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Quantum simulations of a freely rotating ring of ultracold and identical bosonic ions

F. Robicheaux∗ and K. Niffenegger
Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA

We report on two types of quantum calculations pertaining to a ring of ultracold and identical
bosonic ions in a static, external magnetic field. The purpose of these calculation is to give examples
of what could be expected in certain types of measurements of the rotation of this ring. The first
type of calculation explores how well the ring reaches the rotational ground state when it starts
in the ground state of a trapping potential that is then adiabatically switched off; the trapping
potential is designed to frustrate the rotation and raise the energy scale to the point where standard
cooling techniques could reach the ground state. The second type of calculation shows what kind
of rotation signal might be measured using two types of measuring schemes. The focus is on how
the signal changes with the temperature of the ring and with how the measurement is performed.

PACS numbers: 52.55.Dy, 34.80.Lx, 52.65.-y, 32.80.Ee

I. INTRODUCTION

There have been several recent papers discussing
whether a closed quantum system could exhibit the fea-
tures of a time-crystal. The basic idea of time crystal was
discussed in Refs. [1, 2] and revolves around the question
of whether “time-translation symmetry might be spon-
taneously broken in a closed quantum-mechanical sys-
tem.” The interest in such a question arises in analogy
with spontaneous symmetry breaking in different phys-
ical systems. In spontaneous symmetry breaking, the
equations that govern a system exhibit a type of symme-
try that is not exhibited by the lowest energy states of
that system. An example is a crystal: the Hamiltonian
is invariant under any translation but the crystal ground
state is only invariant under translation by a multiple of a
lattice vector. Reference [1] claimed that, similar to the
spontaneous symmetry breaking in a crystal, there are
closed quantum systems that exhibit spontaneous sym-
metry breaking with respect to time translation.

Reference [3] proposed a specific example of a time
crystal where the physical system was a ring of cold,
trapped ions with an external magnetic field normal to
the plane containing the ring. They noted that the
ground state of this system can have the ion ring rotating
at a nonzero frequency that depends on the strength of
the external magnetic field and parameters of the trap
(e.g. trap radius, number of ions, ...). They suggested
that this system might be more easily realized in an ex-
perimental setting than the examples in Ref. [1]. Before
discussing some of the properties of this system, we note
that Ref. [1] was the subject of a critical comment[4]
and a response[5] as well as a more indepth critique.[6]
The critiques question the existence of time crystals while
the responses argue for their existence. We do not di-
rectly address this controversy. In this paper, we ad-
dress the simpler question of how a ring of identical ions
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responds to specific manipulations. Since this system
was suggested by Ref. [3] as an example, the solutions of
Schrodinger’s equations and the numerical simulations
we present will address some of the quantum properties
of this system. Thus, some of our calculations may be
relevant to the comment[7] (and response to comment[8])
to Ref. [3] which addressed the feasibility of the proposed
measurements.

In all of our calculations, we solve the time depen-
dent Schrodinger equation for the ions to simulate the
response of the ion ring. In these calculations, we as-
sume that technical issues regarding a “freely rotating
ion ring crystal” has been solved as discussed in Ref. [9].
A ring with approximately 400 Ca+ ions has been demon-
strated in Ref. [10]. In the proposed experiments, a Paul
trap[11–13] for the ions will use an oscillating electric
field to trap ions in a ring a few 100 µm above the sur-
face of the electrodes.[14–16] The geometry is different
from the more typical linear traps[12, 17] but if the tem-
perature of the ions is reduced enough they will form a
crystal (as has been seen in many linear traps[17]) with
equal spacing between ions. The radiofrequency electric
field causes a small oscillation of the ions perpendicular
to the direction along the ring. The oscillation leads to
a ponderomotive force that pushes the ion towards the
spatial positions where the magnitude of the electric field
is a minimum. Taking z to be perpendicular to the ring,
the oscillation provides an effective potential well (i.e.
a pseudopotential) in z and r centered at some height
z0 and radius R. For the time crystal, the ions need
to be cooled past the point of crystal formation to tem-
peratures where the vibrational motion of the ions are
in the ground state; this is an experimentally challenging
regime. See Ref. [9] for more details of the proposed Paul
trap.

