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In the presence of nonrelativistic supersymmetry, a sharp fermionic collective mode similar to the Goldstino
mode in high-energy physics was proposed to be realized in Bose-Fermi mixtures. The Goldstino mode is
relaxed (a.k.a. decays) if supersymmetry is explicitly broken, which can be revealed as the broadening of
the corresponding spectral function. We find that the situation shares many similarities with the electron spin
resonance in magnetic systems and adopt the well-known Kubo-Tomita theory to perform a general analysis of
the spectral function lineshape broadening of the Goldstino mode.

I. INTRODUCTION

Supersymmetry (SUSY), the intriguing symmetry relating
bosons and fermions, has been of strong interest in elementary
particle physics after the first theoretical model in interacting
quantum field theory with supersymmetry was constructed by
Wess and Zumino [1]. It may play a fundamental role because
the mathematical structure of supersymmetry called graded
Lie superalgebra is the only one consistent with that in rel-
ativistic quantum field theory [2]. The first realistic super-
symmetric version of the standard model known as the min-
imal supersymmetric standard model was also later proposed
to solve the hierarchy problem about the large discrepancy be-
tween aspects of the weak force and gravity [3]. Regardless of
the intense theoretical works on supersymmetry in the particle
physics, none of the superpartners, which have identical prop-
erties except for opposite statistics, of any known elementary
particle has been found in experiments so far. Even though
the Large Hadron Collider (LHC) recently confirmed the dis-
covery of the Higgs particle [4—6], there is still no evidence of
any supersymmetric particle.

Despite the difficulties in confirming the relativistic SUSY
in high energy physics, there have been a few theoretical
proposals on the spacetime SUSY in condensed matter and
atomic systems, e.g. the possible emergence of spacetime
SUSY at quantum critical points in lattice models [7, 8], simu-
lation of the spacetime SUSY in optical lattices in atomic sys-
tems [9], and the emergence of spacetime SUSY at the bound-
ary of topological phases in condensed matter systems[10].
On a different front, nonrelativistic SUSY (a Bose-Fermi
symmetry unrelated to space-time symmetry) has attracted
considerable interest due to the recent experimental progress
in mixtures of ultra cold Bose and Fermi atoms [11-18]. The
Bose-Fermi mixtures provide an opportunity to realize and
study supersymmetry. An ultra cold superstring model was
constructed [19-21]. The physical behavior of an exactly
soluble of one-dimensional Bose-Fermi mixtures was inves-
tigated [22-24]. A general formalism to study such super-
symmetric systems based on coherent state path integral was
also set up [25].

In Ref. [26], one of the present authors studied general
properties of supersymmetric Bose-Fermi mixtures, in which
bosons and fermions are supersymmetric partners of each
other. In the presence of time-reversal symmetry, supersym-

metry is broken by a chemical potential difference between
bosons and fermions, pty — py = Ap > 0, which still keeps
the canonical Hamiltonian, consisting of kinetic energy and
the potential terms, supersymmetric. Such systems support
a sharp fermionic collective excitation [26] similar to that in
supersymmetric high-energy theories, referred to as the Gold-
stino. The spectral function of the Goldstino mode has a sharp
o-function peak at zero momentum k = 0 and frequency
w = Ap. However, in experiments, it is a tremendous task
to tune the parameters in such Bose-Fermi mixtures to keep
the canonical Hamiltonian supersymmetric. The supersym-
metry of the canonical Hamiltonian is expected to be broken
and the sharp J-function peak at w = Ay of the spectral func-
tion will be modified due to the relaxation of the Goldstino
mode, which is the main focus in this work.

Studying the relaxation of the Goldstino, a.k.a. the broad-
ening of the sharp J-function peak at w = Ay of the spec-
tral function corresponding to the Goldstino mode, is not as
straightforward as it seems, because the Goldstino mode itself
is a highly nontrivial zero-momentum mode involving the lin-
ear combination of the fermion-boson pair at all sites (or all
momentum) in the system. The present problem we encounter
mimics the electron spin resonance (ESR) with anisotropy
in magnetic systems. Comparing the two problems, we are
interested in the relaxation of the ¢ = 0 Goldstino mode,
Q ~ Zj f;-fbj, while the ESR measures the ¢ = 0 mode, e.g.
motion of total spin in Heisenberg anti-ferromagnets (AFM),
St =37, 5. We adopt the Kubo-Tomita (KT) theory [27],
the well-known theoretical approach for the ESR, to perform
a general analysis of the relaxation of the Goldstino mode.

The paper is organized as follows. In Sec. II we introduce
the model system followed by performing the general analy-
sis of the broadening effects due to supersymmetry breaking
using KT theory. We conclude the work in Sec. ITII. We briefly
review the KT theory in App. A and provide a perturbative
analysis in the non-interacting limit in App. B which is consis-
tent with the results in the more general KT theory approach.



