

]

− µf N̂f − µbN̂b, (B1)

Ĥ ′ = UBF

∑

j

n̂b
j n̂

f
j . (B2)

FIG. 1. (Color Online) (a) The Goldstino Green’s function con-

sisting of a fermion Green’s function (red dashed line) and a bo-

son Green’s function (blue solid line) whose momenta are explic-

itly summed. (b) The two-fermion-two-boson vertex arising from

H ′
= UBF

∑
j
n̂b
j n̂

f
j =

UBF
V

∑
p,q,k

f†
pfp+q−kb

†
qbk.

FIG. 2. (Color Online) First-order Feynman diagrams contributing to

renormalize the Goldstino Green’s function. (a) A boson bubble in

the fermion Green’s function sector renormalizing µf . (b) A fermion

buble in the boson Green’s function sector renormalizing µb. (c) A

two-fermi-two-bose vertex contributing to the first-order self-energy.

For convenience, we introduce the imaginary-time-ordered

Goldstino Green’s function

G(τ) ≡ −
〈

Tτ

[

Q(τ)Q†(0)
]〉

, (B3)

where we remind that the Goldstino field is

Q ≡ 1√
N

∑

j

f †
j bj. (B4)

The general expression for the perturbation is

G(τ) =−
∞
∑

m=0

(−1)m

m!

∫ β

0

dτ1 · · ·
∫ β

0

dτm ×

×
〈

Tτ

[

Ĥ ′(τ1) · · · Ĥ ′(τm)Q(τ)Q†(0)
]〉

0,conn
,(B5)

where the subscript 0 means the unperturbed ground state and

conn means the connected Feynman diagrams.

At zeroth order, we know that

G(0)(τ) = −
〈

Tτ

[

Q(τ)Q†(0)
]〉

= − 1

N

∑

p,q

〈

Tτ

[

f †
q (τ)bq(τ)fp(0)b

†
p(0)

]〉

=
1

N

∑

p,q

〈

Tτ

[

fp(0)f
†
q (τ)

]〉 〈

Tτ

[

bq(τ)b
†
p(0)

]〉

=
1

N

∑

p

Gf (−τ,p)Gb(τ,p), (B6)
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FIG. 3. (Color Online) The second-order irreducible Feynman dia-

grams. (a) Two cross interaction vertices. (b) A fermionic particle-

hole bubble in the boson Green’s function sector. (c) A bosonic

particle-hole bubble in the fermion Green’s function sector.

where Gf/b(τ,p) are the imaginary-time ordered

fermion/boson Green’s functions, and we know

Gf (−τ,p) =
[

θ(τ)nf (ǫ
f
p)− θ(−τ)

(

1− nf (ǫ
f
p)
)]

eǫ
f
p
τ , (B7)

Gb(τ,p) = −
[

θ(τ)
(

1 + nb(ǫ
b
p)
)

+ θ(−τ)nb(ǫ
b
p

]

e−ǫb
p
τ , (B8)

where we introducenf/b(z) ≡ (eβz±1)−1 and ǫ
f/b
p ≡ ω

f/b
p −

µf/b, with ω
f/b
p being the dispersions of hopping. Introducing

the Fourier transform G(iωn) =
∫ β

0
dτG(τ)eiωnτ with ωn =

(2n+ 1)π/β(2nπ/β) for fermions/bosons, we get

G(0)(iωn) =
1

N

∑

p

nf (ǫ
f
p) + nb(ǫ

b
p)

iωn + ǫfp − ǫbp
=

1

iωn −∆µ
, (B9)

where we note that ωn = (2n + 1)π/β since the Goldstino

field is a fermion. The zeroth order (unperturbed) retarded

Goldstino Green’s function can be obtained as

GR,(0)(ω) = G(iωn → ω + i0+) =
1

ω −∆µ+ i0+
,(B10)

which is the same to that derived from the equation of motion

presented in the main texts. For clarity in presenting the per-

turbative studies below, we introduce the diagram presentation

for the Goldstino Green’s function in Fig. 1(a), where the up-

per dashed red line represents the fermion line and the bottom

blue solid line represents the boson line and the momenta of

fermion and boson lines are explicitly summed. Fig. 1(b) rep-

resents the two-fermion-two-boson vertex. The arrows repre-

sent the directions of the particles.

For the first order term, we find there are three possible

contributions as shown in Fig. 2. The first-order perturbation

gives (in imaginary time domain)

G1(τ) =
UBF

N

∫ β

0

dτ1 ×

×
[

ρB
∑

p

Gf (τ1 − τ,p)Gf (−τ1,p)Gb(τ,p) + (B11)

+ρF
∑

p

Gf (−τ, p)Gb(τ1, p)Gb(τ − τ1,p)−

− 1

V

∑

p,q

Gf (τ1 − τ,q)Gb(τ − τ1,q)Gf (−τ1,p)Gb(τ1,p)

]

.