As noted in Ref. [9], a ring of identical ions are, perhaps
unexpectedly, less prone to pinning as the number of ions
increases. This is because the ion ring better simulates
a continuous charge with more ions. By assuming the
experimental difficulties of the ion ring are solved, this
implies that the ions can be treated as being in a nearly
perfect circle and that there are no uncontrolled external
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fields that pin the ring. It also assumes the isotopic pu-
rity of the ions and that they can be placed in the same
atomic state (for example, using optical pumping). In
all examples below, we choose the ions to be bosons so
that the wave function is symmetric upon interchange.
Using identical fermions does not change the qualitative
results.
The experiment proposed in Ref. [3] is that of a freely

rotating ring of N identical ions that has a magnetic field
through it. For non-identical ions, the spacing of the
energy levels decreases as the number of ions increases
because the moment of inertia of the ring increases. If
identical bosons are in identical internal states, the sym-
metrization means the wave function should repeat every
2π/N radians. Thus, the allowed angular momenta for
an ion is not m~ but Nm~ where m is an integer. The
quantized energies of rotation with no magnetic field have
the form Em = ~

2N2m2/(2NMR2) = NEscm
2 with

Esc = ~
2/(2MR2). This shows that the spacing of the

energy levels increases as the number of ions in the ring
increases which is opposite to what would happen if even
one of the ions were distinguishable.
In Sec. II, we will repeat the arguments for treating the

ions as a rigid ring. The results for a rigid ring of ions
has been presented in many places. The Hamiltonian for
a rigid ring of ions with a magnetic field perpendicular
to the ring can be written as

H =
Esc

N

(

1

i

∂

∂Θ
−Na0

)2

(1)

where the 0 ≤ Θ ≤ 2π can be considered a position on
the ring, Esc = ~

2/(2MR2), N is the number of ions,
and a0 = πR2B/(h/e) is the scaled magnetic flux. To be
specific, we can take the position of the j-th ion to be at
θj = Θ+j2π/N . Instead of considering Θ to be a position
on the ring, the Θ can also be derived from the normal
mode coordinates in Ref. [18] and is their coordinate u−π
(see their Eq. (17)) which is simply the phonon mode
related to k = 0. If every ion is an identical boson in the
same internal state, then the wave function must have the
property of repeating when Θ → Θ+(2π/N). This means
the allowed energy states have 0,±N,±2N, ... rotational
quanta. This gives an energy spectra

Eident
m = EscN(m− a0)

2 (2)

where m = 0,±1,±2, .... If one of the ions is different
in any way, then the wave function has the property of
repeating when Θ → Θ+ 2π. The allowed energy states
now have 0,±1,±2, ... rotational quanta which gives an
energy spectra

Em = EscN
−1(m−Na0)

2 (3)

where m = 0,±1,±2, .... The Eident
m of Eq. (2) is con-

tained in Eq. (3) by putting on the restriction that
m = 0,±N,±2N, ....
Although the identical boson case has energy spacing

N2 greater than the distinguishable case, the spacing of

the rotational energy levels is much smaller than typical
temperatures that can be reached for ions. Section III
discusses one possible method for getting the system to
lower energies; this method is based on a suggestion made
to us by Tongcang Li[19] to use the ponderomotive shift
from a standing light wave. Reference [9] discussed a
different method based on a strong electric field.

Reference [3] proposed preparing the ring of identi-
cal bosonic ions into an eigenstate with energy given
by Eq. (2). To measure the rotation, an ion would be
marked by (for example) changing the internal state of
one ion or a group of ions. This would change the state
from an eigenstate, where observables do not have time
dependence, to a state represented by a superposition of
eigenstates with energies given by Eq. (3). This superpo-
sition is a wave packet which evolves in time. In Sec. IV,
we discuss two methods to mark a ring and give examples
of the resulting time-dependent signal.

II. JUSTIFICATION FOR USING A RIGID

RING

The ideas in this section have been expressed in many
papers (for two see Ref. [3, 9]). This section is included
to give the basic idea of what physical parameters are
needed. In the calculations, we use 9Be+ as the bosonic
ion. Estimates can be made for other ions by scaling the
energies appropriately with the ion mass.

There are several possible ways that the ring of ions
might not be well represented as a rigid ring. Many of
these are under experimental control. For example, the
oscillation frequency of ions perpendicular to the ring
plane needs to be high enough that the ions are in the
lowest vibrational state. If this is not the case, then the
transverse phonons can become a mechanism for “mark-
ing” the ring. There are also transverse phonons in the
plane of the ring which also need to be in the lowest
mode. These frequencies are determined by trap param-
eters and are, thus, beyond the scope of our studies. By
making the trapping potential “tighter”, these frequen-
cies can be raised. How tight the trapping potential can
be is an experimental issue. There are also various ring
instabilities which must be avoided that occur when too
many ions are in a given trap; many of these issues are
discussed in Ref. [9].