II. KUBO-TOMITA THEORY APPROACH TO THE
RELAXATION OF GOLDSTINO MODE

_ The model Hamiltonian is defined as H = ﬁo + H =
H, + Hy + H', where

Hy = —psNy — Ny, (1)
f[z =T + V=
=—th ). [b}bk 0 f;fk} +U> [n?njf + %n? (n’—1)],
(3k) j
(2)
H = 5U2ﬁ§.ﬁ§'. (3)
J

The unperturbed Hamiltonian, ﬁo = H 1+ ﬁg, con-
tains the chemical potential term, H 1, and the canonical
Hamiltonian,ﬁg, at the SUSY point. H represents the SUSY
breaking term. In the Bose-Fermi mixtures, there are only two
possible SUSY breaking terms—(i):the interaction strength dif-
ference between the onsite boson-fermi interaction and the on-
site boson-boson interaction and (ii):the difference between
the hopping strengths of bosons and fermions. We consider
the former case (i) first and the whole discussions below can
also be applied to the latter case (ii), which will be discussed
near the end of the paper. The Goldstino field is defined as,
[26]

1
= ﬁZf}bj, &
J

where N = Ny + Ny is the total number of fermions and
bosons.

Before discussing how the supersymmetry breaking term
affects the Goldstino spectral function lineshape, we first point
out how the present model system mimics the ESR problem
in the Heisenberg AFM with anisotropy. For a Heisenberg
AFM in the Zeeman magnetic field with anisotropy in the
Heisenberg term, which breaks the spin rotation symmetry,
the Hamiltonian is H oy = Hap + H, + H', with

Hap =7 S-S, (5)
(3.0
H.=-B.» S;, 6)
J
Hj, =Y > 615555 (7)
(50) a=z,y,z

ESR only probes the ¢ = 0 total spin mode, S = ;9 ’,
and without anisotropy H' . ., the equation of motion for the

ans?

total spin can be solved exactly as

st n b ot
W:Z[HAF-FHZ,S ] :—ZBZS (8)
= ST(t) = ST(0)e "P-". )

Therefore, the spectral function corresponding to the retarded
total spin Green’s function Gg(t) = —if(t){[ST(¢), S~ (0)])

will show a d-function peak located at w = B,. However, the
presence of the anisotropy in the Heisenberg term H/, . will
have effects on broadening the linewidth and shifting the peak
center. [27]

Comparing the Hamiltonian in the Goldstino problem with
that in the Heisenberg AFM, we can have almost a one-to-one
correspondence between these two problems. The chemical
potential term H; in the Bose-Fermi mixtures is similar to
the Zeeman energy H, in the Heisenberg AFM, the canonical
Hamiltonian Hy consisting of kinetic and interacting terms is
similar to the isotropic Heisenberg term H 4, and the super-
symmetry breaking term H' is similar to the anisotropy term
H!, . which significantly changes the spectral function line
shape.

Back to the Goldstino problem, we first notice that several

commutators can be greatly simplified,

{Hl,ﬁrz} -0, [H’,Hl} —0, (10)
Q.1 = Q' ] =0, an
(Q, H1] = (py — p1p)Q = ApQ, (12)

while [H', Hy] and [@), H'] remain complex and are not com-
mutable.

In order to apply the KT theory, which is briefly reviewed
in App. A we introduce the interaction picture representation
of Q as

Q(O) (t) — eiHoth—iHot — engteiHthe—inte—iHlt
= Qe B, (13)
According to the KT theory, we can identity the Fourier com-

ponent Q(w = Ap) = Q. On the other hand, the interaction
picture representation of H' is

H'(t) = etHot f/e—iHot _ giHat giH1t p1—iHit,—iHat
=t lem et = H'(w=0;t) = H'(t), (14)

where we identity H'(w = 0) = H’. The Goldstino field at

time ¢, (t), can be expanded in powers of the perturbation as

Q(t) = 307, Q™ (t), where the general expression of n-th
order of () is

Q™ (1)
LY L L RO /
= n 1" n Q (t)7H(t1)a7H(tn) 3
v Jo 0
(15)
where we introduce [4;B,C,--- K] =

[---[[A,B],C],---,K]. The retarded Goldstino Green’s
function can be expanded as

GR(t) = —i0(t) (0] {Q(®), QT(0)} [0) = >~ Gix),(16)
n=0

where ‘0) represents the (unperturbed) ground state. Accord-
ing to Egs. (15)-(16), we can extract the Goldstino Green’s
function up to any order and its corresponding spectral func-
tion.



At zeroth order, we get

G (t) = —if(t)e 2 ({Q, QT}> = —if(t)e AP (17)
Introducing Fourier transform, G{f(w) = [ dtGE(t)e™", we
get

Glw) = — (18)
0 w—Ap+i0t’

and the spectral function at zero order is, A (w) =
—(1/m)ImG{ (w),

A(w) = 5w —Ap), (19)

which shows a §-peak located at Ap. The zeroth order (un-
perturbed) result is consistent with that in Ref. [26].
For the first-order term, we have

6w = —iowe > [ ({0 w0 Q1)
0

= —ine> 2 [ar ({l@.1).Q1))
= —if(t)e 2 (—it) ({[Q, H',QT}),  (20)

where from first line to second line we use the fact that Ho
commutes with Q. Using the identity {Q,Q'} = 1, we ob-
tain that ({[Q, H'],QT}) is real, which leads to the fact that
the effect of the first-order term is only to shift the location
of the -function peak of the spectral function, which will
be presented below. For a more concrete result, we crudely
mean-field decouple the expectation value,

({lQ.H#1,Q"}) = 20U (nf) ({Q. Q"}) = =26Up;, 21)

where in the last equality we assume the density of the bosons
is uniform and replace it by (n?) = N,/V = py, with V being
the whole system volume. After the mean-field decoupling, at
first order we get the renormalized Goldstino Green’s function