(B12)

Going to Fourier space, we get

G1(iωn) = G(0)(iωn) (−ρBUBF + ρFUBF − ρUBF )G(0)(iωn)

= G(0)(iωn) (−2ρBUBF )G(0)(iωn). (B13)

Therefore, we can see if we only include the first order term,

the renormalized imaginary-time Goldstino Green’s function

at first order is

G(1)(iωn) ≃
1

iωn − (∆µ− 2ρBUBF )
, (B14)

which gives

GR,(1)(ω) =
1

ω − (∆µ− 2ρBUBF ) + i0+
, (B15)

which again is consistent with the result obtained by Kubo-

Tomita theory presented in the main texts and leads to the

spectral function

A(1)(ω) = δ(ω − (∆µ− 2ρBUBF )). (B16)

For the second order, we find there are three contributions

illustrated schematically in Fig. 3. The derivation for the

second-order terms are straightforward (but tedious), and we

present the final results below. Fig 3(a)-(c) contributing to

renormalize the imaginary-time Goldstino Green’s functions

can be concisely written as G(0)
(

Σ
(2)
1 +Σ

(2)
2 +Σ

(2)
3

)

G(0),

where the subscript (2) means the second-order and the sub-

scripts 1 − 3 label the contributions from Fig. 3(a)-(c). The

self-energies Σ contributed from each term are
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Σ
(2)
1 (iωn) =

U2
BF

NV 2

∑

p,q,k

{

[

nf(ǫ
f
p) + nb(ǫ

b
k)
]

[

nf (ǫ
f
p+q−k)− nf (ǫ

f
p − ǫbk)

] [

nf (ǫ
f
q) + nb(−ǫfp + ǫbk + ǫfp+q−k)

]

iωn + ǫfp + ǫfq − ǫbk − ǫfp+q−k

+

[

nb(ǫ
b
k)− nb(ǫ

b
p)
]

[

nf (ǫ
f
p+q−k) + nb(ǫ

b
p − ǫbk)

] [

nb(ǫ
b
q) + nf (−ǫbp + ǫbk − ǫfp+q−k)

]

iωn − ǫbp − ǫbq + ǫbk + ǫfp+q−k

+

[

nb(ǫ
b
p − nb(ǫ

b
k)
]

[

nf(ǫ
f
p+q−k) + nb(ǫ

b
p − ǫbk)

] [

nf (ǫ
f
q)− nf (−ǫbp + ǫbk + ǫfp+q−k)

]

ǫbp + ǫfq − ǫbk − ǫfp+q−k

+

[

nf (ǫ
f
p) + nb(ǫ

b
k)
]

[

nf(ǫ
f
q+q−k)− nf (ǫ

f
p − ǫbk)

] [

nb(ǫ
b
q)− nb(−ǫfp + ǫbk + ǫfp+q−k)

]

ǫfp + ǫbq − ǫbk − ǫfp+q−k

}

,(B17)

Σ
(2)
2 (iωn) =

U2
BF

NV 2

∑

p,q,k

{−nf(ǫ
f
p)

[

nf (ǫ
f
q+k−p)− nf (ǫ

b
k − ǫbp)

] [

nf (ǫ
f
q) + nb(−ǫfk + ǫbp + ǫfq+k−p)

]

iωn − ǫfq − ǫbk + ǫbp + ǫfq+k−p

+
nb(ǫ

f
p)

[

nf(ǫ
f
q+k−p) + nb(ǫ

b
k − ǫbp)

] [

nf (ǫ
f
q)− nf (−ǫbk + ǫbp + ǫfq+k−p)

]

ǫfq + ǫbk − ǫbp − ǫfq+k−p

}

, (B18)

Σ
(2)
3 (iωn) =

U2
BF

NV 2

∑

p,q,k

{nb(ǫ
b
p)

[

nf (ǫ
f
q) + nb(ǫ

b
p + ǫbq+k−p)

] [

nb(ǫ
b
k) + nf (−ǫfq + ǫbp + ǫbq+k−p)

]

iωn + ǫfq + ǫbk − ǫbp − ǫbq+k−p

+
nf(ǫ

f
p)

[

nf (ǫ
f
q)− nf (ǫ

f
p + ǫbq+k−p)

] [

nb(ǫ
b
k)− nb(−ǫfq + ǫfp + ǫbq+k−p)

]

ǫfq + ǫbk − ǫfp − ǫbq+k−p

}

. (B19)

The second-order self-energies in the Matsubara frequency

domain are very complicated. However, since we are only

interested in the imaginary part of the self-energy in the real

frequency domain obtained by iωn → ω + i0+ and extract its

qualitative behavior. In this way, we can see that Σ
(2)
a=1,2,3(ω)

all contains imaginary parts which are proportional to square

of the perturbation strength, i. e. ImΣ(2)(ω) ≡ Γ(2) ∝ U2
BF .

In the presence of the imaginary part of the self-energy, the

retarded Goldstino Green’s function becomes (we ignore the

real part of Σ(2)(ω) since it only contributes to shift the loca-

tion of the peak)

GR,(2)(ω) ≃ 1

ω − (∆µ− 2ρBUBF )− iΓ(2)
, (B20)

which leads to the spectral function

A(2)(ω) ≃ Γ(2)

(ω − (∆µ− 2ρBUBF ))2 + (Γ(2))2
, (B21)

which is a Lorentzian function with width ∼ Γ(2) ∝ U2
BF .

Therefore, we can see that the perturbative results at U = 0
limit are qualitatively consistent with the results obtained by

Kubo-Tomita theory.
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