One of the intrinsic modes that must be considered
are the longitudinal phonons of the ring. These were
discussed in detail in Ref. [18] and only depend on the ion
charge and mass and the ring radius when the transverse
modes can be ignored. Using the expressions from this
paper one can show that the energies of the different
longitudinal phonon modes are given by

ενj ,j = Esc

√

2q2

4πǫ0REsc
νjωj
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ω2
j =

N−1
∑

n=1

1 + cos2(nπ/N)

4 sin3(nπ/N)
sin2(jnπ/N) (4)

where Esc = ~
2/(2MR2) is the scale of the rotational

energy, M is the mass of a single ion, R is the radius
of the ring, q is the charge of the ion, N is the number
of ions, νj is the number of quanta and ωj is the scaled
angular frequency of the j-th phonon. The lowest fre-
quency phonon is for j = 1. For 100 ions, ω1 ≃ 11.6 and
ω2 ≃ 21.3 while for 90 ions ω1 ≃ 10.9 and ω2 ≃ 19.9. For
a ring of singly charged ions with a radius of 60 µm, the
2q2/(4πε0R) ≃ 3.84×10−24 J ≃ kB0.278 K. For an ion of
9 atomic mass units, Esc = 1.03× 10−33 J ≃ kB74.8 pK.
Combining these gives an energy spacing for the lowest
frequency phonon of∼ kB50 µK. Compared to the energy
spacing of the rotational motion, NEsc ∼ kB7.5 nK, this
phonon energy is four orders of magnitude higher and
will be frozen out in an experiment. Using the lowest
frequency phonon mode, we can use the length scale of
the ground state of a harmonic oscillator to estimate the
ions are localized to their position in the ring with a spa-
tial width with a scale less than a few 10’s nm whereas
the ion separation is a few µm. Thus, the ion positions
are at their equilibrium position with an accuracy of ap-
proximately 1%.
Using the discussion in Sec. III of Ref. [9] as a guide,

we chose to perform all of our calculations with a radius
of 60 µm, 90 ions, and mass of 9 amu.

III. ADIABATIC COOLING USING

PONDEROMOTIVE SHIFT

One of the difficulties with the experiment is the very
small energy scale of the rotational energies of the ring
which is of order nK. We will assume that the ions can
be cooled to the several µK scale which is somewhat am-
bitious but has been achieved.[20, 21] If the ions can be
cooled to this level one can pursue schemes where the
cooling takes place with a potential that pins the ring
and raises its energy scale. Once the ring reaches the
ground state of the pinning potential, this potential can,
in principle, be adiabatically switched off[22] so that the
ring will end in the ground state of the freely rotating
ring. Reference [9] proposed using a uniform electric field
to push all of the ions to one side of the circular trap. We
will investigate a different situation where the ions expe-
rience a pinning potential from the ponderomotive force
from a standing light wave.
The potential energy of the ring from the standing light

wave is proportional to the sum of the intensity of the
light at the position of each ion. We will assume that the
light intensity is only modulated in the x-direction and
has the form

I(x) = I0 cos
2(kx) (5)

where k is the wave number in the x-direction. Taking
the position of the j-th ion to be θj = Θ + 2πj/N , the

FIG. 1: A schematic of how a standing light wave can pin
the ion ring. The lines represent the maxima of the light
intensity for the standing wave. The ions are attracted to
the light maxima. See text for discussion of the qualitative
difference between even and odd numbers of ions.

potential energy will be proportional to

PE ∝ −V = −
∑

j

cos2(kxj) (6)

where xj = R cos(Θ+2πj/N). This dimensionless quan-
tity must be in the range 0 ≤ V ≤ N . Furthermore, this
potential repeats when Θ → Θ + 2π/N . In the discus-
sion below, it is important to remember that cos2 repeats
every π radians.
Figure 1 shows a schematic of how the potential arises

for a ring with an even number of ions and a ring with an
odd number of ions. The lines mark the positions of the
intensity maximum and the asterisks mark the positions
of the ions for one possible ring orientation. For an even
number of ions, the intensity maximum from the light
can line up with atoms on both the top and bottom of
the ring when the separations of the intensity maxima is
approximately 2πR/N . This suggests one possible good
choice is k ≃ (1/2)N/R. For an odd number of ions,
the atoms line up with maxima on the top part of the
ring but are at minima on the bottom part of the ring.
Thus, for intensity maxima separated by ≃ 2πR/N , the
odd number of atoms has almost no Θ dependence for
the potential. If the k is chosen to be approximately 2×
larger, then the ions can be aligned with the maxima for
both even and odd numbers of ions. This suggests that
another possible good choice is k ≃ N/R. However, the
larger k gives two potential minima which has a possibly
terrible effect on adiabatic cooling as will be discussed
below.
Figure 2 shows the calculation of −V from Eq. (6) for

a 90 and a 91 ion ring. The solid line is for the case
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FIG. 2: A calculation of the −V from Eq. (6) for 90 and 91
ions. The solid line is for k = 0.52N/R. The dashed line is
for k = 1.014N/R for N = 90 and 1.024N/R for N = 91.
These values for k were chosen to maximize the well depths.
The potential energy is typically proportional to −V for red
detuned light.