GRW (1) = GE(t) + GR(t) ~ —if(t)e "2 (1 4 126U pyt)
~ —if(t)e At ROUME (22)

where in the last line, we assume small 6U and exponentiate

the correcting term. In Fourier space, we get

1

GRW (W) ~ 23
() w— (Ap —2pp6U) + 0T’ 23)

which gives the spectral function
AN (W) ~ §(w — (Ap — 2pp00)). (24)

The first-order perturbation indeed only shifts the J-function

peak. The result is consistent with the previous studies.[28]

In App. Bl we perform the perturbative studies in the U = 0

limit and we also obtain exactly the same result at first-order.
For the second order term, the general form is

GE (1)
t1
= if(t)e 1R / dty / dtz ({(Q; H'(t1), H

— if()e /0 dr(t — ) ({Q: H'(r), H'),QT}). (25)

1,Q)

If we follow KT theory to approximate

(1Qs H' (1), H',Q"}) =~ ({[Q. H'(7)], [H',Q']})
= Uéfg(T), (26)
with
o = ({[Q. 1. [H.Q']}). @)
fG(T) = <{[Q7H (T)] ’ [H 7Qw}> (28)

(@, 17T, [H, Q1Y)

we can approximately rewrite G5 (t) as

Gﬂw:—%%wa/mﬁ—ﬂmvy (29)

0
It is clear that 0% o< (6U)? and f(7) is a “dimensionless”
function which depends on variable 7, and o2 and fg(7) are
both positive and real in this approximation. For the “time-
independent” O'G, we again crudely mean-field decouple it as

ot = ({{Q, H'], [H',Q"]}) ~ (5U)* (6p; + 2p1) 30)

If we know the exact or approximate form of f&(7), we can
get the exact or approximate form of G (t). We do not find a
way to get the exact form of f(7), and below we take a plau-
sible form of f(7) [29], which was proposed in the studies in
relaxation effects in nuclear magnetic resonance absorption,
that leads to a reasonable result.

Before discussing the general analysis of the second order
term, we first point out that the main difficulty of extracting
the exact form of f(7) is that the time dependence of H'(7)
can not be factored out similar to that for Q(%)(7) due to the
complicated form of [H', Hs|. Nevertheless, for a qualitative
result in the “long-time” limit, ¢ — oo, we can approximate

G?(t) ~ —Gé%(t)aét /000 drfa(r) = —G(})%(t)aétT’,(?)l)

where 7’/ Jo ¥ drfa(r). The renormalized Goldstino
Green’s function containing up to second-order perturbation
is
GMO)(t) = Go(t) + Gi(t) + Ga(t)
~ G (t) (14 i2pp0U — 0g7't)
~ GR ) i(2pp0U )t — O'GT t (32)

/\/\

which gives the spectral function

—_

02 7_/
AP (W) ~ = L . (33)
™ [w— (Ap = 2pp8U)]" + (03 7")?

We can see that the lineshape is a Lorentzian function with
width 027" o (6U)? centered around Ay — 2p,6U. 027’
corresponds to the “relaxation-rate” of the Goldstino or we
can define a Goldstino “relaxation time” via the relation
1/Te = 047" o (6U)2. For further strengthening the con-
jecture of the Lorentzian lineshape of the spectral function of
Goldstino Green’s function, in App. Bl we provide the per-
turbative calculations up to second-order of §U in the limit

U = 0. We indeed find that the second-order self-energy



contains an imaginary part proportional to square of the per-
turbation, Im[£(?)] oc (6U)?, and the lineshape of the spec-
tral function of Goldstino Green’s function is modified to be
Lorentzian with width ~ Im[%(?] o (§U)?, consistent with
the results presented here using KT theory approach.

In the general circumstance, it is difficult to get an analyt-
ical result unless we know the exact form of fg(7). Since
fa(7) is a dimensionless function, the simplest form it can
be, which is well-defined at any time, is [29]

fa(r)=eT/m, (34)

where 7 is some “characteristic time” with unit of energy
inverse (the same unit to time since we set A = 1). The
simplest form of 7y is a function consisting of the interac-
tion strength inverse U ~!, the hopping strength inverse t,:l,
and the chemical potentials of fermions and bosons, 7,

= h(U 1t pwytpy t). With the form of fe(7), we
get

GR(t) ~ —~GE(t)o%72 [e*% 14 i} .39

Therefore,

GRO) (1) = GI(t)e2m U e (1701455

e
2 2 ; 42 1 _
~ 9GT0 Gé%(t)eﬂpbéUe ogTot E - ( O'éTOQS t/‘l’o)
n!
n=0

(36)

The series converge very rapidly for o7y < 1. The leading
term with n = 0 gives the spectral function
PERE:

e aé To

T fw— (Ap—2p0U))% +

A®) () = , 37)

(0&70)?

which is a Lorentzian function with half-width aém ~
OUR(U 3 gty ) o< (U)2.

If 019 — 00, which means 7p — oo since oG ~ ppdU <
1, Eq. (35) can be Taylor expanded in powers of ¢/7y giving
the leading term,

2

GE()5aT0 5% — G{j‘(t)ag%. (38)
Note that in this limit, the leading second-order term is 7-
independent. If we ignore higher-order terms in the Taylor se-
ries, the leading result corresponds to the approximation that
[H', Hy] ~ 0, which means the time-dependence of H'(7)
is dropped. In this limit, the renormalized Goldstino Green’s
function becomes

G5 (1)FaT0 = G (1)e 2V oet 2 (39)
which gives spectral function

1 _ lw—(Ap—2p6U)]?
A(z)(w)agTO%Q\/z_Qe 207, . (40)
7TO’G

The spectral function lineshape becomes a “Gaussian distri-
bution” with width (standard deviation) o o [6U|, which

is consistent with the first situation originally discussed by
Kubo and Tomita and briefly reviewed in the App. A, in which
the Fourier components of perturbation, i.e. H'(w), are time-
independent.