when k ≃ (1/2)N/R. The N = 90 case has a single
minimum in the potential while the N = 91 case almost
no variation with Θ. The max(V )−min(V ) for the N =
90 case is ≃ 27. This means the effect of the potential is
27× larger than that from one ion. However, this needs
to be counterbalanced by the mass of the ion ring being
90× larger. Thus, the oscillation frequency in the well is
approximately

√

27/90 ≃ 0.55 times that for a single ion
in the well.

The dashed lines are for k ≃ N/R with the exact val-
ues given in the caption. For this case, both the even and
the odd number of ions shows a potential variation. For
the N = 90, the max(V )−min(V ) is ≃ 25 while it is ≃ 22
for the N = 91 case. Since the well depth is similar to
that for the smaller k, one is tempted to think it’s better
to use the larger k because the frequency is proportional
to the square root of the curvature of −V near the min-
imum since the time needed for adiabatically switching
off the potential scales like the inverse of the frequency.
However, the cases with k ≃ N/R give double wells. For
an odd number of ions, the wells are equally deep while
for the even case the potential well at Θ = (1/2)(2π/N)
is clearly deeper. For odd N , this will prevent adiabatic
cooling to the ground rotational state because the ground
and first excited state are equally populated. When the

adiabatic cooling step occurs, the ring would be left in an
equal mixture of ground and first excited states. For the
even case, there could be a benefit if the cooling can be
done so that the ring ends in the deeper well most of the
time. We will focus on the case where k ≃ (1/2)N/R for
our numerical studies as that will most simply illustrate
the features of adiabatic cooling. In the next section, we
will see that the behavior of a ring in the ground and
in the first excited state is distinguishable so it might be
worthwhile to deliberately have a mixture of the lowest
two states.
From Fig. 2, we can see that the ring as a whole will

have a pinned frequency comparable to that for a single
ion. We will assume that the one ion well depth is suffi-
cient to reach the ground vibrational state which means
we will assume the ring can also be cooled to the ground
state. The main question is how fast can the laser be
turned off so that the ion ring will finish in the ground
rotational state. To address this, we solved the time de-
pendent Schrödinger equation for the ring:

i~
∂Ψ(Θ, t)

∂t
=

Esc

N

(

1

i

∂

∂Θ
−Na0

)2

Ψ(Θ, t)

−ǫ(t)[V (Θ)− Vmax]Ψ(Θ, t) (7)

where the boundary condition is Ψ(Θ + 2π/N, t) =
Ψ(Θ, t), ε(t) has units of energy and smoothly turns off,
and Vmax is the maximum value of V (Θ). By having the
potential proportional to −(V −Vmax) instead of just −V
we have set the minimum of the total potential energy to
0.
We solved for the time dependent wave function by

discretizing the Hamiltonian using a grid of points in Θ
between 0 and 2π/N with a periodic boundary condi-
tion. The resulting matrix representation of H is tridi-
agonal except for non-zero elements in the upper-right
and lower-left corners. The time propagation was car-
ried out using the implicit Crank-Nicolson algorithm

Ψ(t+ δt/2) =
1− iH(t)δt/2

1 + iH(t)δt/2
Ψ(t− δt/2) (8)

which has a one step error of order δt3. We used the nu-
merical eigenstate of H for ǫ(0) to get the initial ground
state wave function.
One of the difficulties in trying to obtain the most pop-

ulation in the ground state is what functional form to
choose for ǫ(t), i.e. how to have ǫ(t) → 0. The diffi-
culty is seen in Fig. 3 which plots the eigenvalues of the
Hamiltonian. When ǫ is large, the spacing of energy lev-
els is large and the ǫ can be decreased quickly. As the
ǫ decreases, the spacing gets smaller and the rate that
ǫ changes should also decrease. This means most of the
decrease in ǫ can occur very quickly but the final decrease
towards 0 will happen slowly and will be of the order of
h/∆E evaluated at ǫ = 0. For the parameters in Fig. 3,
the difference between the ground state and first excited
state energy is approximated by

∆E(Hz) =
√

49 + 1.5× 1011ǫ2/[1 + 2.0× 104ǫ] (9)
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FIG. 3: The lowest 7 eigenvalues (in units of kHz) of the
Hamiltonian in Eq. (7) for different values of ǫ (in units of
µK). The calculations are performed for a0 = 1/4, R = 60 µm,
and a mass of 9 amu.