The crossover of the lineshape from a Lorentzian function
to a Gaussian distribution can be possibly observed experi-
mentally. In the present case, the commutator, [H', Hy] =
[H, T] # 0, does not vanishes because the perturbation, H’,
is not commutable with the hopping term, T. 1In the cold
atom systems, it is possible to gradually decrease the hopping
strength by tuning the potential depth [30-32], which makes it
possible to observe experimentally the change of the lineshape
and the crossover from a Lorentzian with half-width oc (6U)?
to a Gaussian distribution with width  |§U| before entering
the Mott-insulating phase.

So far we have focused on the case in which the SUSY
breaking term is the difference between the strength of the
onsite fermion-boson and onsite boson-boson interaction. On
the other hand, if we consider the other possible SUSY break-
ing term, case (ii):the hopping strength difference between
bosons and fermions, whose Hamiltonian is

H, = 68tny_ f]frs (41)

(3k)

most of the discussions above can be directly applied to this
case with H' — Hj,. For the first-order term, we find that

Ot ka ( i)

where we introduce &k = — 3, e~ "%, with {e,} being
the unit vectors that connect a site to its nearest neighbor sites.
Following the previous discussions, we obtain, at the first or-
der, the spectral function as A (w) ~ 6 (w — (Ap 4 ~6ty)),
which shows the shift of the §-peak. The second-order term
involves

({[Q.H;].Q"}) = (nf)) = t7.(42)

6th ng ( >)
2ok Xfen) 2fen) €

Following the previous discussions, we conclude that o2 ~
(6t5)? and the spectral function becomes a Lorentzian func-
tion with half-width 6270 ~ (5tn)h' (U, 6,4 st iy ),
where h/(x, y, z,w) is a phenomenology function that has the
correct unit. Furthermore, if we experimentally “tune down”
the interaction strength to make [H},, Ho] = [H},, V] — 0, the
time-dependence of Hj (t) can be dropped. The spectral func-
tion lineshape in this limit becomes a Gaussian distribtution
with width o |§t, |, which can be experimentally confirmed.

<{[Qa Hilz] [Hhv QT

where we introduce &, = k-(en—ev),

III. CONCLUSION

We study the relaxation of Goldstino mode in Bose-Fermi
mixtures due to the supersymmetry breaking. We adopt the



well-known Kubo-Tomita theory in electron spin resonance
theory to find that the spectral function of Goldstino Green’s
function, in general, is broadened to be a Lorentzian function
with width proportional to the perturbation strength square.
In the limit where either the hopping strength or the interac-
tion strength vanishes, the lineshape becomes a Gaussian dis-
tribution with width linearly proportional to the perturbation
strength.
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Appendix A: Brief Review of Kubo-Tomita Theory

Most of the physical quantities can be obtained from the
corresponding Green’s functions G/(t), e.g. retarded Green’s
function, real-time ordered Green’s function, imaginary-time
Green’s function depending on the convention you use. The
typical way to examine the resonance “frequency” is to ex-
amine the corresponding Green’s function in Fourier space,

w) = [ dwG(t)e™". In the noninteracting limit, H = Hy,
the Fourier components give sharp resonance peaks at certain
frequencies, G(w) = > G(wa)d(w — wq), and this means
the form of the Green’s function at time domain should be
G(t) =Y, Gae ™= In the presence of (weak) interaction
H’, the sharp resonance lines will get shifted and broadened.
The conventional way to examine the effects of the interac-
tion is to use equation of motion theory to expand the Green’s
function in powers of ¢. Defining the retarded Green’s func-
tion G(t) = —if(t)(O(t)OT(0))o, we can use equation of
motion theory to expand O(t) as

t t"
O(t) = 0(0) + £[0(0), H) + -+ + - [0(0): H, -, H]
(A1)
where we introduce [A;B,C,--- K] =
[--[[A,B],C]---,K]. The results above can be ob-

tianed as follows. From Heisenberg equation of motion, we
know

do(t) 1
—— =-|0(1), H|. A2
20— Zjo(), ) (A2)
Integrating both sides with the initial condition O(t = 0) =
0(0), we obtain
¢
O(t) = 0(0) + / it [O(t), H). (A3)
0

By iteration, we get the result above. We then obtain

G(t) = —if(t) Z ﬁ<{ [0(0); H, - -- ,H],OT(O)}>

n!
= Go(t) + G1(t) + Ga(t) + -+ Gult).  (Ad)

Despite the simplicity of the expression above, it is, in most
cases, difficult to analyze it analytically. The main reason is
that we are interested in extracting the results perturbatively
in powers of H’, but, however, it is not easy to extract the
perturbative results in powers of H' in this approach. Besides,
if we go to the noninteracting limit, where the strength of the
perturbation H' o € vanishes, the perturbative result should
go back to the noninteracting result as

ZG e zwat

In the presence of perturbation H’, we may assume gener-
ally that the coefficients of the exponential functions become

function of ¢,
= 3 Gales e,

lime_oG(t) (A5)

(AO6)

which gives the limits

limé%OGa (67 t) = GOL? (A7)

which is independent of ¢.

For extracting the results perturbatively in powers of H’,
Kubo and Tomita (KT) introduced another way of performing
the expansion in powers of the perturbation H'. Below, we
briefly review the KT theory.

As illustrated above, the most convenient way to obtain the
expansion of G/(t) is to solve the equation of motion,

dO( )
dt

We are interested in performing the expansion in powers of
H’, and in order to achieve that, we switch to the interaction
picture and introduce

Ot)=e

=[0(t),H| = [O(t), Ho+ H'].  (A8)

iHotO*(t)e—iHot, (Ag)

where H is the unperturbed Hamiltonian. In the interaction
picture, we obtain the equation of motion,

40" (1)
dt

=[0"(1), H'(-1)], (A10)

where we also introduce H'(t) = e'Hot H'e=Hot [ntegrating
both sides of the equation with the initial condition O*(t =
0) = O(0) = O and we get

m@—O+l/¥u@W¢H%ﬂ» (ALD)
vt Jo

By iteration, we get

0 t’Vl
=0+> (i) /dt/ Aty - /dtlx
n=1

< [0;H (<t1), -+, H'(=tn)[A12)
Plugging the expansion above to Eq. (A9) gives
Ot) =0V t) + O (t) + -+ 0™ (t) +--- (A13)



where the general expression of O () is

oM (t) = /dtl/ dty - - /nldtnx
x [0<0 (t): H' (1), - - ,H’(tn)}(AM)
with
0O (t) = eflotQeiHot (A15)
H'(t) = Mot H'em ot (A16)

With the expansion of O(t) in the powers of H', the Green’s
function can be straightforwardly expanded as

G(t) = Go(t) + Gl(t) + Gg(f) + -

() = (i)_"/otdtl /Otl dtg---/otnl dt (—)0(t) x

<({0m st w00 ).
(A18)

(A17)

The result we obtain above is from straightforward expansion
in orders of the perturbation H’ without making many

The general way of evaluating the expression is to expand
O)(t) and H'(t) in a Fourier series. We note that it is not
always possible to decompose O)(¢) and H'(t) into Fourier
series exactly, but, fortunately, in most problems it is possible.
There are two general situations depending on whether or not
the Fourier components of O)(t) and H'(t), i.e., O(wa)
and H'(w,), develop time dependence. Let us first focus
on the first situation in which the Fourier components are
“time-independent”, and the generalization to the second case
can be straightforward carried over once we know all the
logics developing in the first case.

In the first case, the O(©)(t) and H'(t) can be fully decom-
posed to a Fourier series,

O(O Z O 710.1&
= ZH’(wa)e*i‘““t,

where the Fourier components O(w,) and H'(w,) are “time

(A19)

(A20)

independent”. We can use the identity

ABe A = B[4, B] + 5 [A,[A, B + 5[4, A, [4, B]]
NI (A21)

to get

assumptions, except for assuming H’ can be treated as a [O(wa), Ho) = waO(wa), (A22)
perturbation. Hence, the general formula above should be [H'(wa, Hy) = wo H' (wa). (A23)
valid in most (if not all) of the situations. ’
Then we can repress G, (t) as
Gn(t) = —Z@(f)z " —zwatz Zgn t YW1, 7wn)Fn(Wa;w1a"' 1wn)a (A24)
where
1 300 . . ) ) n .
gn(twi,  ywy) = — ep p—|—zw1)(p+zw1—|—zw2)---(p—|—szg)] dp, (A25)
2m —
Frp(Was Wiy ywy) = <{ (1), H (wn)] ,0*(0)}>. (A26)

We also know that OT(t =0) =
introduce

P Of(wp), and we can

Fn(wa;wh . 7wn)
-5 (oo

= ZF" (Wa, wgswi, - - -
B

()], 09} )

, Wn)- (A27)

From conservation of frequency, we know F,* vanishes unless

wa —wp+ Y _we = 0. (A28)
(=1
The reason that we introduce the function g, (¢; w1, -+ , wy,)

is due to the fact the it is easier to analyze the g,, function,
whose result can be obtained by summing the residues of the
simple poles located at p = 0, — ‘w1, — fw; — Wy, -,
and etc. We can then write down the general expression along



with the constraint of G, (¢),

G,(t) = —i0(t Zf” —iwat Zgntw

Xéwa —wg+> pq we=0>

wou wpg;w )
(A29)

where we introduce the abbreviations, >, = > >

gn(tiw) = gn(twi,or,wn), and F*(wa,wpiw) =

F*(wa,ws; w1, -+ ,wy). Let’s try to examine some simple
cases. For the first order perturbation, we have

) = —in) e

a,B
XFl (wouw,@; Wl)éwa—wlg-i—wl:O

= —if(t )Z _i“’at{— it} (W, wa; 0) +

1— ¢t (wa—wg)t
P D .
= —if(t) Z e iwal [ — it F} (Wa,wa; 0) +

D Dbrmmrrr

—twit 1

F (w03~ = 5)|

Fl Wa, WR5 — ( a_wﬁ))+

+F (wg, wa; wa — w,(g))] . (A30)
where

F (ni00i0) = ({ [0, 70,01 () } a3

FY (wa, wp; —(wa — wp)) + FY (wp; Wa; Wa — wp)

= ({0t /s = ). 0 )} +
+{ [O(wp), H' (wa — wp)], OT(wQ)}>. (A32)