FIG. 4: The population in the ground (+), first excited
(*), second excited (diamonds), and third excited (triangles)
states as a function of the turn-off time.

where ǫ is in µK; this expression is accurate to approx-
imately 10% over the full range of ǫ. At small ǫ, the
∆E → 7 Hz. At large ǫ, the ∆E is proportional to√
ǫ because the potential is well approximated by a Har-

monic oscillator when the ring is strongly confined near
the potential minimum.
In our propagation, we used a simple algorithm that

numerically decreased ǫ using the form

ǫ(t+ δt) = ǫ(t) exp(−β(t)δt∆E) (10)

where ∆E is in Hz and β(t) was a positive dimensionless
number that starts at 0 and then smoothly increases.
Larger β is equated with a faster turnoff. We chose the
form β(t) = β∞/(1+exp[−10+t∆E0/2]) which smoothly
turns on over a time of approximately 2/∆E(Hz). The
final results depended weakly on the specific forms we
picked for how we turned off the laser.
Figure 4 shows the population in the four lowest en-

ergy states as a function of the turn-off time. The turn-off

time was defined to be the time when ǫ(t) first dropped
below 10 pK. We started ǫ(0) = 10 µK. The time scale
is increased by a factor of approximately 2 if the turn-off
time is defined to be when the ǫ(t) first dropped below
1 pK. We only plot the range where the population in
the ground state is larger than ∼ 60%. As is typical with
time varying Hamiltonians, the population in the initial
state stays near 1 until the time scale of the variation be-
comes shorter than ∼ h/∆E. The time scale associated
with h/∆E when ǫ = 0 is approximately 140 ms. Thus,
it would be surprising if the potential can be turned off
substantially faster than that in Fig. 4 and still have most
of the population in the initial state. Thus, it appears
that the relevant time scale for this type of pinning po-
tential is a few 10’s ms and is mainly determined by the
rotational energy levels as the pinning is turned off.
This time scale may be too slow for an experimental

implementation. The ions have a time scale over which
they are heated by external noise and other processes. If
the turn-off time is too long, the ions will be heated out
of the ground state during the adiabatic cooling step.
Since all pinning potentials have the same limit as the
potential is turned off, it seems probable that all pinning
potentials will have a turn-off time of a few 10’s ms. This
time scale is much shorter than the rotational period of a
marked ring which determines the duration of a rotation
experiment. Thus, the main difficulty will be in having
the ring reheat between the end of the adiabatic cooling
and the start of the measurement of the ring rotation.

IV. SIGNAL FROM A MARKED RING

Reference [3] described a generic experiment where the
ion ring is marked in order to experimentally determine
whether it is rotating and in what direction. To sim-
ulate this process, a theory for this many body system
under the action of a one body interaction needs to be
developed. There are many possible ways of marking an
ion. We will treat the situation where internal quantum
numbers are changed which leaves the interaction of the
ion with external potentials unchanged. To simplify the
treatment, we will assume the marking occurs within an
effective two state system.
All of the ions are initially in state |a > and the mark-

ing process causes |a >→ |a > Ca + |b > Cb with
|Ca|2 + |Cb|2 = 1. The transition must be localized to
a region of order δθ << 2π in order for the ring to be
marked. The number of ions in this region is approxi-
mately Nδθ/(2π) and will be assumed to be much larger
than 1. In the discussion of this process in Ref. [3], it was
assumed the number of marked ions is approximately 1
which means that the probability for any one atom to be
excited is small. We will choose the form of the interac-
tion to give

|a >→ eiα(θ)σx |a >= |a > cos(α(θ)) + |b > i sin(α(θ))
(11)
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where sin2(α(θ)) is the probability to mark one ion as a
function of the angular position, θ, of the ion. The prob-
ability of exciting any one ion is less than the inverse of
the number of ions in the transition region; this implies
α2 < 2π/(Nδθ) which means the α is typically much less
than 1. We will define η as the angle where α is a maxi-
mum with a value α0 ≡ α(η) and where δθ is the width
of the marking in angle. This assumes the marking is
done using a Hamiltonian operation and not a method
that requires dissipation like a spontaneous photon emis-
sion. A possible method could be a stimulated Raman
transition that changes the hyperfine state of the ion; if
the two laser beams are oppositely directed, the momen-
tum kick from the photon absorption-then-emission will
be too small to excite phonons.

The initial wave function for the ring can be written
as

Ψ0 =
1√
2π
eimΘ|aaa...a >

×ψ(1, 2, 3...N) + ψ(2, 1, 3, ...N) + ...√
N !