Using the fact H'f(w) = H’(—w) and similarly O (w) =
O(—w), we see that the terms in [...] are all real, which sim-
ply indicates that the first order perturbation will only give
resonance line “shift” in the Fourier space. The second-order
perturbation contains more complex terms. The general ex-
pression is

GQ( ):—29 Z

ZQQ t w’vats
a,f

XFQ (Wou Wgs Wy, w6) X 6wa—w5+ww+w(;:6A33)

—iwat

There are several choices for satisfying the condition.
(1) wa =wg, wy =0 =w;s, (2) 1 wa = wg, wy =
—ws # 0. (3) 1 wa # wg, w5 = 0,wy = —(we — wg).
(4) © wa # wp, Wy = 0,ws = —(wa —wg). (5) : ws =
—(wa —wp + wy) # 0. Below, we will only keep the terms
with w, = wg and w, = —ws and ignore other highly asym-
metric terms with w, # wg. The result ignoring highly asym-

metric terms is

— W, t2 *
Galt) =-i0(0) Y 7 | = L P nyi0ai0,0) -
1 —iwsyt —e vt
L i)
770 v

(A34)

Since we already know that the first-order perturbation only
shift the location of the resonance line, let us see focus on the
effects of second-order perturbation due to G2 (t). Combining
the zeroth order term with the second order term, we obtain

G (1) ~ Go(t) + Ga(t)
iy 2
~ —if(t) Z e Wl [ (We, W) {1 - Z ﬂaiv - %‘730

2
w
@ v#0 v

_19 Z Z FO wou woz —z(wa-i-wry)to_i’y

a ~y#£0
. " aiv —i(wa—3 ;m 2T t— O‘Ut2
:—z@(t)ZFo(wa,wa) 1_ZF e 2 £0 oy
@ v#£0 7

02 F§ (Way Wa)

—if(t) Yy - —

@,7#0 Y

e—i(wa +wy )t )

(A35)

where we define Ua,y = F5 (Wa, Wa; Wy, —wy )/ F (Wa, Wa ).

The matrix element in the frequency space forms a trace and

we can use the trace identity to rewrite
2 F;(wavwa;w’)’a_w’)’)

Ooy =

Fi (o 00) (A306)

({06 @) (1), 0w | )

) (owrowly

Therefore, aa,y and o2, will be positive and real in this ap-
proximation. The spectral function can be extracted according
to A(w) = —(1/m)ImG(w), with G(w) = [ dtG(t)e™?,

2
1_§ Jay
w2

y#£0 T

(2) Z Fj (wa, wa)

o2
e—@a—Tyz0 wn?

1 202 +

x\/27r0§06
F* a (67
Py il s,

a y#0 v

(Wa + wy)A38)

Namely, the spectral function is the Gaussian line shifted by
> 40 ai,y /w~ from the original center w, and broadened to
width o,9. Besides, there is an additional resonance line,
called a “satellite line” by Kubo and Tomita, with the rela-
tive intensity ai,y / w?y at w, + w~. Therefore, we can see that
if the perturbation can be completely decomposed into Fourier



series whose Fourier components do not develop time depen-
dence, the perturbations broaden the original resonance line
to a Gaussian line along with shifting the center, and there
are additional resonance peaks (satellite lines). If the satellite
lines are too close to the original resonance line peak, the per-
turbation will break down. Mathematically the perturbation
breaks down if w, K 0o, Or Wy K T40.

Now let’s shift our focus on the second case in which the
Fourier components of H'(w,) develops time dependence.
We will see that the Gaussian line will be modified to be
a Lorentzian line, which was called motional narrowing by
KT. In this case, the unperturbed Hamiltonian consists of two
parts, Hy = Hy + Hs, which satisfy the conditions

[HlaHQ] = 07
[Hy, 0] = 0.

(A39)
(A40)

H; is assumed to be not commutable with the operator O.
With the conditions, we can straightforwardly adopt the ap-
proach from the first case. In the interaction picture, the un-
perturbed motion of the operator O can be expanded as

O(O) _ eiHotOefiHot zHltOeszlt Z O —uga
(A41)
where the Fourier component O(w,, ) satisfy
[O(wa), Hi] = waO(wa), (A42)
[O(wa), Ha] =0, (A43)

Similarly, we also introduce

H/(t) — e'L.HOtH/e*iHOt — eiHQteiHltHlefiHltefngt
=S H'(wast)e !, (Ad4)
where we introduce
ZHltH/ —1H.t ZH —tWat (A45)
eiHQtH'(o.)a)e_’H?’5 = H'(wa; ). (A46)

With the new definitions, we can adopt all the approaches il-
lustrated in the first case with the replacement of H'(w,) by
the time-dependent H' (w,; t). The general term of the expan-
sion is

t tn—1
(t) :-ie(t)ze*iwat/ dtl---/ dtn (i)™ x
a8 0 0

X Z e Hwytittwutn) o
Yy v
({060 @it 51)].0T ) ).
(A47)
Again, due to the conservation of the frequency , we require
+w, = 0.