(12)

where m = 0 or ±N or ±2N etc and the ψ(1, 2, 3...N)
is a spatial wave function. The spatial wave function is
such that the ion coordinate in the n-th place is localized
at Θ + n × 2π/N . Thus, the ψ(2, 1, 3, ...N) has ion 2
localized at Θ+ 2π/N , ion 1 localized at Θ+ 4π/N , and
ions n ≥ 3 localized at Θ + n2π/N . The spatial wave
functions have the property where all ions need to be
lined up for the overlap to be non-zero. For example,

〈ψ(1, 2, 3...N)|ψ(1, 2, 3...N)〉 = 1
〈ψ(2, 1, 3...N)|ψ(1, 2, 3...N)〉 = 0. (13)

This is because the ion localization length scale is ap-
proximately few 10’s nm compared to the ion separation
of a few µm. The discussion of these length scales is in
Sec. II.

The wave function just after the step that marks the
ion has the form

Ψ1 =
N
∏

n=1

[1n cos(α(θn)) + iσx,n sin(α(θn))]Ψ0 (14)

where the θn = θ̄n+Θ with θ̄n the average position of the
n-th ion in the ring which will depend on the ordering in
ψ(...). This function is not an eigenstate and will have
non-trivial time dependence.

Because the initial wave function is symmetric and the
marking is also symmetric, all of the physically relevant
quantities can be obtained from the part of the wave func-
tion multiplying the ψ(1, 2, 3, ...N) term. In what follows,
we will only discuss this part of the wave function. The
full wave function can be found by simple exchanges of
the ion indices.

A. Weak Marking

The experiment will probably work in a regime where
approximately one atom is marked, but this is difficult to
treat theoretically. We will first discuss the case where
the average number of marked atoms is much less than
one since it will allow a simplified treatment and will
contain much of the relevant physics.
As discussed in the previous section, we only need to

solve for the part of the wave function multiplying the
ψ(1, 2, 3...N) ordering. The rotation angle α is always
much less than 1 for the case of weak marking. Thus,
the product in Eq. (14) reduces to a sum

Ψ1 ≃ Ψ0 + i

N
∑

n=1

α(θn)σx,nΨ0 (15)

which is not an eigenstate. We will use the superposition
principle to find the wave function after the marking. For
a general Hamiltonian with eigenstates yn(x) and ener-
gies En, if you multiply an eigenstate at time t = t0 with
the function f(x), Ψ(x, t0) = f(x)yn(x) exp(−iEnt0/~),
the result is generally not an eigenstate and has the form
for t ≥ t0

Ψ(x, t) = e−iEnt/~
∑

n′

yn′(x)e−i(En′−En)(t−t0)fn′,n (16)

where fn′n = 〈yn′ |f(x)|yn〉.
If the marking is done at time t0, the part of the wave

function multiplying the ψ(1, 2, 3...N) can be written as

Ψ̃1 =

[

1 + i
N
∑

n=1

Fn(Θ, t)σx,n

]

|aa...a > Φ0(Θ, t) (17)

with

Φ0(Θ, t) = e−iEmt/~ 1√
2π
eimΘ (18)

where the Em is defined in Eq. (3), m = 0 or ±N etc,
and the function Fn(Θ, t) is defined by

Fn(Θ, t) =
∑

m′

ei[δm
′Θ−(Em′−Em)(t−t0)/~]α

(n)
m′,m (19)

where δm′ = m′ − m and the m′ = 0,±1,±2, ... The
expression for Fn(Θ, t) contains exp(iδm′Θ) instead of
exp(im′Θ) because it multiplies the Φ0; the exp(−imΘ)
cancels the exp(imΘ) in the Φ0. The matrix

α
(n)
m′,m = < m′|α(θn)|m >

=
1

2π

∫ 2π

0

dΘe−iδm′Θα(θ̄n +Θ)

= eiδm
′(θ̄n−η) 1

2π

∫ π

−π

dΘ̃e−iδm′Θ̃α(η + Θ̃)

=
α0δθ√
8π ln 2

eiδm
′(θ̄n−η)e−δm′2δθ2/(8 ln 2) (20)
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where θ̄n = n2π/N and the last step assumed α =
α0 exp(−2 ln(2)[θ − η]2/δθ2) in the neighborhood of η.
One can show that at t = t0 the |Fn(Θ, t0)| is peaked at
the value defined by Θ + θ̄n − η = 0 which is when the
n-th ion is at the peak of α.
There are several possible ways of detecting the mark.