Wo —wWg +wy+--- (A48)

The zero-th order term is

Go(t) = —if(t) ) e_iw"‘t<{0(wa), of (wa)}>(.A49)

[e3

The first order term is
¢

(t) :_z'o(t)ZZ&MWH%:O&W@/ dtye” ! x
0

By

><<{[O(wa),H'(wv;tl)],OT(wﬂ)}> (A50)
Oy

x<{[0<wa>,H’<—wa+wmo>],of<wﬂ>}>, (as1)

which gives us the same result after integration to that in the
first case, whose effects are to shift the center without broad-
ening the resonance line. Let us focus on the second-order
term, which is

Go(t) = —i0(t) Y Ounwptw,tws=0€ 2! X

«,B,7,0

t t1 )
X / dty / dtge~Hrtitwsta) (1)=2
0 0

><<{ [O(wa); H' (wo, 1 — t2),H/(w5,0)},oT(W5)}>.

(A52)
Again, we focus on the contributions from w, = wg, and
wy = —ws and ignore highly asymmetric terms from wg #

wg, which in most of the cases are not important. We get

t t1
t) ~ ’L@(t) Z eiiw‘lt\/\ dtl / dtzefiw.y(h*tg) >
a,y 0 0
<{ [Owa); H' (w1 = t2>=H’<—wv,o>],0*<wa>}>
= 29 Z e—zwat/ dT t— 7_) —iw~ T %

x <{ Ol 7). (0,0 01 ) } ).
(A53)
Following Kubo and Tomita, we introduce

oy fory ()
({1061 /. 7). (00,00, 0w } )

({owa.0ttwa )

({106a), 7)) [ (7,00, 0]} )

)

(A54)



where ai,y has been introduced before and fo-(7) is

fur )
 ({106a) 1.7 (0000 | )

({1060, 17w, 0). 11,00, 0] | )
(A55)

which is reduced to be 1 if H'(w., 7) becomes time indepen-
dent. Then the expression for the second ordre term is

Ga(t) ~if(t) aZe_i“at<{O(wa),OT(wa)}> X

¢
X /0 dr(t — T)e_inTai,yfa.y(T).

Now, let us combine the terms up to second order. Since first
order term is the same to that in the first case, it will simply
shift the resonance line, so we ignore it. Up to second order,
we get

G (t) = Go(t) + Galt)

= o) 3 (1= [ = 710207

)

(A56)

¥
~ Go(t) Y e o drlt=mIoasfan (7). (A57)
v

Focusing on the simplest case with v = 0, we have
a® (t) ~ Go(t)efgif’ Jo dr(t=7)fao(T) (A58)

At the long time limit, £ — oo, we can approximate
GO (t = 00) ~ Go(t)e a0 o~ drtfao(m)  (A50)
= Gy(t)e 7m0t (THT) L (AGD)

where we introduce 7/ = fooo Re{fao(T)}dr and 7" =
fooo Im{ foo(T)}dr. Then the spectral function becomes

2
AP (W) ~ 1 TaT

7w = (Wa = 0307 + (0207')

5 (A61)

where we can see that the line shape becomes Lorentzian!
Note that if we set foo(7) = fao. independent of time, the
shape will go back to Gaussian. In general, if we can get
the “exact” form of f.~(7), we can obtain the exact form of
the resonance line, which is, unfortunate, not possible in most
cases.

Appendix B: Perturbative studies in the U = 0 limit

We present the perturbative studies of the broadening of the
spectral function of Goldstino mode at U = 0. The Hamilto-

nian is H = Ho + H' with
Ho = —tn > [blbe+ 1 fe] = 1Ny = o, (B1)
(k)
H =Ugp ) nbal. (B2)
J

(a) (b)

FIG. 1. (Color Online) (a) The Goldstino Green’s function con-
sisting of a fermion Green’s function (red dashed line) and a bo-
son Green’s function (blue solid line) whose momenta are explic-
itly summed. (b) The two-fermion-two-boson vertex arising from

PP U
H' =Ugr Zj njn; = —5F Zp,q,k fgprrqfkbLbk'

5 e
b, T ey
~ ——
— O
(a) (b) ©

FIG. 2. (Color Online) First-order Feynman diagrams contributing to
renormalize the Goldstino Green’s function. (a) A boson bubble in
the fermion Green’s function sector renormalizing 1. (b) A fermion
buble in the boson Green’s function sector renormalizing fip. (c) A
two-fermi-two-bose vertex contributing to the first-order self-energy.

For convenience, we introduce the imaginary-time-ordered
Goldstino Green’s function

G(r) = — (T [Q(1)Q(0)]). (B3)

where we remind that the Goldstino field is
1
=—> flb;. (B4)
VN J
The general expression for the perturbation is

—1)m B B
( ? / dry -+ / d7,, X
m=0 me 0 0

(. [ B )R 0)]) @)

0,conn

Q
2

I

!
Nk

where the subscript O means the unperturbed ground state and
conn means the connected Feynman diagrams.
At zeroth order, we know that

gO(7) = — (T [Q(MQ"(0)])
= % S (T [ b 0B 0)])

= ST KOS (T b O)])

1
=+ 2_9r(=7.P)G(7.P). (B6)
P
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(a) (b) (c)

FIG. 3. (Color Online) The second-order irreducible Feynman dia-
grams. (a) Two cross interaction vertices. (b) A fermionic particle-
hole bubble in the boson Green’s function sector. (c) A bosonic
particle-hole bubble in the fermion Green’s function sector.

where  Gy/p(7,p) are the imaginary-time ordered
fermion/boson Green’s functions, and we know