One example is to do a pump-pump type experiment.
For example, at t = 0, the ring can be marked at θ = η.
At a later time t = tf , the marking operation can be
performed again but at the angle θ = ηf . The two am-
plitudes for excitation can add constructively or destruc-
tively if the ring has rotated by the angle ηf − η. By
varying the phase of the second marking, one can detect
whether or not the ring has rotated. We have performed
calculations of this process and found that it could detect
the rotation. We will present the results for a simpler,
pump-probe method for detecting the rotation. We as-
sume that the detector can only detect ions in state |b >
and ignores those in state |a >.
We will define the probability for detecting an ion in

state |b > at angle θ to be γ(θ− ηd) where ηd is the peak
of the detection efficiency. Using the fact that ion n is at
the position Θ + θ̄n, the probability for detecting an ion
at time t is

P =

N
∑

n=1

∫ 2π

0

dΘγ(Θ + θ̄n − ηd)|Fn(Θ, t)|2 (21)

where the θ̄n = n2π/N . One can show from the expres-
sions above that Fn(Θ− θ̄n, t) is independent of n. Thus,
the probability is

P (ηd) = N

∫ 2π

0

dΘγ(Θ− ηd)|Fn(Θ − θ̄n, t)|2 (22)

for 1 ≤ n ≤ N . If the detection scheme is sharply peaked
in angle, the P (ηd) ∝ |Fn(ηd − θ̄n, t)|2. If the spreading
of the wave packet is less than ∼ π, the summation in m
can be done analytically which will give

P (ηd, t) = |α0|2
∆θ(0)

∆θ(t)
exp

(

−1

2

[ηd − ηm(t)]2

∆θ2(t)

)

(23)

where δθ is the FWHM at t = t0, ∆θ
2(0) = δθ2/(8 ln 2),

∆θ2(t) = ∆θ2(0) + ω2
0(t − t0)

2/(2∆θ(0))2, ω0 =
2Esc/(N~), and ηm(t) = ω0(m −Na0)(t − t0). This ap-
proximation shows that the packet behaves like a spread-
ing Gaussian for short times with the peak having an
angular frequency equal to ω0(m−Na0).
Figure 5 shows the results of calculations for the same

parameters of Fig. 3 with δθ = π/8. The different lines
show different detection times separated by 1/2 s inter-
vals. The ring is marked at θ0 = 0. The marked ion
rotates in the negative Θ direction because a0 was cho-
sen to be positive and the ring is assumed to start in
the ground state: m = 0. The decrease in height of the
P (ηd) is due to the spreading of the wave packet due to
dispersion. We followed the evolution of the wave packet
to much longer times, 50 s, and found that the packet

FIG. 5: (Color online) The angular distribution of the marked
ion as a function of angle for times of 0 s (dotted), 1/2 s
(dashed), 1 s (dash-dot), 3/2 s (dash-dot-dot-dot), and 2 s
(long dash) after the marking occurs. All of the P ’s have been
scaled by the same factor so that the maximum at t = 0 is ap-
proximately 1. The calculations are performed for a0 = 1/4,
R = 60 µm, and a mass of 9 amu. Using the approxima-
tion from Eq. (23) gives results indistinguishable from those
plotted here.

FIG. 6: (Color online) The angular distribution of the marked
ion as a function of angle at the time 1 s for different amounts
of contamination from the first and second excited states. The
population in the first excited state was f times that in the
ground state and the population in the second excited state
was f2 times the ground state. The calculations are f = 0
(dotted), f = 0.1 (dashed), f = 0.2 (dot-dash), f = 0.3
(dash-dot-dot-dot), f = 0.4 (long dash), and f = 0.5 (solid).

dispersed to approximately cover the full 2π at approxi-
mately 25 s which is just short of 2 rotational periods. As
with all wave packets, the dispersion can be reduced by
starting with a broader packet in δθ but the cost would
be that the initial time for a rotation large compared to
δθ would increase.

Figure 6 is meant to show where the marked ion would
be detected for different admixtures of the excited states.
The first excited state corresponds to m = N and gives
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a mark that rotates in the positive sense. The second
excited state corresponds to m = −N and gives a mark
that rotates in a negative sense much faster than the
m = 0 ground state. The detection time was chosen
to be 1 s which is long enough for the ground state to
move a distinguishable distance but short enough that
the faster packets do not return to θ ∼ 0. At this time,
the three initial states give distinct peaks. The ground
state is the peak at ηd/π ∼ −0.15, the first excited state
gives the peak at ∼ 0.45, and the second excited state
gives the peak at ∼ −0.8. Since the ring rotates faster
for more highly excited states, contamination from them
would tend to give peaks that overlap those shown. The
calculation with the largest excited state admixture has
approximately 57% in the ground state. This calculation
shows that somewhat large admixtures of excited states
could still lead to a detectable signal corresponding to
rotation of the ground state.