Gr(=7.p) = [0(TIns(ch) — 6(=7) (1 = ny(c}))] e, (BY)
Go(7.p) = = [0(7) (1 + mu(cp)) +O(=T)mp(ep] e~ 7, (BY)

where we introduce n s /() = (e?*£1) ! and ef,/b = wg/b—

oy, With wg/ b being the dispersions of hopping. Introducing

the Fourier transform G (iw,,) = foﬁ drG(7)en™ with w,, =
(2n + 1)w/B(2nm/3) for fermions/bosons, we get

f b
GO (iw,) = iznf(epHnb(ep) - x5 B

; f b —
N o zwn—i—ep—ep W

where we note that w, = (2n + 1)7/f since the Goldstino
field is a fermion. The zeroth order (unperturbed) retarded
Goldstino Green’s function can be obtained as

GO (W) = Gliw, — w +i0T) = (B10)

w—Ap+i0T
which is the same to that derived from the equation of motion
presented in the main texts. For clarity in presenting the per-
turbative studies below, we introduce the diagram presentation
for the Goldstino Green’s function in Fig. 1(a), where the up-
per dashed red line represents the fermion line and the bottom
blue solid line represents the boson line and the momenta of
fermion and boson lines are explicitly summed. Fig. 1(b) rep-
resents the two-fermion-two-boson vertex. The arrows repre-
sent the directions of the particles.

For the first order term, we find there are three possible
contributions as shown in Fig. 2. The first-order perturbation

10
gives (in imaginary time domain)

U B
gl(T)Z% . dTl X

x [pB > Gs(r1 = 7.P)G; (=71, P)Gb (. P) + (B11)
o

+pF ng(_Tvp)gb(Tlvp)gb(T - Tlvp) -
p

1
v E Gr(m1 —7,9)Gp (7 — 71, 9)G s (=71, P)Gp (71, P) | -
P.q

(B12)
Going to Fourier space, we get

Gi(iwn) = GO (iw,) (—pUsr + prUsr — pUpr) GO (iw,)
=69 (iwn) (—2ppUsr) G (iwn). (B13)
Therefore, we can see if we only include the first order term,

the renormalized imaginary-time Goldstino Green’s function
at first order is

1

G (iw,) ~ - , Bl4

(iton) iwn, — (Ap —2ppUpr) (B14)
which gives

GRD(w) = ! (B1S)

 w— (Au—2ppUgr) +i0t’

which again is consistent with the result obtained by Kubo-
Tomita theory presented in the main texts and leads to the
spectral function

AV (w) =6(w — (Ap—2p5Usr)).  (B16)

For the second order, we find there are three contributions
illustrated schematically in Fig. 3. The derivation for the
second-order terms are straightforward (but tedious), and we
present the final results below. Fig 3(a)-(c) contributing to
renormalize the imaginary-time Goldstino Green’s functions

can be concisely written as G(©) (252) +2P 4 Eéz)) G,
where the subscript (2) means the second-order and the sub-

scripts 1 — 3 label the contributions from Fig. 3(a)-(c). The
self-energies 3 contributed from each term are
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£ (1) U2, { [nf(el) + np(ef,)] {nf(E{)Jrq—k) —ng(el - 61‘1)] [nf(éé) + np(—€) + e + 6{)+q7k)}
1 Wn) = N2 : F 7
NV p,ak iwn, + b + €4 — €2 — €k
[0(el) = mo(€5)] [ (€] qure) +molel = )] [mu(eh) + (=€ + e = efq i)
+
; b f
Wy, — eg — eg +ep gk
. [nb(eg — nb(eﬂ)} {nf(ef,_i_q_k) + nb(eg — ei’{)} {nf(eé) — nf(—eg +eb + 6;f3+q—k)]
R R
L Jnste) + i) [ (i) = (e — )] [mo(el) = mo(—cf + e+ €10 }Bm
b + €4 6Jpj-kq—k
£ i) - Vb { —ng(eh) [np(ehpap) = nr(eh = b)] [ns(eh) + m(—ef + b + i)
5 (twn) = =5 . ,
NV ok itn = €q = e+ e+ e p
1) [nr(chancy) + ol = )] () — (- + ¢+ o) } s
T
e (i) U2, {nb(eg) {nf (ecfl) + nb(ef, + 6<b:1+k—p)] {nb(ef;) + nf(—eé + ei’, + egﬁ_k_p)}
3 \Wn) = 2 : b b
NV = iwy + €q + € — € — €0y o
) [ () = s (e + ehpnep)| [moleb) = ol + e + )] } 1
eﬁ; + ef( — 6{) — eg+k7p
[
The second-order self-energies in the Matsubara frequency which leads to the spectral function
domain are very complicated. However, since we are only
interested in the imaginary part of the self-energy in the real
frequency domain obtained by iw,, — w + 70" and extract its
qualitative behavior. In this way, we can see that 2512:)1_’273(01) A2 (w) ~ re (B21)

all contains imaginary parts which are proportional to square
of the perturbation strength, i. e. Im¥(?)(w) =T o UZ ..
In the presence of the imaginary part of the self-energy, the
retarded Goldstino Green’s function becomes (we ignore the
real part of ¥£(2)() since it only contributes to shift the loca-
tion of the peak)

6" (w) = 1

~ B20
w—(A,u—2pBUBF)—iI‘(2)’ ( )

(@~ (B~ 2ppUpr))? + (TO))2

which is a Lorentzian function with width ~ T o« UZ..
Therefore, we can see that the perturbative results at U = 0
limit are qualitatively consistent with the results obtained by
Kubo-Tomita theory.
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