B. Not Weak Marking

This section describes the wave packet that results
when the probability for more than one marked atom
is not negligible. We will define the t = 0 to be the time
when the marking takes place. We will assume that the
average number of marked ions is approximately 1.
At time t = 0, the part of the wave function in Eq. (14)

corresponding to 0 marked ions equals

Ψ
(0)
1 (Θ, 0) =

N
∏

n=1

cos(α(θn))Φ0(Θ, 0) (24)

where the Φ0 is defined in Eq. (18). For a general α(θ) we
would need to evaluate the overlap of this expression with
eigenstates. However, since the ions are closely spaced
compared to δθ of the marking, the product of cosines has
almost no variation with respect to Θ. When we chose
the marking width to be comparable to the ion spacing,
δθ = 2π/N , the variation was approximately 0.4%; the
variation was approximately 10−6 for δθ twice this value.
For the δθ used in our calculations, the product of cosines
had a variation with respect to Θ that was smaller than
machine precision. Thus, to an excellent approximation

Ψ
(0)
1 (Θ, t) = AΦ0(Θ, t) (25)

where

A =

N
∏

n=1

cos(α(θ̄n)) (26)

is a constant. Thus, the 0 mark part of the wave function
remains in the initial eigenstate but with a probability
that is decreased to A2.
At time t = 0, the part of the wave function corre-

sponding to the n-th ion being marked

Ψ
(1,n)
1 (Θ, 0) = iA tan(α(θn))Φ0(Θ, 0) (27)

where we have used the definition from Eq. (26) and
the trigonometric relation tan(α) cos(α) = sin(α). Us-
ing similar operations as the previous section, the part
of the wave function at later times corresponding to the
n-th ion being marked is

Φ(1)
n (Θ, t) = iAΦ0(Θ, t)

∑

m′

eiδm
′Θ−(Em′−Em)tτ

(n)
m′,m

(28)
where the definitions of Eq. (19) hold and

τ
(n)
m′,m = < m′| tan(α(θn))|m >

=
τ0δθ√
8π ln 2

eiδm
′(θ̄n−η)e−δm′2δθ2/(8 ln 2) (29)

where θ̄n = n2π/N and the last step assumed tan(α) =
τ0 exp(−2 ln(2)[θ − η]2/δθ2) in the neighborhood of η.
The form for tan(α) was chosen for convenience of the
calculation and does not have a qualitative effect on the
results.
The simple form for tan(α) allows for an exact eval-

uation of the matrix elements for more than one ion
marked. There are four main changes from the expres-
sion for one marked ion: (1) the amplitude is propor-
tional to τp0 where p is the number of excited atoms,
(2) the spread in m modifies the term in Eq. (29) to

exp(−δm′2δθ2/[8p ln 2]), (3) the phase term is changed
where the θ̄n is replaced by the average θ̄n of the marked
atoms, and (4) an extra factor of

S = exp



−2 ln 2

p

p
∑

j<k

[θ̄nj
− θ̄nk

]2



 (30)

which insures all of the marked ions are close to each
other. Because of change (2), the wave function will dis-
perse more quickly as more ions are marked. This would
affect the measurements if the ring were allowed to rotate
for more than a part of a cycle.
As with the previous section, the probe step of the

process can be modeled once one has the wave function.
For an average of one marked ion, the results are similar
to those shown in Figs. 5 and 6.

V. CONCLUSIONS

We have performed time dependent calculations for a
ring of identical, bosonic ions in a magnetic field. These
calculations can serve as a guide of what to expect for
certain experimental manipulations. We showed that it
is possible to pin the ring using a potential that is not
rotationally symmetric. By slowly turning off the pin-
ning potential, the ring can be adiabatically cooled to
the ground rotational state without the need for temper-
atures at the nK scale. We also showed that it is possible
to mark an ion and measure the rotation of the ring by
subsequently performing a detection of the marked ion.
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The time dependent quantum calculations show that the
wave function for the marked ion disperses. Thus, there
is an experimental trade-off in that a ring that is marked
over a small δθ spreads quickly and vice versa.
The time and energy scales in our calculations show

that the experiments will be very challenging. However,
there does not appear to be a fundamental problem with
detecting the rotation of a marked ring made from iden-

tical bosonic ions.

We thank Tongcang Li for interesting discussions that
motivated us to study this system. We also thank Zhex-
uan Gong and Zhangqi Yin for comments on an earlier
draft of this paper. This material is based upon work sup-
ported by the National Science Foundation under Grant
No. 1404419-PHY.
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